Q1

Load the vowel.train and vowel.test data sets: library(ElemStatLearn) data(vowel.train) data(vowel.test) Set the variable y to be a factor variable in both the training and test set. Then set the seed to 33833. Fit (1) a random forest predictor relating the factor variable y to the remaining variables and(2) a boosted predictor using the “gbm” method. Fit these both with the train() command in the caret package. What are the accuracies for the two approaches on the test data set? What is the accuracy among the test set samples where the two methods agree?

set.seed(33833)
library(ElemStatLearn)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
data(vowel.train)
data(vowel.test) 
vowel.train$y<- as.factor(vowel.train$y)
vowel.test$y<- as.factor(vowel.test$y)
modelFit1_rf<- train(y~.,data=vowel.train,method="rf")
## Loading required package: randomForest
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
modelFit1_gbm<- train(y~.,data=vowel.train,method="gbm")
## Loading required package: gbm
## Loading required package: survival
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:caret':
## 
##     cluster
## 
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.1
## Loading required package: plyr
## 
## Attaching package: 'plyr'
## 
## The following object is masked from 'package:ElemStatLearn':
## 
##     ozone
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3739
##      2        2.1607             nan     0.1000    0.2040
##      3        2.0267             nan     0.1000    0.1647
##      4        1.9098             nan     0.1000    0.1529
##      5        1.8106             nan     0.1000    0.0928
##      6        1.7318             nan     0.1000    0.0989
##      7        1.6524             nan     0.1000    0.0698
##      8        1.5940             nan     0.1000    0.0988
##      9        1.5270             nan     0.1000    0.0693
##     10        1.4741             nan     0.1000    0.0483
##     20        1.0845             nan     0.1000    0.0313
##     40        0.7106             nan     0.1000    0.0064
##     60        0.5128             nan     0.1000    0.0023
##     80        0.3728             nan     0.1000    0.0001
##    100        0.2866             nan     0.1000   -0.0068
##    120        0.2229             nan     0.1000   -0.0026
##    140        0.1727             nan     0.1000   -0.0025
##    150        0.1537             nan     0.1000   -0.0023
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5927
##      2        2.0197             nan     0.1000    0.3493
##      3        1.7939             nan     0.1000    0.2492
##      4        1.6270             nan     0.1000    0.1775
##      5        1.4854             nan     0.1000    0.1445
##      6        1.3750             nan     0.1000    0.1406
##      7        1.2735             nan     0.1000    0.1250
##      8        1.1765             nan     0.1000    0.1033
##      9        1.1006             nan     0.1000    0.0907
##     10        1.0292             nan     0.1000    0.0807
##     20        0.6030             nan     0.1000    0.0331
##     40        0.2597             nan     0.1000    0.0045
##     60        0.1317             nan     0.1000    0.0033
##     80        0.0698             nan     0.1000    0.0012
##    100        0.0390             nan     0.1000   -0.0004
##    120        0.0237             nan     0.1000    0.0001
##    140        0.0142             nan     0.1000   -0.0002
##    150        0.0111             nan     0.1000   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7232
##      2        1.9243             nan     0.1000    0.4178
##      3        1.6462             nan     0.1000    0.2340
##      4        1.4364             nan     0.1000    0.2421
##      5        1.2779             nan     0.1000    0.1865
##      6        1.1485             nan     0.1000    0.1462
##      7        1.0372             nan     0.1000    0.1224
##      8        0.9474             nan     0.1000    0.1166
##      9        0.8660             nan     0.1000    0.0902
##     10        0.7959             nan     0.1000    0.0785
##     20        0.3874             nan     0.1000    0.0249
##     40        0.1278             nan     0.1000    0.0042
##     60        0.0502             nan     0.1000   -0.0001
##     80        0.0219             nan     0.1000    0.0000
##    100        0.0104             nan     0.1000    0.0001
##    120        0.0051             nan     0.1000   -0.0000
##    140        0.0026             nan     0.1000    0.0000
##    150        0.0019             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3969
##      2        2.1541             nan     0.1000    0.2333
##      3        2.0108             nan     0.1000    0.1759
##      4        1.8998             nan     0.1000    0.1275
##      5        1.8100             nan     0.1000    0.1138
##      6        1.7233             nan     0.1000    0.1020
##      7        1.6602             nan     0.1000    0.0555
##      8        1.6112             nan     0.1000    0.0438
##      9        1.5648             nan     0.1000    0.0642
##     10        1.5135             nan     0.1000    0.0382
##     20        1.1310             nan     0.1000    0.0320
##     40        0.7288             nan     0.1000    0.0035
##     60        0.5194             nan     0.1000   -0.0005
##     80        0.3784             nan     0.1000   -0.0026
##    100        0.2892             nan     0.1000   -0.0002
##    120        0.2249             nan     0.1000   -0.0027
##    140        0.1722             nan     0.1000   -0.0026
##    150        0.1529             nan     0.1000   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5889
##      2        2.0138             nan     0.1000    0.3102
##      3        1.7982             nan     0.1000    0.2333
##      4        1.6478             nan     0.1000    0.2039
##      5        1.4989             nan     0.1000    0.1683
##      6        1.3794             nan     0.1000    0.1480
##      7        1.2791             nan     0.1000    0.1153
##      8        1.1934             nan     0.1000    0.0776
##      9        1.1223             nan     0.1000    0.0849
##     10        1.0523             nan     0.1000    0.0647
##     20        0.6083             nan     0.1000    0.0303
##     40        0.2514             nan     0.1000    0.0042
##     60        0.1256             nan     0.1000    0.0022
##     80        0.0695             nan     0.1000   -0.0001
##    100        0.0402             nan     0.1000   -0.0008
##    120        0.0237             nan     0.1000    0.0001
##    140        0.0144             nan     0.1000    0.0000
##    150        0.0112             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7206
##      2        1.9029             nan     0.1000    0.3802
##      3        1.6468             nan     0.1000    0.2733
##      4        1.4609             nan     0.1000    0.2244
##      5        1.3040             nan     0.1000    0.1611
##      6        1.1888             nan     0.1000    0.1410
##      7        1.0807             nan     0.1000    0.1198
##      8        0.9785             nan     0.1000    0.0944
##      9        0.9015             nan     0.1000    0.0833
##     10        0.8297             nan     0.1000    0.0796
##     20        0.3943             nan     0.1000    0.0230
##     40        0.1288             nan     0.1000    0.0051
##     60        0.0506             nan     0.1000   -0.0002
##     80        0.0221             nan     0.1000   -0.0004
##    100        0.0102             nan     0.1000   -0.0000
##    120        0.0048             nan     0.1000   -0.0001
##    140        0.0023             nan     0.1000   -0.0000
##    150        0.0017             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3602
##      2        2.1672             nan     0.1000    0.2212
##      3        2.0262             nan     0.1000    0.1410
##      4        1.9240             nan     0.1000    0.1687
##      5        1.8263             nan     0.1000    0.1134
##      6        1.7490             nan     0.1000    0.0966
##      7        1.6762             nan     0.1000    0.1016
##      8        1.6039             nan     0.1000    0.0865
##      9        1.5443             nan     0.1000    0.0774
##     10        1.4903             nan     0.1000    0.0562
##     20        1.1255             nan     0.1000    0.0294
##     40        0.7281             nan     0.1000    0.0057
##     60        0.5206             nan     0.1000    0.0018
##     80        0.3858             nan     0.1000   -0.0027
##    100        0.2958             nan     0.1000   -0.0007
##    120        0.2293             nan     0.1000   -0.0026
##    140        0.1822             nan     0.1000   -0.0014
##    150        0.1631             nan     0.1000   -0.0014
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5835
##      2        2.0313             nan     0.1000    0.3270
##      3        1.8056             nan     0.1000    0.2620
##      4        1.6349             nan     0.1000    0.1921
##      5        1.4996             nan     0.1000    0.1277
##      6        1.4038             nan     0.1000    0.1261
##      7        1.3092             nan     0.1000    0.1295
##      8        1.2158             nan     0.1000    0.0729
##      9        1.1415             nan     0.1000    0.0953
##     10        1.0667             nan     0.1000    0.0959
##     20        0.6213             nan     0.1000    0.0338
##     40        0.2808             nan     0.1000    0.0060
##     60        0.1403             nan     0.1000    0.0009
##     80        0.0778             nan     0.1000    0.0007
##    100        0.0450             nan     0.1000   -0.0003
##    120        0.0264             nan     0.1000    0.0000
##    140        0.0159             nan     0.1000   -0.0003
##    150        0.0125             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7340
##      2        1.9206             nan     0.1000    0.4202
##      3        1.6353             nan     0.1000    0.2670
##      4        1.4439             nan     0.1000    0.2444
##      5        1.2770             nan     0.1000    0.1677
##      6        1.1576             nan     0.1000    0.1288
##      7        1.0554             nan     0.1000    0.1281
##      8        0.9593             nan     0.1000    0.0784
##      9        0.8905             nan     0.1000    0.0807
##     10        0.8268             nan     0.1000    0.0864
##     20        0.4111             nan     0.1000    0.0236
##     40        0.1337             nan     0.1000    0.0048
##     60        0.0533             nan     0.1000    0.0003
##     80        0.0245             nan     0.1000   -0.0003
##    100        0.0116             nan     0.1000   -0.0001
##    120        0.0057             nan     0.1000   -0.0000
##    140        0.0027             nan     0.1000   -0.0000
##    150        0.0019             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3844
##      2        2.1562             nan     0.1000    0.2183
##      3        2.0139             nan     0.1000    0.1732
##      4        1.9030             nan     0.1000    0.1515
##      5        1.8018             nan     0.1000    0.1078
##      6        1.7184             nan     0.1000    0.1212
##      7        1.6382             nan     0.1000    0.0870
##      8        1.5718             nan     0.1000    0.0735
##      9        1.5147             nan     0.1000    0.0709
##     10        1.4601             nan     0.1000    0.0479
##     20        1.0743             nan     0.1000    0.0246
##     40        0.6892             nan     0.1000    0.0060
##     60        0.4793             nan     0.1000    0.0017
##     80        0.3460             nan     0.1000   -0.0030
##    100        0.2561             nan     0.1000   -0.0045
##    120        0.1985             nan     0.1000   -0.0000
##    140        0.1521             nan     0.1000   -0.0005
##    150        0.1347             nan     0.1000   -0.0030
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6093
