library(readxl)
library(tidyverse)
library(janitor)
library(ggpubr)
library(qqplotr)
library(car)
library(nortest)
ratones <- read_excel("experimento_ratones.xlsx")
ratones
## # A tibble: 16 x 4
## Block Treatment Strain GST
## <chr> <chr> <chr> <dbl>
## 1 A Control NIH 444
## 2 A Treated NIH 614
## 3 A Control BALB/C 423
## 4 A Treated BALB/C 625
## 5 A Control A/J 408
## 6 A Treated A/J 856
## 7 A Control 129/Ola 447
## 8 A Treated 129/Ola 719
## 9 B Control NIH 764
## 10 B Treated NIH 831
## 11 B Control BALB/C 586
## 12 B Treated BALB/C 782
## 13 B Control A/J 609
## 14 B Treated A/J 1002
## 15 B Control 129/Ola 606
## 16 B Treated 129/Ola 766
ratones %>%
ggplot(aes(x = GST)) +
geom_density(fill = "forestgreen", color = "forestgreen", alpha = 0.3) +
geom_rug()
ratones %>%
ggplot(aes(x = "", y = GST)) +
geom_boxplot(fill = "forestgreen", color = "forestgreen", alpha = 0.3) +
geom_rug() +
coord_flip()
ratones %>%
ggplot(aes(sample = GST)) +
geom_qq() +
geom_qq_line()
ratones %>%
ggplot(aes(sample = GST)) +
stat_qq_band() +
stat_qq_line() +
stat_qq_point()
ggqqplot(data = ratones$GST)
qqPlot(x = ratones$GST)
## [1] 14 5
\[H_0: X \sim N(\mu, \sigma) \\ H_1: X \nsim N(\mu, \sigma)\]
shapiro.test(x = ratones$GST)
##
## Shapiro-Wilk normality test
##
## data: ratones$GST
## W = 0.94891, p-value = 0.4726
ad.test(x = ratones$GST)
##
## Anderson-Darling normality test
##
## data: ratones$GST
## A = 0.33472, p-value = 0.4646
cvm.test(x = ratones$GST)
##
## Cramer-von Mises normality test
##
## data: ratones$GST
## W = 0.050458, p-value = 0.482
lillie.test(x = ratones$GST)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: ratones$GST
## D = 0.13506, p-value = 0.6069
sf.test(x = ratones$GST)
##
## Shapiro-Francia normality test
##
## data: ratones$GST
## W = 0.95742, p-value = 0.528