Los datos utilizados son tomados del libro Control estadístico de la calidad de Douglas C. Montgomery.
Página 213.
muestra<-rep(1:40,each=5,len=200)
diametros<-c(74.030,74.002,74.019,73.992,74.008,73.995,73.992,74.001,74.011,74.004,73.988,74.024,74.021,74.005,74.002,74.002,73.996,73.993,74.015,74.009,73.992,74.007,74.015,73.989,74.014,74.009,73.994,73.997,73.985,73.993,73.995,74.006,73.994,74.000,74.005,73.985,74.003,73.993,74.015,73.988,74.008,73.995,74.009,74.005,74.004,73.998,74.000,73.990,74.007,73.995,73.994,73.998,73.994,73.995,73.990,74.004,74.000,74.007,74.000,73.996,73.983,74.002,73.998,73.997,74.012,74.006,73.967,73.994,74.000,73.984,74.012,74.014,73.998,73.999,74.007,74.000,73.984,74.005,73.998,73.996,73.994,74.012,73.986,74.005,74.007,74.006,74.010,74.018,74.003,74.000,73.984,74.002,74.003,74.005,73.997,74.000,74.010,74.013,74.020,74.003,73.988,74.001,74.009,74.005,73.996,74.004,73.999,73.990,74.006,74.009,74.010,73.989,73.990,74.009,74.014,74.015,74.008,73.993,74.000,74.010,73.982,73.984,73.995,74.017,74.013,74.012,74.015,74.030,73.986,74.000,73.995,74.010,73.990,74.015,74.001,73.987,73.999,73.985,74.000,73.990,74.008,74.010,74.003,73.991,74.006,74.003,74.000,74.001,73.986,73.997,73.994,74.003,74.015,74.020,74.004,74.008,74.002,74.018,73.995,74.005,74.001,74.004,73.990,73.996,73.998,74.015,74.000,74.016,74.025,74.000,74.030,74.005,74.000,74.016,74.012,74.001,73.990,73.995,74.010,74.024,74.015,74.020,74.024,74.005,74.019,74.035,74.010,74.012,74.015,74.026,74.017,74.013,74.036,74.025,74.026,74.010,74.005,74.029,74.000,74.020)
dia<-qcc.groups(diametros,muestra);dia
## [,1] [,2] [,3] [,4] [,5]
## 1 74.030 74.002 74.019 73.992 74.008
## 2 73.995 73.992 74.001 74.011 74.004
## 3 73.988 74.024 74.021 74.005 74.002
## 4 74.002 73.996 73.993 74.015 74.009
## 5 73.992 74.007 74.015 73.989 74.014
## 6 74.009 73.994 73.997 73.985 73.993
## 7 73.995 74.006 73.994 74.000 74.005
## 8 73.985 74.003 73.993 74.015 73.988
## 9 74.008 73.995 74.009 74.005 74.004
## 10 73.998 74.000 73.990 74.007 73.995
## 11 73.994 73.998 73.994 73.995 73.990
## 12 74.004 74.000 74.007 74.000 73.996
## 13 73.983 74.002 73.998 73.997 74.012
## 14 74.006 73.967 73.994 74.000 73.984
## 15 74.012 74.014 73.998 73.999 74.007
## 16 74.000 73.984 74.005 73.998 73.996
## 17 73.994 74.012 73.986 74.005 74.007
## 18 74.006 74.010 74.018 74.003 74.000
## 19 73.984 74.002 74.003 74.005 73.997
## 20 74.000 74.010 74.013 74.020 74.003
## 21 73.988 74.001 74.009 74.005 73.996
## 22 74.004 73.999 73.990 74.006 74.009
## 23 74.010 73.989 73.990 74.009 74.014
## 24 74.015 74.008 73.993 74.000 74.010
## 25 73.982 73.984 73.995 74.017 74.013
## 26 74.012 74.015 74.030 73.986 74.000
## 27 73.995 74.010 73.990 74.015 74.001
## 28 73.987 73.999 73.985 74.000 73.990
## 29 74.008 74.010 74.003 73.991 74.006
## 30 74.003 74.000 74.001 73.986 73.997
## 31 73.994 74.003 74.015 74.020 74.004
## 32 74.008 74.002 74.018 73.995 74.005
## 33 74.001 74.004 73.990 73.996 73.998
## 34 74.015 74.000 74.016 74.025 74.000
## 35 74.030 74.005 74.000 74.016 74.012
## 36 74.001 73.990 73.995 74.010 74.024
## 37 74.015 74.020 74.024 74.005 74.019
## 38 74.035 74.010 74.012 74.015 74.026
## 39 74.017 74.013 74.036 74.025 74.026
## 40 74.010 74.005 74.029 74.000 74.020
xrango<-qcc(dia[1:25,], type="R")