##      2        1.9881             nan     0.1000    0.3165
##      3        1.7811             nan     0.1000    0.2876
##      4        1.5847             nan     0.1000    0.2314
##      5        1.4327             nan     0.1000    0.1573
##      6        1.3191             nan     0.1000    0.1319
##      7        1.2177             nan     0.1000    0.0977
##      8        1.1330             nan     0.1000    0.0812
##      9        1.0689             nan     0.1000    0.1101
##     10        0.9878             nan     0.1000    0.0803
##     20        0.5669             nan     0.1000    0.0183
##     40        0.2515             nan     0.1000    0.0005
##     60        0.1254             nan     0.1000    0.0015
##     80        0.0689             nan     0.1000   -0.0006
##    100        0.0373             nan     0.1000    0.0002
##    120        0.0215             nan     0.1000   -0.0002
##    140        0.0128             nan     0.1000   -0.0003
##    150        0.0099             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6591
##      2        1.9453             nan     0.1000    0.4278
##      3        1.6469             nan     0.1000    0.3422
##      4        1.4320             nan     0.1000    0.2295
##      5        1.2783             nan     0.1000    0.1950
##      6        1.1413             nan     0.1000    0.1415
##      7        1.0267             nan     0.1000    0.1276
##      8        0.9318             nan     0.1000    0.1099
##      9        0.8540             nan     0.1000    0.0890
##     10        0.7812             nan     0.1000    0.0783
##     20        0.3736             nan     0.1000    0.0194
##     40        0.1204             nan     0.1000    0.0022
##     60        0.0456             nan     0.1000    0.0001
##     80        0.0198             nan     0.1000   -0.0001
##    100        0.0088             nan     0.1000    0.0001
##    120        0.0039             nan     0.1000    0.0000
##    140        0.0018             nan     0.1000   -0.0000
##    150        0.0012             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.4247
##      2        2.1495             nan     0.1000    0.2451
##      3        1.9933             nan     0.1000    0.1927
##      4        1.8714             nan     0.1000    0.1517
##      5        1.7766             nan     0.1000    0.1150
##      6        1.6980             nan     0.1000    0.1002
##      7        1.6192             nan     0.1000    0.0351
##      8        1.5601             nan     0.1000    0.0995
##      9        1.4967             nan     0.1000    0.0716
##     10        1.4454             nan     0.1000    0.0610
##     20        1.0702             nan     0.1000    0.0231
##     40        0.7107             nan     0.1000   -0.0039
##     60        0.5120             nan     0.1000    0.0030
##     80        0.3782             nan     0.1000   -0.0030
##    100        0.2880             nan     0.1000   -0.0049
##    120        0.2257             nan     0.1000    0.0007
##    140        0.1728             nan     0.1000   -0.0021
##    150        0.1547             nan     0.1000   -0.0034
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6577
##      2        1.9968             nan     0.1000    0.2968
##      3        1.7872             nan     0.1000    0.2548
##      4        1.6122             nan     0.1000    0.1966
##      5        1.4695             nan     0.1000    0.1425
##      6        1.3611             nan     0.1000    0.1247
##      7        1.2630             nan     0.1000    0.0996
##      8        1.1811             nan     0.1000    0.1170
##      9        1.1023             nan     0.1000    0.0881
##     10        1.0236             nan     0.1000    0.0883
##     20        0.6017             nan     0.1000    0.0130
##     40        0.2719             nan     0.1000    0.0035
##     60        0.1373             nan     0.1000    0.0016
##     80        0.0760             nan     0.1000    0.0007
##    100        0.0433             nan     0.1000   -0.0004
##    120        0.0262             nan     0.1000   -0.0002
##    140        0.0159             nan     0.1000   -0.0001
##    150        0.0125             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6503
##      2        1.9152             nan     0.1000    0.3533
##      3        1.6478             nan     0.1000    0.2977
##      4        1.4413             nan     0.1000    0.2133
##      5        1.2859             nan     0.1000    0.1858
##      6        1.1639             nan     0.1000    0.1635
##      7        1.0485             nan     0.1000    0.1098
##      8        0.9595             nan     0.1000    0.0858
##      9        0.8847             nan     0.1000    0.0663
##     10        0.8248             nan     0.1000    0.0755
##     20        0.4035             nan     0.1000    0.0173
##     40        0.1280             nan     0.1000    0.0032
##     60        0.0505             nan     0.1000    0.0005
##     80        0.0227             nan     0.1000   -0.0004
##    100        0.0106             nan     0.1000   -0.0001
##    120        0.0050             nan     0.1000    0.0000
##    140        0.0025             nan     0.1000   -0.0001
##    150        0.0017             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3312
##      2        2.1873             nan     0.1000    0.2229
##      3        2.0489             nan     0.1000    0.1521
##      4        1.9466             nan     0.1000    0.1541
##      5        1.8487             nan     0.1000    0.1199
##      6        1.7646             nan     0.1000    0.0927
##      7        1.7011             nan     0.1000    0.0765
##      8        1.6427             nan     0.1000    0.0776
##      9        1.5818             nan     0.1000    0.0448
##     10        1.5281             nan     0.1000    0.0611
##     20        1.1331             nan     0.1000    0.0205
##     40        0.7367             nan     0.1000    0.0055
##     60        0.5265             nan     0.1000   -0.0016
##     80        0.3881             nan     0.1000    0.0004
##    100        0.2908             nan     0.1000   -0.0036
##    120        0.2226             nan     0.1000   -0.0026
##    140        0.1722             nan     0.1000   -0.0039
##    150        0.1510             nan     0.1000   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5191
##      2        2.0577             nan     0.1000    0.3688
##      3        1.8096             nan     0.1000    0.1967
##      4        1.6585             nan     0.1000    0.1838
##      5        1.5269             nan     0.1000    0.1762
##      6        1.3926             nan     0.1000    0.1302
##      7        1.2913             nan     0.1000    0.1146
##      8        1.2099             nan     0.1000    0.1277
##      9        1.1207             nan     0.1000    0.0841
##     10        1.0508             nan     0.1000    0.0750
##     20        0.6034             nan     0.1000    0.0210
##     40        0.2566             nan     0.1000    0.0011
##     60        0.1268             nan     0.1000    0.0010
##     80        0.0669             nan     0.1000    0.0000
##    100        0.0382             nan     0.1000    0.0006
##    120        0.0220             nan     0.1000   -0.0002
##    140        0.0131             nan     0.1000    0.0001
##    150        0.0101             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6022
##      2        1.9578             nan     0.1000    0.3472
##      3        1.7103             nan     0.1000    0.2892
##      4        1.5033             nan     0.1000    0.2039
##      5        1.3477             nan     0.1000    0.1812
##      6        1.2077             nan     0.1000    0.1749
##      7        1.0817             nan     0.1000    0.1511
##      8        0.9732             nan     0.1000    0.1091
##      9        0.8867             nan     0.1000    0.0916
##     10        0.8128             nan     0.1000    0.0802
##     20        0.3972             nan     0.1000    0.0191
##     40        0.1259             nan     0.1000    0.0016
##     60        0.0482             nan     0.1000    0.0001
##     80        0.0194             nan     0.1000    0.0004
##    100        0.0084             nan     0.1000   -0.0001
##    120        0.0038             nan     0.1000   -0.0001
##    140        0.0018             nan     0.1000   -0.0000
##    150        0.0013             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.4197
##      2        2.1546             nan     0.1000    0.2381
##      3        1.9915             nan     0.1000    0.1761
##      4        1.8678             nan     0.1000    0.1195
##      5        1.7833             nan     0.1000    0.1297
##      6        1.6990             nan     0.1000    0.1085
##      7        1.6278             nan     0.1000    0.0844
##      8        1.5647             nan     0.1000    0.0913
##      9        1.5016             nan     0.1000    0.0733
##     10        1.4450             nan     0.1000    0.0476
##     20        1.0586             nan     0.1000    0.0148
##     40        0.6888             nan     0.1000    0.0008
##     60        0.4894             nan     0.1000    0.0042
##     80        0.3643             nan     0.1000    0.0003
##    100        0.2796             nan     0.1000   -0.0036
##    120        0.2170             nan     0.1000   -0.0036
##    140        0.1711             nan     0.1000   -0.0036
##    150        0.1528             nan     0.1000   -0.0048
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6479
