Import surveys, combine into single data frame, delete identifying information, assign IDs, and separate out by scale for item examination.
# https://hansjoerg.me/2018/04/23/rasch-in-r-tutorial/
knitr::knit_hooks$set(
error = function(x, options) {
paste('\n\n<div class="alert alert-danger">',
gsub('##', '\n', gsub('^##\ Error', '**Error**', x)),
'</div>', sep = '\n')
},
warning = function(x, options) {
paste('\n\n<div class="alert alert-warning">',
gsub('##', '\n', gsub('^##\ Warning:', '**Warning**', x)),
'</div>', sep = '\n')
},
message = function(x, options) {
paste('\n\n<div class="alert alert-info">',
gsub('##', '\n', x),
'</div>', sep = '\n')
}
)
# load libraries ----------------------------------------------------------
library(stringi)
library(psych)
library(DT)
library(naniar)
library(UpSetR)
library(nFactors)
library(lavaan)
library(corrplot)
library(tidyr)
library(ggplot2)
library(dplyr)
library("eRm")
library("ltm")
library("difR")
library("psych")
# load data ---------------------------------------------------------------
# alt <- read.csv(file="UBelong Post-Survey Pitt OChem Spring 2022 Alternative Scales_April 28, 2022_12.34.csv", header=T)
# alt <- alt[-c(1,2),]
# alt$scale <- "alt"
#
# orig <- read.csv(file="UBelong Post-Survey Pitt OChem Spring 2022 Original Scales_April 28, 2022_12.35.csv", header=T)
# orig <- orig[-c(1,2),]
# orig$scale <- "orig"
#
# df <- rbind.data.frame(alt, orig)
# df <- subset(df, select = -c(1:19))
# names(df)
# myFun <- function(n) {
# a <- do.call(paste0, replicate(5, sample(LETTERS, n, TRUE), FALSE))
# paste0(a, sprintf("%04d", sample(9999, n, TRUE)), sample(LETTERS, n, TRUE))
# }
# df$id <- myFun(nrow(df))
# write.csv(df, file="imported_anonymized.csv", row.names = F)
df <- read.csv(file="imported_anonymized.csv", header=T)
# extract items -----------------------------------------------------------
# new items
EEochem <- subset(df, select=c(scale,grep("EEochem", colnames(df)))) # entry expectations
CCdisc <- subset(df, select=grep("CCdisc", colnames(df))) # classroom climate
IDochem <- cbind.data.frame(subset(df, select=c(scale,grep("IDochem", colnames(df)))), subset(df, select=grep("FASochem", colnames(df)))) # identity
CSochem <- subset(df, select=grep("CSochem", colnames(df))) # career satisfaction
# established scales
MSchem <- subset(df, select=c(scale,grep("MSchem", colnames(df)))) # discipline growth mindset (chemistry)
IPchem <- subset(df, select=grep("IPchem", colnames(df))) # instructor growth mindset (chemistry)
SEchem <- subset(df, select=grep("SEchem", colnames(df))) # disciplinary self-efficacy (chemistry)
MSochem <- subset(df, select=c(scale, grep("MSochem", colnames(df)))) # disciplinary growth mindset (organic chemistry)
IPochem <- subset(df, select=grep("IPochem", colnames(df))) # instructor growth mindset (organic chemistry)
SEochem <- subset(df, select=grep("SEochem", colnames(df))) # disciplinary self-efficacy (organic chemistry)
CNEBochem_class <- cbind.data.frame(subset(subset(df, select=grep("CNEBochem", colnames(df))), select=c(1:3))) # entity norms and beliefs
CNEBochem_self <- cbind.data.frame(subset(subset(df, select=grep("CNEBochem", colnames(df))), select=c(4:6))) # entity norms and beliefs
CNHSochem_others <- cbind.data.frame(subset(subset(df, select=grep("CNHSochem", colnames(df))), select=c(1:3))) # help seeking
CNHSochem_self <- cbind.data.frame(subset(subset(df, select=grep("CNHSochem", colnames(df))), select=c(4:6))) # help seeking
CNSWochem <- subset(df, select=grep("CNSWochem", colnames(df))) # help seeking
FCochem <- subset(df, select=grep("FCochem", colnames(df))) # faculty caring
d <- subset(MSchem, scale == "orig", select=-c(scale))
MSchem_desc <- data.frame(describe(d))
datatable(subset(MSchem_desc, select=-c(n, trimmed, mad))) %>%
formatRound(1:10) %>%
formatStyle(8:9, color = styleInterval(c(-2, 2), c('red', 'black', 'red')))
vis_miss(d)
# gg_miss_upset(EEochem)
ggplot(gather(d), aes(value)) +
geom_histogram(bins = 4) +
facet_wrap(~key)
Warning Removed 2 rows containing non-finite values (stat_bin).