summary(xrango)
##
## Call:
## qcc(data = dia[1:25, ], type = "R")
##
## R chart for dia[1:25, ]
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00800 0.01800 0.02100 0.02276 0.02600 0.03900
##
## Group sample size: 5
## Number of groups: 25
## Center of group statistics: 0.02276
## Standard deviation: 0.009785039
##
## Control limits:
## LCL UCL
## 0 0.04812533
xbarra <- qcc(dia[1:25,], type="xbar")
summary(xbarra)
##
## Call:
## qcc(data = dia[1:25, ], type = "xbar")
##
## xbar chart for dia[1:25, ]
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 73.99020 73.99820 74.00080 74.00118 74.00420 74.01020
##
## Group sample size: 5
## Number of groups: 25
## Center of group statistics: 74.00118
## Standard deviation: 0.009785039
##
## Control limits:
## LCL UCL
## 73.98805 74.0143
process.capability(xbarra, spec.limits=c(73.95,74.05),confidence.level = 0.95)
##
## Process Capability Analysis
##
## Call:
## process.capability(object = xbarra, spec.limits = c(73.95, 74.05), confidence.level = 0.95)
##
## Number of obs = 125 Target = 74
## Center = 74 LSL = 73.95
## StdDev = 0.009785 USL = 74.05
##
## Capability indices:
##
## Value 2.5% 97.5%
## Cp 1.703 1.491 1.915
## Cp_l 1.743 1.555 1.932
## Cp_u 1.663 1.483 1.844
## Cp_k 1.663 1.448 1.878
## Cpm 1.691 1.480 1.902
##
## Exp<LSL 0% Obs<LSL 0%
## Exp>USL 0% Obs>USL 0%
qcc(dia[1:25,], type="xbar", newdata=dia[26:40,], nsigmas=2)
## List of 15
## $ call : language qcc(data = dia[1:25, ], type = "xbar", newdata = dia[26:40, ], nsigmas = 2)
## $ type : chr "xbar"
## $ data.name : chr "dia[1:25, ]"
## $ data : num [1:25, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics : Named num [1:25] 74 74 74 74 74 ...
## ..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
## $ sizes : Named int [1:25] 5 5 5 5 5 5 5 5 5 5 ...
## ..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
## $ center : num 74
## $ std.dev : num 0.00979
## $ newstats : Named num [1:15] 74 74 74 74 74 ...
## ..- attr(*, "names")= chr [1:15] "26" "27" "28" "29" ...
## $ newdata : num [1:15, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ newsizes : Named int [1:15] 5 5 5 5 5 5 5 5 5 5 ...
## ..- attr(*, "names")= chr [1:15] "26" "27" "28" "29" ...
## $ newdata.name: chr "dia[26:40, ]"
## $ nsigmas : num 2
## $ limits : num [1, 1:2] 74 74
## ..- attr(*, "dimnames")=List of 2
## $ violations :List of 2
## - attr(*, "class")= chr "qcc"
qcc(dia[1:25,], type="R", newdata=dia[26:40,])
## List of 15
## $ call : language qcc(data = dia[1:25, ], type = "R", newdata = dia[26:40, ])
## $ type : chr "R"
## $ data.name : chr "dia[1:25, ]"
## $ data : num [1:25, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics : Named num [1:25] 0.038 0.019 0.036 0.022 0.026 ...
## ..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
## $ sizes : Named int [1:25] 5 5 5 5 5 5 5 5 5 5 ...
## ..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
## $ center : num 0.0228
## $ std.dev : num 0.00979
## $ newstats : Named num [1:15] 0.044 0.025 0.015 0.019 0.017 ...
## ..- attr(*, "names")= chr [1:15] "26" "27" "28" "29" ...
## $ newdata : num [1:15, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ newsizes : Named int [1:15] 5 5 5 5 5 5 5 5 5 5 ...