##      2        1.9888             nan     0.1000    0.2756
##      3        1.7760             nan     0.1000    0.2564
##      4        1.5951             nan     0.1000    0.2159
##      5        1.4422             nan     0.1000    0.1711
##      6        1.3302             nan     0.1000    0.1309
##      7        1.2395             nan     0.1000    0.1207
##      8        1.1515             nan     0.1000    0.0948
##      9        1.0741             nan     0.1000    0.0895
##     10        1.0074             nan     0.1000    0.0568
##     20        0.5882             nan     0.1000    0.0290
##     40        0.2540             nan     0.1000    0.0050
##     60        0.1311             nan     0.1000    0.0012
##     80        0.0706             nan     0.1000   -0.0011
##    100        0.0407             nan     0.1000   -0.0004
##    120        0.0236             nan     0.1000   -0.0005
##    140        0.0141             nan     0.1000   -0.0003
##    150        0.0110             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6959
##      2        1.9002             nan     0.1000    0.4420
##      3        1.6176             nan     0.1000    0.2761
##      4        1.4296             nan     0.1000    0.2440
##      5        1.2696             nan     0.1000    0.1905
##      6        1.1435             nan     0.1000    0.1498
##      7        1.0358             nan     0.1000    0.1426
##      8        0.9399             nan     0.1000    0.1063
##      9        0.8590             nan     0.1000    0.1154
##     10        0.7763             nan     0.1000    0.0924
##     20        0.3748             nan     0.1000    0.0221
##     40        0.1182             nan     0.1000    0.0060
##     60        0.0472             nan     0.1000    0.0003
##     80        0.0196             nan     0.1000    0.0000
##    100        0.0086             nan     0.1000   -0.0000
##    120        0.0041             nan     0.1000   -0.0000
##    140        0.0019             nan     0.1000    0.0000
##    150        0.0014             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3542
##      2        2.1556             nan     0.1000    0.2357
##      3        2.0101             nan     0.1000    0.1795
##      4        1.8956             nan     0.1000    0.1566
##      5        1.8017             nan     0.1000    0.1162
##      6        1.7220             nan     0.1000    0.1264
##      7        1.6418             nan     0.1000    0.0858
##      8        1.5764             nan     0.1000    0.0661
##      9        1.5166             nan     0.1000    0.0526
##     10        1.4683             nan     0.1000    0.0687
##     20        1.0884             nan     0.1000    0.0222
##     40        0.7078             nan     0.1000    0.0026
##     60        0.5012             nan     0.1000    0.0036
##     80        0.3667             nan     0.1000   -0.0042
##    100        0.2824             nan     0.1000   -0.0016
##    120        0.2224             nan     0.1000   -0.0028
##    140        0.1759             nan     0.1000   -0.0030
##    150        0.1583             nan     0.1000   -0.0022
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5307
##      2        2.0312             nan     0.1000    0.3870
##      3        1.7770             nan     0.1000    0.2418
##      4        1.6001             nan     0.1000    0.1583
##      5        1.4676             nan     0.1000    0.1419
##      6        1.3612             nan     0.1000    0.1429
##      7        1.2564             nan     0.1000    0.1002
##      8        1.1752             nan     0.1000    0.0818
##      9        1.1025             nan     0.1000    0.0988
##     10        1.0220             nan     0.1000    0.0754
##     20        0.5911             nan     0.1000    0.0299
##     40        0.2637             nan     0.1000    0.0009
##     60        0.1378             nan     0.1000   -0.0026
##     80        0.0783             nan     0.1000    0.0013
##    100        0.0442             nan     0.1000    0.0004
##    120        0.0257             nan     0.1000   -0.0005
##    140        0.0158             nan     0.1000   -0.0001
##    150        0.0122             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6836
##      2        1.8986             nan     0.1000    0.3669
##      3        1.6197             nan     0.1000    0.2891
##      4        1.4224             nan     0.1000    0.2236
##      5        1.2711             nan     0.1000    0.1785
##      6        1.1421             nan     0.1000    0.1324
##      7        1.0427             nan     0.1000    0.1250
##      8        0.9499             nan     0.1000    0.1070
##      9        0.8702             nan     0.1000    0.0538
##     10        0.8157             nan     0.1000    0.0694
##     20        0.4020             nan     0.1000    0.0211
##     40        0.1320             nan     0.1000    0.0020
##     60        0.0542             nan     0.1000    0.0005
##     80        0.0237             nan     0.1000    0.0003
##    100        0.0107             nan     0.1000   -0.0003
##    120        0.0052             nan     0.1000   -0.0000
##    140        0.0025             nan     0.1000   -0.0001
##    150        0.0018             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3362
##      2        2.1618             nan     0.1000    0.2401
##      3        2.0189             nan     0.1000    0.1712
##      4        1.9116             nan     0.1000    0.1041
##      5        1.8244             nan     0.1000    0.1115
##      6        1.7425             nan     0.1000    0.1000
##      7        1.6716             nan     0.1000    0.0736
##      8        1.6107             nan     0.1000    0.0749
##      9        1.5555             nan     0.1000    0.0405
##     10        1.5074             nan     0.1000    0.0574
##     20        1.1338             nan     0.1000    0.0181
##     40        0.7466             nan     0.1000    0.0065
##     60        0.5337             nan     0.1000    0.0011
##     80        0.4010             nan     0.1000    0.0006
##    100        0.3087             nan     0.1000   -0.0004
##    120        0.2410             nan     0.1000   -0.0076
##    140        0.1965             nan     0.1000   -0.0038
##    150        0.1783             nan     0.1000   -0.0026
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5152
##      2        2.0537             nan     0.1000    0.3282
##      3        1.8420             nan     0.1000    0.2612
##      4        1.6614             nan     0.1000    0.1786
##      5        1.5316             nan     0.1000    0.1624
##      6        1.4171             nan     0.1000    0.1502
##      7        1.3044             nan     0.1000    0.0925
##      8        1.2288             nan     0.1000    0.0677
##      9        1.1639             nan     0.1000    0.0668
##     10        1.0931             nan     0.1000    0.1067
##     20        0.6264             nan     0.1000    0.0176
##     40        0.2903             nan     0.1000    0.0010
##     60        0.1557             nan     0.1000   -0.0021
##     80        0.0876             nan     0.1000   -0.0009
##    100        0.0511             nan     0.1000    0.0000
##    120        0.0316             nan     0.1000    0.0000
##    140        0.0195             nan     0.1000   -0.0002
##    150        0.0153             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7368
##      2        1.8834             nan     0.1000    0.3668
##      3        1.6360             nan     0.1000    0.2601
##      4        1.4543             nan     0.1000    0.1854
##      5        1.3166             nan     0.1000    0.1772
##      6        1.1898             nan     0.1000    0.1416
##      7        1.0836             nan     0.1000    0.0918
##      8        0.9977             nan     0.1000    0.0954
##      9        0.9141             nan     0.1000    0.0936
##     10        0.8410             nan     0.1000    0.0643
##     20        0.4146             nan     0.1000    0.0264
##     40        0.1386             nan     0.1000   -0.0001
##     60        0.0577             nan     0.1000    0.0009
##     80        0.0256             nan     0.1000   -0.0004
##    100        0.0120             nan     0.1000   -0.0001
##    120        0.0057             nan     0.1000   -0.0001
##    140        0.0028             nan     0.1000   -0.0000
##    150        0.0020             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3684
##      2        2.1738             nan     0.1000    0.2138
##      3        2.0356             nan     0.1000    0.1813
##      4        1.9171             nan     0.1000    0.1386
##      5        1.8141             nan     0.1000    0.1250
##      6        1.7265             nan     0.1000    0.1111
##      7        1.6412             nan     0.1000    0.0772
##      8        1.5762             nan     0.1000    0.0760
##      9        1.5156             nan     0.1000    0.0549
##     10        1.4620             nan     0.1000    0.0422
##     20        1.0995             nan     0.1000    0.0233
##     40        0.7368             nan     0.1000   -0.0053
##     60        0.5276             nan     0.1000    0.0031
##     80        0.3903             nan     0.1000   -0.0026
##    100        0.2996             nan     0.1000   -0.0015
##    120        0.2333             nan     0.1000   -0.0033
##    140        0.1812             nan     0.1000   -0.0027
##    150        0.1617             nan     0.1000   -0.0032
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5401