corr <- corr.test(d, adjust = "holm")
rval <- corr$r
rval[lower.tri(corr$r, diag = T)] <- NA
datatable(rval) %>%
formatRound(1:ncol(rval)) %>%
formatStyle(1:ncol(rval), color = styleInterval(c(-.7, .7), c('red', 'black', 'red')))
corrplot(corr$r)
d <- na.omit(d)
ev <- eigen(cor(d))
ap <- parallel(subject=nrow(d),var=ncol(d),rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)
EFA <- factanal(d, factors = 2, rotation = "promax", cutoff = 0.3)
print(EFA, digits=3, cutoff=.4, sort=TRUE)
##
## Call:
## factanal(x = d, factors = 2, rotation = "promax", cutoff = 0.3)
##
## Uniquenesses:
## MSchem01 MSchem02 MSchem03 MSchem04 MSchem05 MSchem06 MSchem07
## 0.446 0.250 0.130 0.111 0.181 0.148 0.370
##
## Loadings:
## Factor1 Factor2
## MSchem01 0.708
## MSchem02 0.918
## MSchem03 0.936
## MSchem04 0.894
## MSchem05 0.974
## MSchem06 0.849
## MSchem07 0.737
##
## Factor1 Factor2
## SS loadings 3.056 2.229
## Proportion Var 0.437 0.318
## Cumulative Var 0.437 0.755
##
## Factor Correlations:
## Factor1 Factor2
## Factor1 1.00 -0.61
## Factor2 -0.61 1.00
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 58.7 on 8 degrees of freedom.
## The p-value is 8.36e-10
d <- subset(MSchem, scale == "alt", select=-c(scale))
MSchem_desc <- data.frame(describe(d))
datatable(subset(MSchem_desc, select=-c(n, trimmed, mad))) %>%
formatRound(1:10) %>%
formatStyle(8:9, color = styleInterval(c(-2, 2), c('red', 'black', 'red')))
vis_miss(d)
# gg_miss_upset(EEochem)
ggplot(gather(d), aes(value)) +
geom_histogram(bins = 4) +
facet_wrap(~key)
Warning Removed 7 rows containing non-finite values (stat_bin).
corr <- corr.test(d, adjust = "holm")
rval <- corr$r
rval[lower.tri(corr$r, diag = T)] <- NA
datatable(rval) %>%
formatRound(1:ncol(rval)) %>%
formatStyle(1:ncol(rval), color = styleInterval(c(-.7, .7), c('red', 'black', 'red')))
corrplot(corr$r)
d <- na.omit(d)
ev <- eigen(cor(d))
ap <- parallel(subject=nrow(d),var=ncol(d),rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)
EFA <- factanal(d, factors = 1, rotation = "promax", cutoff = 0.3)
print(EFA, digits=3, cutoff=.4, sort=TRUE)
##
## Call:
## factanal(x = d, factors = 1, rotation = "promax", cutoff = 0.3)
##
## Uniquenesses:
## MSchem01 MSchem02 MSchem03 MSchem04 MSchem05 MSchem06 MSchem07
## 0.582 0.420 0.410 0.295 0.658 0.351 0.411
##
## Loadings:
## [1] 0.646 0.762 0.768 0.840 -0.585 -0.805 -0.768
##
## Factor1
## SS loadings 3.872
## Proportion Var 0.553
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 87.64 on 14 degrees of freedom.