## ..- attr(*, "names")= chr [1:15] "26" "27" "28" "29" ...
## $ newdata.name: chr "dia[26:40, ]"
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0 0.0481
## ..- attr(*, "dimnames")=List of 2
## $ violations :List of 2
## - attr(*, "class")= chr "qcc"
beta1 <- oc.curves.xbar(qcc(dia, type="xbar", nsigmas=3, plot=TRUE))
print(round(beta1, digits=4))
## sample size
## shift (std.dev) n=5 n=1 n=10 n=15 n=20
## 0 0.9973 0.9973 0.9973 0.9973 0.9973
## 0.05 0.9971 0.9973 0.9970 0.9968 0.9966
## 0.1 0.9966 0.9972 0.9959 0.9952 0.9944
## 0.15 0.9957 0.9970 0.9940 0.9920 0.9900
## 0.2 0.9944 0.9968 0.9909 0.9869 0.9823
## 0.25 0.9925 0.9964 0.9864 0.9789 0.9701
## 0.3 0.9900 0.9960 0.9798 0.9670 0.9514
## 0.35 0.9866 0.9956 0.9708 0.9500 0.9243
## 0.4 0.9823 0.9950 0.9586 0.9266 0.8871
## 0.45 0.9769 0.9943 0.9426 0.8957 0.8383
## 0.5 0.9701 0.9936 0.9220 0.8562 0.7775
## 0.55 0.9616 0.9927 0.8963 0.8078 0.7055
## 0.6 0.9514 0.9916 0.8649 0.7505 0.6243
## 0.65 0.9390 0.9905 0.8275 0.6853 0.5371
## 0.7 0.9243 0.9892 0.7842 0.6137 0.4481
## 0.75 0.9071 0.9877 0.7351 0.5379 0.3616
## 0.8 0.8871 0.9860 0.6809 0.4608 0.2817
## 0.85 0.8642 0.9842 0.6225 0.3851 0.2115
## 0.9 0.8383 0.9821 0.5612 0.3136 0.1527
## 0.95 0.8094 0.9798 0.4983 0.2485 0.1059
## 1 0.7775 0.9772 0.4355 0.1913 0.0705
## 1.05 0.7428 0.9744 0.3743 0.1431 0.0450
## 1.1 0.7055 0.9713 0.3161 0.1038 0.0275
## 1.15 0.6659 0.9678 0.2622 0.0730 0.0161
## 1.2 0.6243 0.9641 0.2134 0.0497 0.0090
## 1.25 0.5812 0.9599 0.1703 0.0328 0.0048
## 1.3 0.5371 0.9554 0.1333 0.0209 0.0024
## 1.35 0.4925 0.9505 0.1022 0.0129 0.0012
## 1.4 0.4481 0.9452 0.0768 0.0077 0.0006
## 1.45 0.4043 0.9394 0.0564 0.0045 0.0002
## 1.5 0.3616 0.9332 0.0406 0.0025 0.0001
## 1.55 0.3206 0.9265 0.0286 0.0013 0.0000
## 1.6 0.2817 0.9192 0.0197 0.0007 0.0000
## 1.65 0.2453 0.9115 0.0133 0.0003 0.0000
## 1.7 0.2115 0.9032 0.0088 0.0002 0.0000
## 1.75 0.1806 0.8943 0.0056 0.0001 0.0000
## 1.8 0.1527 0.8849 0.0036 0.0000 0.0000
## 1.85 0.1278 0.8749 0.0022 0.0000 0.0000
## 1.9 0.1059 0.8643 0.0013 0.0000 0.0000
## 1.95 0.0869 0.8531 0.0008 0.0000 0.0000
## 2 0.0705 0.8413 0.0004 0.0000 0.0000
## 2.05 0.0566 0.8289 0.0002 0.0000 0.0000
## 2.1 0.0450 0.8159 0.0001 0.0000 0.0000
## 2.15 0.0353 0.8023 0.0001 0.0000 0.0000
## 2.2 0.0275 0.7881 0.0000 0.0000 0.0000
## 2.25 0.0211 0.7734 0.0000 0.0000 0.0000
## 2.3 0.0161 0.7580 0.0000 0.0000 0.0000
## 2.35 0.0121 0.7422 0.0000 0.0000 0.0000
## 2.4 0.0090 0.7257 0.0000 0.0000 0.0000
## 2.45 0.0066 0.7088 0.0000 0.0000 0.0000
## 2.5 0.0048 0.6915 0.0000 0.0000 0.0000
## 2.55 0.0034 0.6736 0.0000 0.0000 0.0000
## 2.6 0.0024 0.6554 0.0000 0.0000 0.0000
## 2.65 0.0017 0.6368 0.0000 0.0000 0.0000
## 2.7 0.0012 0.6179 0.0000 