##      2        2.0246             nan     0.1000    0.3037
##      3        1.8127             nan     0.1000    0.2792
##      4        1.6293             nan     0.1000    0.2435
##      5        1.4726             nan     0.1000    0.1601
##      6        1.3643             nan     0.1000    0.1339
##      7        1.2592             nan     0.1000    0.1163
##      8        1.1732             nan     0.1000    0.1040
##      9        1.0950             nan     0.1000    0.0888
##     10        1.0289             nan     0.1000    0.0847
##     20        0.6076             nan     0.1000    0.0225
##     40        0.2756             nan     0.1000    0.0042
##     60        0.1385             nan     0.1000    0.0013
##     80        0.0763             nan     0.1000    0.0003
##    100        0.0431             nan     0.1000    0.0002
##    120        0.0253             nan     0.1000   -0.0004
##    140        0.0156             nan     0.1000   -0.0002
##    150        0.0123             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7227
##      2        1.9329             nan     0.1000    0.4026
##      3        1.6508             nan     0.1000    0.2839
##      4        1.4552             nan     0.1000    0.2317
##      5        1.2984             nan     0.1000    0.1540
##      6        1.1725             nan     0.1000    0.1619
##      7        1.0617             nan     0.1000    0.1205
##      8        0.9685             nan     0.1000    0.1150
##      9        0.8837             nan     0.1000    0.0823
##     10        0.8150             nan     0.1000    0.0766
##     20        0.3979             nan     0.1000    0.0290
##     40        0.1278             nan     0.1000    0.0046
##     60        0.0507             nan     0.1000    0.0009
##     80        0.0227             nan     0.1000    0.0001
##    100        0.0110             nan     0.1000    0.0001
##    120        0.0052             nan     0.1000   -0.0001
##    140        0.0025             nan     0.1000   -0.0001
##    150        0.0018             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3709
##      2        2.1795             nan     0.1000    0.1917
##      3        2.0476             nan     0.1000    0.1575
##      4        1.9470             nan     0.1000    0.1279
##      5        1.8521             nan     0.1000    0.0792
##      6        1.7796             nan     0.1000    0.1320
##      7        1.6931             nan     0.1000    0.0884
##      8        1.6275             nan     0.1000    0.0861
##      9        1.5667             nan     0.1000    0.0564
##     10        1.5066             nan     0.1000    0.0739
##     20        1.1225             nan     0.1000    0.0237
##     40        0.7341             nan     0.1000    0.0082
##     60        0.5127             nan     0.1000   -0.0013
##     80        0.3783             nan     0.1000   -0.0042
##    100        0.2856             nan     0.1000   -0.0020
##    120        0.2206             nan     0.1000   -0.0017
##    140        0.1731             nan     0.1000   -0.0022
##    150        0.1527             nan     0.1000   -0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5975
##      2        2.0065             nan     0.1000    0.2918
##      3        1.7904             nan     0.1000    0.2994
##      4        1.6071             nan     0.1000    0.1844
##      5        1.4719             nan     0.1000    0.1771
##      6        1.3482             nan     0.1000    0.1191
##      7        1.2412             nan     0.1000    0.1204
##      8        1.1531             nan     0.1000    0.0966
##      9        1.0795             nan     0.1000    0.0807
##     10        1.0088             nan     0.1000    0.0623
##     20        0.5975             nan     0.1000    0.0337
##     40        0.2701             nan     0.1000    0.0040
##     60        0.1335             nan     0.1000    0.0000
##     80        0.0713             nan     0.1000   -0.0021
##    100        0.0424             nan     0.1000    0.0003
##    120        0.0260             nan     0.1000   -0.0001
##    140        0.0155             nan     0.1000   -0.0003
##    150        0.0120             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7405
##      2        1.9276             nan     0.1000    0.3921
##      3        1.6569             nan     0.1000    0.2764
##      4        1.4543             nan     0.1000    0.2146
##      5        1.2921             nan     0.1000    0.1869
##      6        1.1580             nan     0.1000    0.1517
##      7        1.0476             nan     0.1000    0.1118
##      8        0.9666             nan     0.1000    0.1173
##      9        0.8829             nan     0.1000    0.0881
##     10        0.8089             nan     0.1000    0.1039
##     20        0.4029             nan     0.1000    0.0316
##     40        0.1279             nan     0.1000    0.0010
##     60        0.0501             nan     0.1000    0.0005
##     80        0.0221             nan     0.1000    0.0004
##    100        0.0101             nan     0.1000   -0.0000
##    120        0.0048             nan     0.1000   -0.0001
##    140        0.0024             nan     0.1000   -0.0001
##    150        0.0017             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3753
##      2        2.1675             nan     0.1000    0.2647
##      3        2.0152             nan     0.1000    0.1951
##      4        1.8990             nan     0.1000    0.1215
##      5        1.8055             nan     0.1000    0.1071
##      6        1.7296             nan     0.1000    0.0798
##      7        1.6639             nan     0.1000    0.0650
##      8        1.6042             nan     0.1000    0.0842
##      9        1.5407             nan     0.1000    0.0538
##     10        1.4915             nan     0.1000    0.0624
##     20        1.1294             nan     0.1000    0.0226
##     40        0.7321             nan     0.1000    0.0027
##     60        0.5230             nan     0.1000    0.0011
##     80        0.3842             nan     0.1000   -0.0020
##    100        0.2967             nan     0.1000   -0.0016
##    120        0.2274             nan     0.1000    0.0004
##    140        0.1778             nan     0.1000   -0.0023
##    150        0.1578             nan     0.1000   -0.0018
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6200
##      2        2.0177             nan     0.1000    0.3361
##      3        1.7992             nan     0.1000    0.2506
##      4        1.6304             nan     0.1000    0.1834
##      5        1.4901             nan     0.1000    0.1392
##      6        1.3814             nan     0.1000    0.1547
##      7        1.2706             nan     0.1000    0.1011
##      8        1.1964             nan     0.1000    0.0984
##      9        1.1189             nan     0.1000    0.0746
##     10        1.0541             nan     0.1000    0.0744
##     20        0.6233             nan     0.1000    0.0259
##     40        0.2703             nan     0.1000    0.0019
##     60        0.1382             nan     0.1000    0.0000
##     80        0.0734             nan     0.1000   -0.0009
##    100        0.0441             nan     0.1000   -0.0009
##    120        0.0272             nan     0.1000   -0.0008
##    140        0.0170             nan     0.1000   -0.0002
##    150        0.0134             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7998
##      2        1.8861             nan     0.1000    0.4114
##      3        1.6137             nan     0.1000    0.2724
##      4        1.4212             nan     0.1000    0.1976
##      5        1.2670             nan     0.1000    0.1634
##      6        1.1503             nan     0.1000    0.1589
##      7        1.0360             nan     0.1000    0.1122
##      8        0.9481             nan     0.1000    0.1179
##      9        0.8584             nan     0.1000    0.0914
##     10        0.7878             nan     0.1000    0.0854
##     20        0.3803             nan     0.1000    0.0139
##     40        0.1228             nan     0.1000    0.0022
##     60        0.0503             nan     0.1000    0.0003
##     80        0.0226             nan     0.1000   -0.0001
##    100        0.0105             nan     0.1000    0.0000
##    120        0.0049             nan     0.1000   -0.0000
##    140        0.0025             nan     0.1000   -0.0001
##    150        0.0018             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.4039
##      2        2.1520             nan     0.1000    0.2479
##      3        2.0031             nan     0.1000    0.1893
##      4        1.8808             nan     0.1000    0.1470
##      5        1.7824             nan     0.1000    0.1220
##      6        1.7030             nan     0.1000    0.0985
##      7        1.6370             nan     0.1000    0.1108
##      8        1.5635             nan     0.1000    0.0645
##      9        1.5123             nan     0.1000    0.0860
##     10        1.4522             nan     0.1000    0.0708
##     20        1.0689             nan     0.1000    0.0183
##     40        0.6915             nan     0.1000    0.0089
##     60        0.4957             nan     0.1000    0.0006
##     80        0.3692             nan     0.1000   -0.0001
##    100        0.2815             nan     0.1000    0.0006
##    120        0.2160             nan     0.1000   -0.0024
##    140        0.1704             nan     0.1000   -0.0029
##    150        0.1539             nan     0.1000   -0.0029
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6399