## The p-value is 1.06e-12
d <- na.omit(d)
ev <- eigen(cor(d))
ap <- parallel(subject=nrow(d),var=ncol(d),rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)
EFA <- factanal(d, factors = 2, rotation = "promax", cutoff = 0.3)
print(EFA, digits=3, cutoff=.4, sort=TRUE)
##
## Call:
## factanal(x = d, factors = 2, rotation = "promax", cutoff = 0.3)
##
## Uniquenesses:
## MSchem01 MSchem02 MSchem03 MSchem04 MSchem05 MSchem06 MSchem07
## 0.630 0.465 0.316 0.005 0.580 0.234 0.249
##
## Loadings:
## Factor1 Factor2
## MSchem05 0.756
## MSchem06 0.867
## MSchem07 0.899
## MSchem03 0.802
## MSchem04 1.058
## MSchem01
## MSchem02 -0.441
##
## Factor1 Factor2
## SS loadings 2.440 2.016
## Proportion Var 0.349 0.288
## Cumulative Var 0.349 0.637
##
## Factor Correlations:
## Factor1 Factor2
## Factor1 1.00 -0.74
## Factor2 -0.74 1.00
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 28.43 on 8 degrees of freedom.
## The p-value is 0.000399
d <- na.omit(subset(MSchem, scale == "orig", select=-c(scale)))
d <- d %>%
mutate_at(vars(1:ncol(d)), recode, `1` = 0, `2` = 0, `3` = 1, `4` = 1)
mod <- rasch(d)
summary(mod)
##
## Call:
## rasch(data = d)
##
## Model Summary:
## log.Lik AIC BIC
## -233.9881 483.9762 502.9318
##
## Coefficients:
## value std.err z.vals
## Dffclt.MSchem01 2.0964 0.7711 2.7188
## Dffclt.MSchem02 3.2931 1.1343 2.9032
## Dffclt.MSchem03 2.3510 0.8437 2.7866
## Dffclt.MSchem04 2.2211 0.8063 2.7548
## Dffclt.MSchem05 -4.5404 1.5815 -2.8709
## Dffclt.MSchem06 -3.2882 1.1376 -2.8904
## Dffclt.MSchem07 -2.9364 1.0230 -2.8704
## Dscrmn 0.6300 0.2156 2.9221
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.00014
## quasi-Newton: BFGS
item.fit(mod, simulate.p.value=T)
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
##
## Item-Fit Statistics and P-values
##
## Call:
## rasch(data = d)
##
## Alternative: Items do not fit the model
## Ability Categories: 10
## Monte Carlo samples: 100
##
## X^2 Pr(>X^2)
## MSchem01 31.5219 0.0099
## MSchem02 23.0463 0.0198
## MSchem03 35.6226 0.0099
## MSchem04 25.5022 0.0396
## MSchem05 17.6123 0.1188
## MSchem06 27.4520 0.0792
## MSchem07 29.7800 0.0594
plot(mod, type="ICC", cex = .7, legend = F, col = 1)
plot(mod, type="IIC", cex = .7, legend = F, col = 1)
items <- colnames(d)
n <- 1
for (i in 1:ncol(d)) {
plot(mod, type = 'ICC', auto.key = FALSE, items = n, main = items[n], annot = F)
n <- n + 1
}
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
plot(mod, type=c("IIC"), items=c(0))
d1 <- subset(d, select=c(MSchem01, MSchem02, MSchem03, MSchem04))
d2 <- subset(d, select=c(MSchem05, MSchem06, MSchem07))
d <- d1
mod <- rasch(d)
Warning in rasch(d): Hessian matrix at convergence is not positive definite; unstable solution.