0.0000 0.0000
## 2.75 0.0008 0.5987 0.0000 0.0000 0.0000
## 2.8 0.0006 0.5793 0.0000 0.0000 0.0000
## 2.85 0.0004 0.5596 0.0000 0.0000 0.0000
## 2.9 0.0002 0.5398 0.0000 0.0000 0.0000
## 2.95 0.0002 0.5199 0.0000 0.0000 0.0000
## 3 0.0001 0.5000 0.0000 0.0000 0.0000
## 3.05 0.0001 0.4801 0.0000 0.0000 0.0000
## 3.1 0.0000 0.4602 0.0000 0.0000 0.0000
## 3.15 0.0000 0.4404 0.0000 0.0000 0.0000
## 3.2 0.0000 0.4207 0.0000 0.0000 0.0000
## 3.25 0.0000 0.4013 0.0000 0.0000 0.0000
## 3.3 0.0000 0.3821 0.0000 0.0000 0.0000
## 3.35 0.0000 0.3632 0.0000 0.0000 0.0000
## 3.4 0.0000 0.3446 0.0000 0.0000 0.0000
## 3.45 0.0000 0.3264 0.0000 0.0000 0.0000
## 3.5 0.0000 0.3085 0.0000 0.0000 0.0000
## 3.55 0.0000 0.2912 0.0000 0.0000 0.0000
## 3.6 0.0000 0.2743 0.0000 0.0000 0.0000
## 3.65 0.0000 0.2578 0.0000 0.0000 0.0000
## 3.7 0.0000 0.2420 0.0000 0.0000 0.0000
## 3.75 0.0000 0.2266 0.0000 0.0000 0.0000
## 3.8 0.0000 0.2119 0.0000 0.0000 0.0000
## 3.85 0.0000 0.1977 0.0000 0.0000 0.0000
## 3.9 0.0000 0.1841 0.0000 0.0000 0.0000
## 3.95 0.0000 0.1711 0.0000 0.0000 0.0000
## 4 0.0000 0.1587 0.0000 0.0000 0.0000
## 4.05 0.0000 0.1469 0.0000 0.0000 0.0000
## 4.1 0.0000 0.1357 0.0000 0.0000 0.0000
## 4.15 0.0000 0.1251 0.0000 0.0000 0.0000
## 4.2 0.0000 0.1151 0.0000 0.0000 0.0000
## 4.25 0.0000 0.1056 0.0000 0.0000 0.0000
## 4.3 0.0000 0.0968 0.0000 0.0000 0.0000
## 4.35 0.0000 0.0885 0.0000 0.0000 0.0000
## 4.4 0.0000 0.0808 0.0000 0.0000 0.0000
## 4.45 0.0000 0.0735 0.0000 0.0000 0.0000
## 4.5 0.0000 0.0668 0.0000 0.0000 0.0000
## 4.55 0.0000 0.0606 0.0000 0.0000 0.0000
## 4.6 0.0000 0.0548 0.0000 0.0000 0.0000
## 4.65 0.0000 0.0495 0.0000 0.0000 0.0000
## 4.7 0.0000 0.0446 0.0000 0.0000 0.0000
## 4.75 0.0000 0.0401 0.0000 0.0000 0.0000
## 4.8 0.0000 0.0359 0.0000 0.0000 0.0000
## 4.85 0.0000 0.0322 0.0000 0.0000 0.0000
## 4.9 0.0000 0.0287 0.0000 0.0000 0.0000
## 4.95 0.0000 0.0256 0.0000 0.0000 0.0000
## 5 0.0000 0.0228 0.0000 0.0000 0.0000
xdes<-qcc(dia[1:25,], type="S")
summary(xdes)
##
## Call:
## qcc(data = dia[1:25, ], type = "S")
##
## S chart for dia[1:25, ]
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.002863564 0.007314369 0.008467585 0.009240037 0.011928956 0.016177144
##
## Group sample size: 5
## Number of groups: 25
## Center of group statistics: 0.009240037
## Standard deviation: 0.009829977
##
## Control limits:
## LCL UCL
## 0 0.01930242
qcc(dia[1:25,], type="S", newdata=dia[26:40,])
## List of 15
## $ call : language qcc(data = dia[1:25, ], type = "S", newdata = dia[26:40, ])
## $ type : chr "S"
## $ data.name : chr "dia[1:25, ]"
## $ data : num [1:25, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics : Named num [1:25] 0.01477 0.0075 0.01475 0.00908 0.01222 ...