##      2        1.9684             nan     0.1000    0.4051
##      3        1.7159             nan     0.1000    0.2620
##      4        1.5461             nan     0.1000    0.1768
##      5        1.4206             nan     0.1000    0.1520
##      6        1.3059             nan     0.1000    0.1473
##      7        1.1997             nan     0.1000    0.0977
##      8        1.1265             nan     0.1000    0.1177
##      9        1.0484             nan     0.1000    0.0622
##     10        0.9891             nan     0.1000    0.0591
##     20        0.5844             nan     0.1000    0.0220
##     40        0.2686             nan     0.1000    0.0086
##     60        0.1392             nan     0.1000    0.0009
##     80        0.0780             nan     0.1000   -0.0006
##    100        0.0448             nan     0.1000   -0.0002
##    120        0.0269             nan     0.1000    0.0001
##    140        0.0164             nan     0.1000    0.0002
##    150        0.0126             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.8019
##      2        1.8638             nan     0.1000    0.3561
##      3        1.6091             nan     0.1000    0.3054
##      4        1.4073             nan     0.1000    0.1934
##      5        1.2540             nan     0.1000    0.1485
##      6        1.1340             nan     0.1000    0.1595
##      7        1.0290             nan     0.1000    0.1509
##      8        0.9264             nan     0.1000    0.0898
##      9        0.8554             nan     0.1000    0.0865
##     10        0.7853             nan     0.1000    0.0718
##     20        0.3909             nan     0.1000    0.0266
##     40        0.1305             nan     0.1000    0.0018
##     60        0.0506             nan     0.1000    0.0008
##     80        0.0220             nan     0.1000    0.0004
##    100        0.0103             nan     0.1000   -0.0002
##    120        0.0050             nan     0.1000    0.0001
##    140        0.0026             nan     0.1000   -0.0000
##    150        0.0018             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.4254
##      2        2.1537             nan     0.1000    0.2089
##      3        2.0092             nan     0.1000    0.1698
##      4        1.8976             nan     0.1000    0.1052
##      5        1.8122             nan     0.1000    0.1460
##      6        1.7273             nan     0.1000    0.0953
##      7        1.6518             nan     0.1000    0.0763
##      8        1.5906             nan     0.1000    0.0741
##      9        1.5379             nan     0.1000    0.0535
##     10        1.4860             nan     0.1000    0.0567
##     20        1.1189             nan     0.1000    0.0190
##     40        0.7300             nan     0.1000    0.0028
##     60        0.5084             nan     0.1000    0.0056
##     80        0.3772             nan     0.1000    0.0022
##    100        0.2896             nan     0.1000   -0.0029
##    120        0.2224             nan     0.1000   -0.0030
##    140        0.1751             nan     0.1000   -0.0017
##    150        0.1550             nan     0.1000   -0.0035
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5309
##      2        2.0430             nan     0.1000    0.3607
##      3        1.7749             nan     0.1000    0.2826
##      4        1.6045             nan     0.1000    0.2024
##      5        1.4556             nan     0.1000    0.1523
##      6        1.3469             nan     0.1000    0.1516
##      7        1.2433             nan     0.1000    0.0903
##      8        1.1669             nan     0.1000    0.0747
##      9        1.1021             nan     0.1000    0.0930
##     10        1.0248             nan     0.1000    0.0629
##     20        0.5936             nan     0.1000    0.0232
##     40        0.2600             nan     0.1000    0.0006
##     60        0.1325             nan     0.1000    0.0025
##     80        0.0727             nan     0.1000   -0.0012
##    100        0.0425             nan     0.1000   -0.0001
##    120        0.0249             nan     0.1000   -0.0004
##    140        0.0144             nan     0.1000   -0.0003
##    150        0.0113             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7058
##      2        1.8981             nan     0.1000    0.4159
##      3        1.6227             nan     0.1000    0.2624
##      4        1.4325             nan     0.1000    0.2207
##      5        1.2767             nan     0.1000    0.1757
##      6        1.1459             nan     0.1000    0.1388
##      7        1.0407             nan     0.1000    0.1421
##      8        0.9422             nan     0.1000    0.0893
##      9        0.8690             nan     0.1000    0.0879
##     10        0.7986             nan     0.1000    0.0906
##     20        0.3775             nan     0.1000    0.0219
##     40        0.1226             nan     0.1000    0.0033
##     60        0.0480             nan     0.1000    0.0003
##     80        0.0210             nan     0.1000    0.0002
##    100        0.0096             nan     0.1000   -0.0001
##    120        0.0044             nan     0.1000   -0.0001
##    140        0.0021             nan     0.1000   -0.0001
##    150        0.0015             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3533
##      2        2.1823             nan     0.1000    0.2163
##      3        2.0395             nan     0.1000    0.1444
##      4        1.9232             nan     0.1000    0.1334
##      5        1.8232             nan     0.1000    0.0933
##      6        1.7499             nan     0.1000    0.0958
##      7        1.6761             nan     0.1000    0.0771
##      8        1.6137             nan     0.1000    0.0885
##      9        1.5511             nan     0.1000    0.0703
##     10        1.4913             nan     0.1000    0.0701
##     20        1.1133             nan     0.1000    0.0147
##     40        0.7182             nan     0.1000    0.0097
##     60        0.5170             nan     0.1000    0.0023
##     80        0.3820             nan     0.1000   -0.0009
##    100        0.2956             nan     0.1000   -0.0005
##    120        0.2296             nan     0.1000   -0.0023
##    140        0.1783             nan     0.1000   -0.0021
##    150        0.1597             nan     0.1000   -0.0026
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5687
##      2        2.0151             nan     0.1000    0.3663
##      3        1.7806             nan     0.1000    0.2017
##      4        1.6164             nan     0.1000    0.1989
##      5        1.4807             nan     0.1000    0.1819
##      6        1.3581             nan     0.1000    0.1218
##      7        1.2641             nan     0.1000    0.0989
##      8        1.1832             nan     0.1000    0.0962
##      9        1.1011             nan     0.1000    0.0767
##     10        1.0336             nan     0.1000    0.0573
##     20        0.6139             nan     0.1000    0.0261
##     40        0.2660             nan     0.1000    0.0071
##     60        0.1390             nan     0.1000    0.0001
##     80        0.0761             nan     0.1000   -0.0010
##    100        0.0438             nan     0.1000    0.0002
##    120        0.0256             nan     0.1000   -0.0001
##    140        0.0150             nan     0.1000   -0.0000
##    150        0.0117             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7329
##      2        1.9173             nan     0.1000    0.3955
##      3        1.6570             nan     0.1000    0.2910
##      4        1.4575             nan     0.1000    0.2052
##      5        1.3061             nan     0.1000    0.1395
##      6        1.1975             nan     0.1000    0.1502
##      7        1.0881             nan     0.1000    0.1343
##      8        0.9944             nan     0.1000    0.1010
##      9        0.9141             nan     0.1000    0.0756
##     10        0.8452             nan     0.1000    0.0822
##     20        0.4096             nan     0.1000    0.0186
##     40        0.1345             nan     0.1000    0.0050
##     60        0.0532             nan     0.1000    0.0006
##     80        0.0227             nan     0.1000    0.0006
##    100        0.0101             nan     0.1000    0.0000
##    120        0.0047             nan     0.1000   -0.0001
##    140        0.0023             nan     0.1000   -0.0001
##    150        0.0016             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3454
##      2        2.1673             nan     0.1000    0.2129
##      3        2.0150             nan     0.1000    0.1721
##      4        1.8991             nan     0.1000    0.1328
##      5        1.8067             nan     0.1000    0.1315
##      6        1.7171             nan     0.1000    0.0908
##      7        1.6439             nan     0.1000    0.0853
##      8        1.5816             nan     0.1000    0.0799
##      9        1.5234             nan     0.1000    0.0393
##     10        1.4748             nan     0.1000    0.0536
##     20        1.1118             nan     0.1000    0.0168
##     40        0.7401             nan     0.1000   -0.0000
##     60        0.5320             nan     0.1000   -0.0000
##     80        0.3996             nan     0.1000   -0.0019
##    100        0.3090             nan     0.1000   -0.0037
##    120        0.2433             nan     0.1000   -0.0026
##    140        0.1943             nan     0.1000   -0.0026
##    150        0.1738             nan     0.1000    0.0010
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5285
##      2        2.0308             nan     0.1000    0.3550
##      3        1.8024             nan     0.1000    0.2664
##      4        1.6247             nan     0.1000    0.1542
##      5        1.4967             nan     0.1000    0.1653
##      6        1.3817             nan     0.1000    0.1206
##      7        1.2789             nan     0.1000    0.1105
##      8        1.1996             nan     0.1000    0.0862
##      9        1.1217             nan     0.1000    0.0850
##     10        1.0520             nan     0.1000    0.0573
##     20        0.6198             nan     0.1000    0.0247
##     40        0.2690             nan     0.1000    0.0006
##     60        0.1460             nan     0.1000    0.0014
##     80        0.0809             nan     0.1000   -0.0004
##    100        0.0473             nan     0.1000   -0.0003
##    120        0.0280             nan     0.1000   -0.0004
##    140        0.0168             nan     0.1000   -0.0003
##    150        0.0133             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6632
##      2        1.9357             nan     0.1000    0.3809
##      3        1.6542             nan     0.1000    0.2375
##      4        1.4747             nan     0.1000    0.2123
##      5        1.3188             nan     0.1000    0.1797
##      6        1.1920             nan     0.1000    0.1425
##      7        1.0858             nan     0.1000    0.1143
##      8        0.9871             nan     0.1000    0.1018
##      9        0.9083             nan     0.1000    0.0846
##     10        0.8407             nan     0.1000    0.0871
##     20        0.4121             nan     0.1000    0.0288
##     40        0.1368             nan     0.1000    0.0018
##     60        0.0568             nan     0.1000    0.0017
##     80        0.0245             nan     0.1000    0.0003
##    100        0.0115             nan     0.1000   -0.0002
##    120        0.0056             nan     0.1000   -0.0001
##    140        0.0027             nan     0.1000   -0.0001
##    150        0.0019             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3593
##      2        2.1723             nan     0.1000    0.2073
##      3        2.0359             nan     0.1000    0.1763
##      4        1.9220             nan     0.1000    0.1289
##      5        1.8298             nan     0.1000    0.1184
##      6        1.7496             nan     0.1000    0.0863
##      7        1.6869             nan     0.1000    0.0774
##      8        1.6241             nan     0.1000    0.0366
##      9        1.5738             nan     0.1000    0.0731
##     10        1.5167             nan     0.1000    0.0435
##     20        1.1618             nan     0.1000    0.0284
##     40        0.7693             nan     0.1000    0.0130
##     60        0.5544             nan     0.1000    0.0052
##     80        0.4152             nan     0.1000   -0.0030
##    100        0.3192             nan     0.1000   -0.0035
##    120        0.2485             nan     0.1000   -0.0024
##    140        0.1985             nan     0.1000   -0.0022
##    150        0.1778             nan     0.1000   -0.0026
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5073