summary(mod)
Warning in sqrt(diag(new.covar)): NaNs produced
Warning in sqrt(diag(new.covar)): NaNs produced
Warning in sqrt(diag(new.covar)): NaNs produced
Warning in sqrt(diag(new.covar)): NaNs produced
Warning in sqrt(Var[n.ind + 1, n.ind + 1]): NaNs produced
##
## Call:
## rasch(data = d)
##
## Model Summary:
## log.Lik AIC BIC
## -114.8338 239.6677 251.5149
##
## Coefficients:
## value std.err z.vals
## Dffclt.MSchem01 0.4439 NaN NaN
## Dffclt.MSchem02 0.8154 NaN NaN
## Dffclt.MSchem03 0.5158 NaN NaN
## Dffclt.MSchem04 0.5068 NaN NaN
## Dscrmn 6.0452 NaN NaN
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 3.8
## quasi-Newton: BFGS
item.fit(mod, simulate.p.value=T)
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
##
## Item-Fit Statistics and P-values
##
## Call:
## rasch(data = d)
##
## Alternative: Items do not fit the model
## Ability Categories: 10
## Monte Carlo samples: 100
##
## X^2 Pr(>X^2)
## MSchem01 15.0814 0.0396
## MSchem02 1.8016 0.8515
## MSchem03 6.9369 0.0891
## MSchem04 2.0882 0.6733
plot(mod, type="ICC", cex = .7, legend = F, col = 1)
plot(mod, type="IIC", cex = .7, legend = F, col = 1)
items <- colnames(d)
n <- 1
for (i in 1:ncol(d)) {
plot(mod, type = 'ICC', auto.key = FALSE, items = n, main = items[n], annot = F)
n <- n + 1
}
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
plot(mod, type=c("IIC"), items=c(0))
d <- d2
mod <- rasch(d)
summary(mod)
##
## Call:
## rasch(data = d)
##
## Model Summary:
## log.Lik AIC BIC
## -56.60816 121.2163 130.6941
##
## Coefficients:
## value std.err z.vals
## Dffclt.MSchem05 -1.3565 0.1599 -8.4830
## Dffclt.MSchem06 -0.7572 3.6978 -0.2048
## Dffclt.MSchem07 -0.7262 2.2508 -0.3227
## Dscrmn 24.3123 1136.0908 0.0214
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 8.1e-06
## quasi-Newton: BFGS
item.fit(mod, simulate.p.value=T)
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
##
## Item-Fit Statistics and P-values
##
## Call:
## rasch(data = d)
##
## Alternative: Items do not fit the model
## Ability Categories: 10
## Monte Carlo samples: 100
##
## X^2 Pr(>X^2)
## MSchem05 0.3217 0.6436
## MSchem06 0.1641 0.6337
## MSchem07 0.2312 0.3564
plot(mod, type="ICC", cex = .7, legend = F, col = 1)
plot(mod, type="IIC", cex = .7, legend = F, col = 1)
items <- colnames(d)
n <- 1
for (i in 1:ncol(d)) {
plot(mod, type = 'ICC', auto.key = FALSE, items = n, main = items[n], annot = F)
n <- n + 1
}
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
plot(mod, type=c("IIC"), items=c(0))
d <- na.omit(subset(MSchem, scale == "alt", select=-c(scale)))
d <- d %>%
mutate_at(vars(1:ncol(d)), recode, `1` = 0, `2` = 0, `3` = 1, `4` = 1)
mod <- rasch(d)
summary(mod)
##
## Call:
## rasch(data = d)
##
## Model Summary:
## log.Lik AIC BIC
## -267.8323 551.6646 572.5855
##
## Coefficients:
## value std.err z.vals
## Dffclt.MSchem01 2.7068 0.9525 2.8419
## Dffclt.MSchem02 3.5294 1.2215 2.8893
## Dffclt.MSchem03 2.9530 1.0309 2.8645
## Dffclt.MSchem04 2.9530 1.0309 2.8645
## Dffclt.MSchem05 -4.5374 1.5849 -2.8629
## Dffclt.MSchem06 -3.8764 1.3454 -2.8812
## Dffclt.MSchem07 -3.3697 1.1704 -2.8790
## Dscrmn 0.6061 0.2144 2.8275
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.00034
## quasi-Newton: BFGS
item.fit(mod, simulate.p.value=T)
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