## ..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
## $ sizes : Named int [1:25] 5 5 5 5 5 5 5 5 5 5 ...
## ..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
## $ center : num 0.00924
## $ std.dev : num 0.00983
## $ newstats : Named num [1:15] 0.01655 0.01033 0.00691 0.0075 0.00673 ...
## ..- attr(*, "names")= chr [1:15] "26" "27" "28" "29" ...
## $ newdata : num [1:15, 1:5] 74 74 74 74 74 ...
## ..- attr(*, "dimnames")=List of 2
## $ newsizes : Named int [1:15] 5 5 5 5 5 5 5 5 5 5 ...
## ..- attr(*, "names")= chr [1:15] "26" "27" "28" "29" ...
## $ newdata.name: chr "dia[26:40, ]"
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0 0.0193
## ..- attr(*, "dimnames")=List of 2
## $ violations :List of 2
## - attr(*, "class")= chr "qcc"
Datos tomados de la página 245.
muestra2<-c(rep(1,5),rep(2,3),rep(3:5,each=5,length=15),rep(6:7,each=4,length=8),rep(8,5),rep(9,4),rep(10:12,each=5,length=15),rep(13,3),rep(14,5),rep(15,3),rep(16,5),rep(17,4),rep(18:19,each=5,length=10),rep(20,3),rep(21:25,each=5,length=25))
muestra2
## [1] 1 1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6
## [26] 6 6 7 7 7 7 8 8 8 8 8 9 9 9 9 10 10 10 10 10 11 11 11 11 11
## [51] 12 12 12 12 12 13 13 13 14 14 14 14 14 15 15 15 16 16 16 16 16 17 17 17 17
## [76] 18 18 18 18 18 19 19 19 19 19 20 20 20 21 21 21 21 21 22 22 22 22 22 23 23
## [101] 23 23 23 24 24 24 24 24 25 25 25 25 25
diametro2<-c(74.030,74.002,74.019,73.992,74.008,73.995,73.992,74.001,
73.988,74.024,74.021,74.005,74.002,74.002,73.996,73.993,74.015,74.009,
73.992,74.007,74.015,73.989,74.014,74.009,73.994,73.997,73.985,73.995,74.006,73.994,74.000,73.985,74.003,73.993,74.015,73.988,74.008,73.995,74.009,74.005,73.998,74.000,73.990,74.007,73.995,73.994,73.998,73.994,73.995,73.990,74.004,74.000,74.007,74.000,73.996,73.983,74.002,73.998,74.006,73.967,73.994,74.000,73.984,74.012,74.014,73.998,74.000,73.984,74.005,73.998,73.996,73.994,74.012,73.986,74.005,74.006,74.010,74.018,74.003,74.000,73.984,74.002,74.003,74.005,73.997,74.000,74.010,74.013,73.988,74.001,74.009,74.005,73.996,74.004,73.999,73.990,74.006,74.009,74.010,73.989,73.990,74.009,74.014,74.015,74.008,73.993,74.000,74.010,73.982,73.984,73.995,74.017,74.013)
diame<-qcc.groups(diametro2,muestra2)
diame