##      2        2.0273             nan     0.1000    0.3618
##      3        1.8073             nan     0.1000    0.2470
##      4        1.6488             nan     0.1000    0.1580
##      5        1.5352             nan     0.1000    0.1663
##      6        1.4156             nan     0.1000    0.1333
##      7        1.3160             nan     0.1000    0.0927
##      8        1.2399             nan     0.1000    0.0883
##      9        1.1702             nan     0.1000    0.0826
##     10        1.0988             nan     0.1000    0.0718
##     20        0.6371             nan     0.1000    0.0196
##     40        0.2926             nan     0.1000    0.0014
##     60        0.1525             nan     0.1000    0.0003
##     80        0.0855             nan     0.1000   -0.0008
##    100        0.0500             nan     0.1000    0.0001
##    120        0.0296             nan     0.1000   -0.0004
##    140        0.0185             nan     0.1000   -0.0004
##    150        0.0146             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7513
##      2        1.9210             nan     0.1000    0.3368
##      3        1.6773             nan     0.1000    0.2701
##      4        1.4737             nan     0.1000    0.2448
##      5        1.2982             nan     0.1000    0.1817
##      6        1.1681             nan     0.1000    0.1337
##      7        1.0650             nan     0.1000    0.1298
##      8        0.9722             nan     0.1000    0.1135
##      9        0.8935             nan     0.1000    0.0702
##     10        0.8241             nan     0.1000    0.0562
##     20        0.4143             nan     0.1000    0.0276
##     40        0.1344             nan     0.1000    0.0014
##     60        0.0545             nan     0.1000    0.0002
##     80        0.0237             nan     0.1000    0.0000
##    100        0.0112             nan     0.1000   -0.0001
##    120        0.0057             nan     0.1000   -0.0000
##    140        0.0029             nan     0.1000   -0.0000
##    150        0.0021             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3879
##      2        2.1698             nan     0.1000    0.2324
##      3        2.0174             nan     0.1000    0.1808
##      4        1.8947             nan     0.1000    0.1405
##      5        1.7957             nan     0.1000    0.1180
##      6        1.7147             nan     0.1000    0.0641
##      7        1.6562             nan     0.1000    0.0939
##      8        1.5881             nan     0.1000    0.0930
##      9        1.5118             nan     0.1000    0.0812
##     10        1.4548             nan     0.1000    0.0659
##     20        1.0931             nan     0.1000    0.0272
##     40        0.7061             nan     0.1000    0.0115
##     60        0.5068             nan     0.1000    0.0005
##     80        0.3696             nan     0.1000   -0.0031
##    100        0.2796             nan     0.1000   -0.0017
##    120        0.2178             nan     0.1000   -0.0036
##    140        0.1693             nan     0.1000   -0.0022
##    150        0.1490             nan     0.1000   -0.0028
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6830
##      2        1.9785             nan     0.1000    0.3640
##      3        1.7380             nan     0.1000    0.2894
##      4        1.5398             nan     0.1000    0.1612
##      5        1.4208             nan     0.1000    0.1501
##      6        1.3098             nan     0.1000    0.1387
##      7        1.2126             nan     0.1000    0.1019
##      8        1.1373             nan     0.1000    0.0810
##      9        1.0693             nan     0.1000    0.0703
##     10        1.0125             nan     0.1000    0.0554
##     20        0.5877             nan     0.1000    0.0249
##     40        0.2525             nan     0.1000    0.0044
##     60        0.1293             nan     0.1000    0.0008
##     80        0.0686             nan     0.1000    0.0005
##    100        0.0392             nan     0.1000    0.0002
##    120        0.0223             nan     0.1000   -0.0004
##    140        0.0133             nan     0.1000   -0.0002
##    150        0.0104             nan     0.1000    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.8022
##      2        1.8824             nan     0.1000    0.4135
##      3        1.6078             nan     0.1000    0.3172
##      4        1.4069             nan     0.1000    0.2005
##      5        1.2622             nan     0.1000    0.1823
##      6        1.1385             nan     0.1000    0.1415
##      7        1.0376             nan     0.1000    0.1123
##      8        0.9494             nan     0.1000    0.1198
##      9        0.8673             nan     0.1000    0.0892
##     10        0.7927             nan     0.1000    0.0645
##     20        0.3914             nan     0.1000    0.0061
##     40        0.1273             nan     0.1000    0.0029
##     60        0.0494             nan     0.1000    0.0000
##     80        0.0207             nan     0.1000    0.0008
##    100        0.0089             nan     0.1000    0.0002
##    120        0.0040             nan     0.1000   -0.0001
##    140        0.0020             nan     0.1000   -0.0000
##    150        0.0014             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3158
##      2        2.1831             nan     0.1000    0.2467
##      3        2.0291             nan     0.1000    0.1516
##      4        1.9126             nan     0.1000    0.1409
##      5        1.8193             nan     0.1000    0.1058
##      6        1.7426             nan     0.1000    0.0881
##      7        1.6743             nan     0.1000    0.1130
##      8        1.6062             nan     0.1000    0.0672
##      9        1.5508             nan     0.1000    0.0662
##     10        1.4966             nan     0.1000    0.0668
##     20        1.1246             nan     0.1000    0.0101
##     40        0.7356             nan     0.1000    0.0095
##     60        0.5290             nan     0.1000    0.0022
##     80        0.3942             nan     0.1000   -0.0008
##    100        0.3022             nan     0.1000   -0.0064
##    120        0.2354             nan     0.1000   -0.0048
##    140        0.1888             nan     0.1000   -0.0020
##    150        0.1676             nan     0.1000   -0.0021
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6264
##      2        2.0157             nan     0.1000    0.3144
##      3        1.7938             nan     0.1000    0.2713
##      4        1.6218             nan     0.1000    0.1673
##      5        1.4992             nan     0.1000    0.1539
##      6        1.3851             nan     0.1000    0.1021
##      7        1.2921             nan     0.1000    0.1203
##      8        1.2011             nan     0.1000    0.0948
##      9        1.1208             nan     0.1000    0.0764
##     10        1.0575             nan     0.1000    0.0758
##     20        0.6236             nan     0.1000    0.0225
##     40        0.2710             nan     0.1000    0.0045
##     60        0.1352             nan     0.1000    0.0024
##     80        0.0753             nan     0.1000    0.0002
##    100        0.0430             nan     0.1000   -0.0010
##    120        0.0245             nan     0.1000   -0.0002
##    140        0.0147             nan     0.1000   -0.0002
##    150        0.0114             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6656
##      2        1.8955             nan     0.1000    0.3725
##      3        1.6489             nan     0.1000    0.2799
##      4        1.4467             nan     0.1000    0.2181
##      5        1.2954             nan     0.1000    0.1706
##      6        1.1687             nan     0.1000    0.1282
##      7        1.0648             nan     0.1000    0.1147
##      8        0.9709             nan     0.1000    0.1017
##      9        0.8914             nan     0.1000    0.0774
##     10        0.8181             nan     0.1000    0.0852
##     20        0.3962             nan     0.1000    0.0184
##     40        0.1302             nan     0.1000    0.0032
##     60        0.0523             nan     0.1000    0.0007
##     80        0.0229             nan     0.1000    0.0004
##    100        0.0106             nan     0.1000   -0.0001
##    120        0.0053             nan     0.1000   -0.0000
##    140        0.0025             nan     0.1000   -0.0000
##    150        0.0018             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.4412
##      2        2.1556             nan     0.1000    0.2417
##      3        2.0025             nan     0.1000    0.1934
##      4        1.8799             nan     0.1000    0.1522
##      5        1.7808             nan     0.1000    0.1204
##      6        1.7062             nan     0.1000    0.0895
##      7        1.6373             nan     0.1000    0.0879
##      8        1.5693             nan     0.1000    0.0707
##      9        1.5143             nan     0.1000    0.0650
##     10        1.4481             nan     0.1000    0.0452
##     20        1.0808             nan     0.1000    0.0174
##     40        0.7018             nan     0.1000    0.0067
##     60        0.4904             nan     0.1000    0.0012
##     80        0.3561             nan     0.1000   -0.0109
##    100        0.2709             nan     0.1000   -0.0024
##    120        0.2040             nan     0.1000   -0.0024
##    140        0.1575             nan     0.1000   -0.0010
##    150        0.1379             nan     0.1000   -0.0015
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6037