##
## Item-Fit Statistics and P-values
##
## Call:
## rasch(data = d)
##
## Alternative: Items do not fit the model
## Ability Categories: 10
## Monte Carlo samples: 100
##
## X^2 Pr(>X^2)
## MSchem01 41.9780 0.0297
## MSchem02 21.7268 0.099
## MSchem03 33.9795 0.0198
## MSchem04 32.7329 0.0594
## MSchem05 26.2988 0.1089
## MSchem06 32.8482 0.0891
## MSchem07 38.7653 0.0297
plot(mod, type="ICC", cex = .7, legend = F, col = 1)
plot(mod, type="IIC", cex = .7, legend = F, col = 1)
items <- colnames(d)
n <- 1
for (i in 1:ncol(d)) {
plot(mod, type = 'ICC', auto.key = FALSE, items = n, main = items[n], annot = F)
n <- n + 1
}
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
plot(mod, type=c("IIC"), items=c(0))
d1 <- subset(d, select=c(MSchem01, MSchem02, MSchem03, MSchem04))
d2 <- subset(d, select=c(MSchem05, MSchem06, MSchem07))
d <- d1
mod <- rasch(d)
summary(mod)
##
## Call:
## rasch(data = d)
##
## Model Summary:
## log.Lik AIC BIC
## -137.8372 285.6745 298.7501
##
## Coefficients:
## value std.err z.vals
## Dffclt.MSchem01 1.0977 0.1932 5.6820
## Dffclt.MSchem02 1.4078 0.2175 6.4729
## Dffclt.MSchem03 1.1919 0.2002 5.9527
## Dffclt.MSchem04 1.1919 0.2002 5.9526
## Dscrmn 2.9149 0.5084 5.7337
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.00014
## quasi-Newton: BFGS
item.fit(mod, simulate.p.value=T)
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
##
## Item-Fit Statistics and P-values
##
## Call:
## rasch(data = d)
##
## Alternative: Items do not fit the model
## Ability Categories: 10
## Monte Carlo samples: 100
##
## X^2 Pr(>X^2)
## MSchem01 16.6702 0.0594
## MSchem02 2.5010 0.9505
## MSchem03 4.1249 0.7624
## MSchem04 4.1246 0.6733
plot(mod, type="ICC", cex = .7, legend = F, col = 1)
plot(mod, type="IIC", cex = .7, legend = F, col = 1)
items <- colnames(d)
n <- 1
for (i in 1:ncol(d)) {
plot(mod, type = 'ICC', auto.key = FALSE, items = n, main = items[n], annot = F)
n <- n + 1
}
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
plot(mod, type=c("IIC"), items=c(0))
d <- d2
mod <- rasch(d)
summary(mod)
##
## Call:
## rasch(data = d)
##
## Model Summary:
## log.Lik AIC BIC
## -75.8406 159.6812 170.1417
##
## Coefficients:
## value std.err z.vals
## Dffclt.MSchem05 -1.6042 0.2302 -6.9686
## Dffclt.MSchem06 -1.3997 0.1941 -7.2121
## Dffclt.MSchem07 -1.2331 0.1811 -6.8094
## Dscrmn 4.1331 1.2754 3.2407
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 8.1e-05
## quasi-Newton: BFGS
item.fit(mod, simulate.p.value=T)
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
Warning in rasch(data = X.new): Hessian matrix at convergence is not positive definite; unstable solution.
##
## Item-Fit Statistics and P-values
##
## Call:
## rasch(data = d)
##
## Alternative: Items do not fit the model
## Ability Categories: 10
## Monte Carlo samples: 100
##
## X^2 Pr(>X^2)
## MSchem05 3.3944 0.2376
## MSchem06 1.9365 0.5446
## MSchem07 3.1600 0.4752
plot(mod, type="ICC", cex = .7, legend = F, col = 1)
plot(mod, type="IIC", cex = .7, legend = F, col = 1)
items <- colnames(d)
n <- 1
for (i in 1:ncol(d)) {
plot(mod, type = 'ICC', auto.key = FALSE, items = n, main = items[n], annot = F)
n <- n + 1
}
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
Warning in plot.window(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy, type, …): “auto.key” is not a graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in axis(side = side, at = at, labels = labels, …): “auto.key” is not a
graphical parameter
Warning in box(…): “auto.key” is not a graphical parameter
Warning in title(…): “auto.key” is not a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, …): “auto.key” is not a
graphical parameter
plot(mod, type=c("IIC"), items=c(0))