## [,1] [,2] [,3] [,4] [,5]
## 1 74.030 74.002 74.019 73.992 74.008
## 2 73.995 73.992 74.001 NA NA
## 3 73.988 74.024 74.021 74.005 74.002
## 4 74.002 73.996 73.993 74.015 74.009
## 5 73.992 74.007 74.015 73.989 74.014
## 6 74.009 73.994 73.997 73.985 NA
## 7 73.995 74.006 73.994 74.000 NA
## 8 73.985 74.003 73.993 74.015 73.988
## 9 74.008 73.995 74.009 74.005 NA
## 10 73.998 74.000 73.990 74.007 73.995
## 11 73.994 73.998 73.994 73.995 73.990
## 12 74.004 74.000 74.007 74.000 73.996
## 13 73.983 74.002 73.998 NA NA
## 14 74.006 73.967 73.994 74.000 73.984
## 15 74.012 74.014 73.998 NA NA
## 16 74.000 73.984 74.005 73.998 73.996
## 17 73.994 74.012 73.986 74.005 NA
## 18 74.006 74.010 74.018 74.003 74.000
## 19 73.984 74.002 74.003 74.005 73.997
## 20 74.000 74.010 74.013 NA NA
## 21 73.988 74.001 74.009 74.005 73.996
## 22 74.004 73.999 73.990 74.006 74.009
## 23 74.010 73.989 73.990 74.009 74.014
## 24 74.015 74.008 73.993 74.000 74.010
## 25 73.982 73.984 73.995 74.017 74.013
xbarra1 <- qcc(diame[1:25,], type="xbar")
xrango1<-qcc(diame[1:25,], type="R")
xdes1<-qcc(diame[1:25,], type="S")
process.capability(xbarra1, spec.limits=c(73.95,74.05),confidence.level = 0.95)
##
## Process Capability Analysis
##
## Call:
## process.capability(object = xbarra1, spec.limits = c(73.95, 74.05), confidence.level = 0.95)
##
## Number of obs = 113 Target = 74
## Center = 74 LSL = 73.95
## StdDev = 0.009857 USL = 74.05
##
## Capability indices:
##
## Value 2.5% 97.5%
## Cp 1.691 1.470 1.912
## Cp_l 1.716 1.521 1.912
## Cp_u 1.665 1.475 1.856
## Cp_k 1.665 1.439 1.892
## Cpm 1.686 1.466 1.906
##
## Exp<LSL 0% Obs<LSL 0%
## Exp>USL 0% Obs>USL 0%
Datos tomados de la página 250.
x <- c(33.75, 33.05, 34, 33.81, 33.46, 34.02, 33.68, 33.27, 33.49, 33.20,33.62, 33.00, 33.54, 33.12, 33.84)
uno<-qcc(x, type="xbar.one",std.dev = "MR")
qcc(x, type="xbar.one", std.dev = "SD")
## List of 11
## $ call : language qcc(data = x, type = "xbar.one", std.dev = "SD")
## $ type : chr "xbar.one"
## $ data.name : chr "x"
## $ data : num [1:15, 1] 33.8 33 34 33.8 33.5 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:15] 33.8 33 34 33.8 33.5 ...
## ..- attr(*, "names")= chr [1:15] "1" "2" "3" "4" ...
## $ sizes : int [1:15] 1 1 1 1 1 1 1 1 1 1 ...
## $ center : num 33.5
## $ std.dev : num 0.342
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 32.5 34.5
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"
process.capability(uno, spec.limits=c(32,34),confidence.level = 0.95)
##
## Process Capability Analysis
##
## Call:
## process.capability(object = uno, spec.limits = c(32, 34), confidence.level = 0.95)
##
## Number of obs = 15 Target = 33
## Center = 33.52 LSL = 32
## StdDev = 0.4262 USL = 34
##
## Capability indices:
##
## Value 2.5% 97.5%
## Cp 0.7822 0.4960 1.0684
## Cp_l 1.1915 0.7950 1.5880
## Cp_u 0.3728 0.1899 0.5558
## Cp_k 0.3728 0.1548 0.5908
## Cpm 0.4939 0.2747 0.7137
##
## Exp<LSL 0.018% Obs<LSL 0%
## Exp>USL 13% Obs>USL 6.7%
Paquete utilizado: qcc
|-|-|-|
O.M.F.
|-|-|-|