##      2        1.9955             nan     0.1000    0.3052
##      3        1.7768             nan     0.1000    0.2281
##      4        1.6050             nan     0.1000    0.2212
##      5        1.4530             nan     0.1000    0.1930
##      6        1.3271             nan     0.1000    0.1245
##      7        1.2345             nan     0.1000    0.0953
##      8        1.1521             nan     0.1000    0.0952
##      9        1.0709             nan     0.1000    0.0813
##     10        1.0046             nan     0.1000    0.0635
##     20        0.5956             nan     0.1000    0.0282
##     40        0.2556             nan     0.1000    0.0082
##     60        0.1304             nan     0.1000    0.0017
##     80        0.0722             nan     0.1000   -0.0008
##    100        0.0411             nan     0.1000    0.0004
##    120        0.0247             nan     0.1000   -0.0003
##    140        0.0148             nan     0.1000   -0.0002
##    150        0.0117             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7517
##      2        1.9044             nan     0.1000    0.3968
##      3        1.6080             nan     0.1000    0.2880
##      4        1.4053             nan     0.1000    0.2372
##      5        1.2336             nan     0.1000    0.1630
##      6        1.1165             nan     0.1000    0.1272
##      7        1.0170             nan     0.1000    0.1338
##      8        0.9240             nan     0.1000    0.1076
##      9        0.8469             nan     0.1000    0.0814
##     10        0.7810             nan     0.1000    0.0636
##     20        0.3717             nan     0.1000    0.0161
##     40        0.1168             nan     0.1000    0.0055
##     60        0.0461             nan     0.1000   -0.0006
##     80        0.0211             nan     0.1000    0.0001
##    100        0.0096             nan     0.1000   -0.0002
##    120        0.0046             nan     0.1000   -0.0001
##    140        0.0023             nan     0.1000   -0.0000
##    150        0.0016             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3780
##      2        2.1531             nan     0.1000    0.2437
##      3        2.0039             nan     0.1000    0.1467
##      4        1.9012             nan     0.1000    0.1359
##      5        1.8029             nan     0.1000    0.1140
##      6        1.7283             nan     0.1000    0.0955
##      7        1.6607             nan     0.1000    0.0849
##      8        1.5989             nan     0.1000    0.0678
##      9        1.5449             nan     0.1000    0.0522
##     10        1.4973             nan     0.1000    0.0847
##     20        1.1163             nan     0.1000    0.0285
##     40        0.7431             nan     0.1000    0.0072
##     60        0.5344             nan     0.1000   -0.0032
##     80        0.4012             nan     0.1000   -0.0022
##    100        0.3104             nan     0.1000   -0.0045
##    120        0.2437             nan     0.1000   -0.0040
##    140        0.1958             nan     0.1000   -0.0045
##    150        0.1760             nan     0.1000   -0.0047
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5484
##      2        2.0160             nan     0.1000    0.3497
##      3        1.7781             nan     0.1000    0.2626
##      4        1.5998             nan     0.1000    0.1815
##      5        1.4654             nan     0.1000    0.1541
##      6        1.3568             nan     0.1000    0.0987
##      7        1.2743             nan     0.1000    0.1235
##      8        1.1803             nan     0.1000    0.0676
##      9        1.1216             nan     0.1000    0.0859
##     10        1.0585             nan     0.1000    0.0902
##     20        0.6162             nan     0.1000    0.0193
##     40        0.2807             nan     0.1000    0.0035
##     60        0.1431             nan     0.1000    0.0018
##     80        0.0775             nan     0.1000   -0.0006
##    100        0.0449             nan     0.1000   -0.0000
##    120        0.0269             nan     0.1000   -0.0005
##    140        0.0162             nan     0.1000   -0.0001
##    150        0.0125             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7234
##      2        1.9125             nan     0.1000    0.3879
##      3        1.6329             nan     0.1000    0.2390
##      4        1.4521             nan     0.1000    0.2166
##      5        1.2993             nan     0.1000    0.1645
##      6        1.1745             nan     0.1000    0.1426
##      7        1.0684             nan     0.1000    0.1366
##      8        0.9695             nan     0.1000    0.1089
##      9        0.8906             nan     0.1000    0.1030
##     10        0.8180             nan     0.1000    0.0750
##     20        0.3922             nan     0.1000    0.0273
##     40        0.1272             nan     0.1000    0.0026
##     60        0.0511             nan     0.1000   -0.0001
##     80        0.0226             nan     0.1000   -0.0002
##    100        0.0111             nan     0.1000   -0.0002
##    120        0.0052             nan     0.1000    0.0001
##    140        0.0026             nan     0.1000    0.0000
##    150        0.0018             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3579
##      2        2.1854             nan     0.1000    0.2337
##      3        2.0306             nan     0.1000    0.1530
##      4        1.9278             nan     0.1000    0.1372
##      5        1.8375             nan     0.1000    0.1104
##      6        1.7615             nan     0.1000    0.1002
##      7        1.6859             nan     0.1000    0.0688
##      8        1.6261             nan     0.1000    0.0799
##      9        1.5668             nan     0.1000    0.0864
##     10        1.5062             nan     0.1000    0.0396
##     20        1.1346             nan     0.1000    0.0245
##     40        0.7351             nan     0.1000    0.0083
##     60        0.5243             nan     0.1000   -0.0036
##     80        0.3973             nan     0.1000   -0.0009
##    100        0.3009             nan     0.1000   -0.0018
##    120        0.2329             nan     0.1000   -0.0020
##    140        0.1829             nan     0.1000   -0.0022
##    150        0.1608             nan     0.1000   -0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5432
##      2        2.0224             nan     0.1000    0.3526
##      3        1.7803             nan     0.1000    0.2041
##      4        1.6241             nan     0.1000    0.1755
##      5        1.4937             nan     0.1000    0.1769
##      6        1.3678             nan     0.1000    0.1252
##      7        1.2675             nan     0.1000    0.1085
##      8        1.1808             nan     0.1000    0.1083
##      9        1.1057             nan     0.1000    0.0876
##     10        1.0354             nan     0.1000    0.0667
##     20        0.6125             nan     0.1000    0.0352
##     40        0.2740             nan     0.1000    0.0031
##     60        0.1434             nan     0.1000    0.0007
##     80        0.0778             nan     0.1000    0.0005
##    100        0.0456             nan     0.1000   -0.0005
##    120        0.0279             nan     0.1000   -0.0000
##    140        0.0168             nan     0.1000   -0.0004
##    150        0.0132             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6465
##      2        1.9410             nan     0.1000    0.4232
##      3        1.6558             nan     0.1000    0.2590
##      4        1.4464             nan     0.1000    0.2205
##      5        1.2912             nan     0.1000    0.1756
##      6        1.1664             nan     0.1000    0.1443
##      7        1.0617             nan     0.1000    0.1216
##      8        0.9706             nan     0.1000    0.0992
##      9        0.8959             nan     0.1000    0.0920
##     10        0.8264             nan     0.1000    0.0791
##     20        0.4086             nan     0.1000    0.0145
##     40        0.1338             nan     0.1000    0.0016
##     60        0.0538             nan     0.1000    0.0003
##     80        0.0246             nan     0.1000   -0.0001
##    100        0.0116             nan     0.1000   -0.0000
##    120        0.0057             nan     0.1000    0.0001
##    140        0.0029             nan     0.1000   -0.0000
##    150        0.0021             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3867
##      2        2.1511             nan     0.1000    0.2193
##      3        1.9916             nan     0.1000    0.1848
##      4        1.8786             nan     0.1000    0.1185
##      5        1.7976             nan     0.1000    0.1014
##      6        1.7193             nan     0.1000    0.1137
##      7        1.6417             nan     0.1000    0.0802
##      8        1.5840             nan     0.1000    0.0774
##      9        1.5057             nan     0.1000    0.0573
##     10        1.4590             nan     0.1000    0.0634
##     20        1.0873             nan     0.1000    0.0345
##     40        0.7038             nan     0.1000    0.0111
##     60        0.5054             nan     0.1000   -0.0013
##     80        0.3778             nan     0.1000   -0.0018
##    100        0.2900             nan     0.1000   -0.0050
##    120        0.2217             nan     0.1000   -0.0054
##    140        0.1753             nan     0.1000   -0.0005
##    150        0.1565             nan     0.1000   -0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6081
##      2        2.0010             nan     0.1000    0.3454
##      3        1.7572             nan     0.1000    0.2336
##      4        1.5771             nan     0.1000    0.1886
##      5        1.4519             nan     0.1000    0.1447
##      6        1.3478             nan     0.1000    0.1314
##      7        1.2497             nan     0.1000    0.1204
##      8        1.1620             nan     0.1000    0.0852
##      9        1.0927             nan     0.1000    0.0756
##     10        1.0280             nan     0.1000    0.0821
##     20        0.6022             nan     0.1000    0.0161
##     40        0.2728             nan     0.1000    0.0020
##     60        0.1398             nan     0.1000    0.0012
##     80        0.0755             nan     0.1000   -0.0006
##    100        0.0448             nan     0.1000    0.0004
##    120        0.0261             nan     0.1000   -0.0004
##    140        0.0162             nan     0.1000   -0.0000
##    150        0.0127             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7667
##      2        1.8914             nan     0.1000    0.3374
##      3        1.6457             nan     0.1000    0.2911
##      4        1.4495             nan     0.1000    0.2447
##      5        1.2681             nan     0.1000    0.2008
##      6        1.1384             nan     0.1000    0.1488
##      7        1.0288             nan     0.1000    0.1226
##      8        0.9392             nan     0.1000    0.0931
##      9        0.8704             nan     0.1000    0.0778
##     10        0.8042             nan     0.1000    0.0811
##     20        0.3770             nan     0.1000    0.0231
##     40        0.1203             nan     0.1000    0.0025
##     60        0.0477             nan     0.1000    0.0005
##     80        0.0225             nan     0.1000   -0.0001
##    100        0.0109             nan     0.1000   -0.0003
##    120        0.0053             nan     0.1000   -0.0001
##    140        0.0027             nan     0.1000   -0.0001
##    150        0.0019             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3722
##      2        2.1808             nan     0.1000    0.2161
##      3        2.0351             nan     0.1000    0.1806
##      4        1.9232             nan     0.1000    0.1211
##      5        1.8356             nan     0.1000    0.0878
##      6        1.7665             nan     0.1000    0.1108
##      7        1.6836             nan     0.1000    0.0828
##      8        1.6199             nan     0.1000    0.0659
##      9        1.5636             nan     0.1000    0.0747
##     10        1.5061             nan     0.1000    0.0372
##     20        1.1074             nan     0.1000    0.0209
##     40        0.7362             nan     0.1000    0.0114
##     60        0.5289             nan     0.1000   -0.0031
##     80        0.3948             nan     0.1000   -0.0051
##    100        0.3051             nan     0.1000   -0.0012
##    120        0.2428             nan     0.1000   -0.0049
##    140        0.1918             nan     0.1000   -0.0008
##    150        0.1731             nan     0.1000   -0.0035
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6259
##      2        1.9968             nan     0.1000    0.3461
##      3        1.7790             nan     0.1000    0.2148
##      4        1.6206             nan     0.1000    0.1933
##      5        1.4843             nan     0.1000    0.1594
##      6        1.3682             nan     0.1000    0.1259
##      7        1.2694             nan     0.1000    0.1000
##      8        1.1848             nan     0.1000    0.1014
##      9        1.1063             nan     0.1000    0.0794
##     10        1.0355             nan     0.1000    0.0767
##     20        0.6147             nan     0.1000    0.0236
##     40        0.2693             nan     0.1000    0.0007
##     60        0.1404             nan     0.1000    0.0012
##     80        0.0806             nan     0.1000    0.0006
##    100        0.0478             nan     0.1000   -0.0005
##    120        0.0295             nan     0.1000   -0.0006
##    140        0.0185             nan     0.1000   -0.0005
##    150        0.0147             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7330
##      2        1.9102             nan     0.1000    0.3880
##      3        1.6388             nan     0.1000    0.2655
##      4        1.4612             nan     0.1000    0.1936
##      5        1.3135             nan     0.1000    0.1723
##      6        1.1843             nan     0.1000    0.1459
##      7        1.0792             nan     0.1000    0.1234
##      8        0.9812             nan     0.1000    0.1061
##      9        0.8940             nan     0.1000    0.1112
##     10        0.8144             nan     0.1000    0.0734
##     20        0.3970             nan     0.1000    0.0198
##     40        0.1350             nan     0.1000    0.0037
##     60        0.0564             nan     0.1000   -0.0005
##     80        0.0259             nan     0.1000   -0.0006
##    100        0.0127             nan     0.1000   -0.0004
##    120        0.0063             nan     0.1000   -0.0001
##    140        0.0032             nan     0.1000   -0.0000
##    150        0.0023             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.3585
##      2        2.1709             nan     0.1000    0.2394
##      3        2.0343             nan     0.1000    0.1780
##      4        1.9206             nan     0.1000    0.1458
##      5        1.8225             nan     0.1000    0.0836
##      6        1.7511             nan     0.1000    0.0902
##      7        1.6772             nan     0.1000    0.0785
##      8        1.6176             nan     0.1000    0.0855
##      9        1.5524             nan     0.1000    0.0621
##     10        1.4991             nan     0.1000    0.0544
##     20        1.0973             nan     0.1000    0.0248
##     40        0.7112             nan     0.1000    0.0064
##     60        0.5013             nan     0.1000    0.0017
##     80        0.3701             nan     0.1000   -0.0010
##    100        0.2790             nan     0.1000   -0.0032
##    120        0.2168             nan     0.1000   -0.0020
##    140        0.1709             nan     0.1000   -0.0022
##    150        0.1518             nan     0.1000   -0.0037
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.5360
##      2        2.0243             nan     0.1000    0.3109
##      3        1.7977             nan     0.1000    0.2762
##      4        1.6163             nan     0.1000    0.1828
##      5        1.4900             nan     0.1000    0.1672
##      6        1.3622             nan     0.1000    0.1442
##      7        1.2564             nan     0.1000    0.1248
##      8        1.1699             nan     0.1000    0.0869
##      9        1.0882             nan     0.1000    0.0885
##     10        1.0206             nan     0.1000    0.0635
##     20        0.5907             nan     0.1000    0.0119
##     40        0.2635             nan     0.1000    0.0033
##     60        0.1273             nan     0.1000    0.0003
##     80        0.0691             nan     0.1000   -0.0001
##    100        0.0394             nan     0.1000   -0.0002
##    120        0.0229             nan     0.1000   -0.0000
##    140        0.0139             nan     0.1000   -0.0001
##    150        0.0110             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.7004
##      2        1.9035             nan     0.1000    0.3993
##      3        1.6436             nan     0.1000    0.2783
##      4        1.4407             nan     0.1000    0.1974
##      5        1.2979             nan     0.1000    0.1805
##      6        1.1544             nan     0.1000    0.1478
##      7        1.0456             nan     0.1000    0.1361
##      8        0.9482             nan     0.1000    0.1084
##      9        0.8597             nan     0.1000    0.0949
##     10        0.7882             nan     0.1000    0.0757
##     20        0.3789             nan     0.1000    0.0196
##     40        0.1190             nan     0.1000    0.0041
##     60        0.0448             nan     0.1000   -0.0001
##     80        0.0194             nan     0.1000    0.0001
##    100        0.0086             nan     0.1000    0.0000
##    120        0.0039             nan     0.1000   -0.0001
##    140        0.0019             nan     0.1000   -0.0000
##    150        0.0013             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        2.3979             nan     0.1000    0.6238
##      2        1.9691             nan     0.1000    0.3161
##      3        1.7301             nan     0.1000    0.2699
##      4        1.5253             nan     0.1000    0.1883
##      5        1.3768             nan     0.1000    0.1458
##      6        1.2591             nan     0.1000    0.1357
##      7        1.1478             nan     0.1000    0.1008
##      8        1.0586             nan     0.1000    0.0821
##      9        0.9849             nan     0.1000    0.0779
##     10        0.9130             nan     0.1000    0.0657
##     20        0.4800             nan     0.1000    0.0245
##     40        0.1703             nan     0.1000    0.0023
##     60        0.0760             nan     0.1000   -0.0008
##     80        0.0361             nan     0.1000   -0.0007
##    100        0.0193             nan     0.1000   -0.0000
##    120        0.0106             nan     0.1000   -0.0003
##    140        0.0057             nan     0.1000   -0.0001
##    150        0.0042             nan     0.1000   -0.0000
confusionMatrix(vowel.test$y,predict(modelFit1_rf,vowel.test))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  1  2  3  4  5  6  7  8  9 10 11
##         1  30 12  0  0  0  0  0  0  0  0  0
##         2   0 26 12  0  0  0  0  0  4  0  0
##         3   0  4 33  1  0  2  0  0  0  0  2
##         4   0  0  3 28  0  9  0  0  0  0  2
##         5   0  0  0  3 16 18  3  0  0  0  2
##         6   0  0  0  1  7 24  0  0  0  0 10
##         7   0  2  0  0  8  4 28  0  0  0  0
##         8   0  0  0  0  0  0  7 29  6  0  0
##         9   0  0  0  0  0  0  5  5 24  2  6
##         10  1 15  3  0  0  0  0  0  3 20  0
##         11  0  1  3  1  0  6  3  0 13  0 15
## 
## Overall Statistics
##                                           
##                Accuracy : 0.5909          
##                  95% CI : (0.5445, 0.6361)
##     No Information Rate : 0.1364          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.55            
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity           0.96774  0.43333  0.61111  0.82353  0.51613  0.38095
## Specificity           0.97216  0.96020  0.97794  0.96729  0.93968  0.95489
## Pos Pred Value        0.71429  0.61905  0.78571  0.66667  0.38095  0.57143
## Neg Pred Value        0.99762  0.91905  0.95000  0.98571  0.96429  0.90714
## Prevalence            0.06710  0.12987  0.11688  0.07359  0.06710  0.13636
## Detection Rate        0.06494  0.05628  0.07143  0.06061  0.03463  0.05195
## Detection Prevalence  0.09091  0.09091  0.09091  0.09091  0.09091  0.09091
## Balanced Accuracy     0.96995  0.69677  0.79453  0.89541  0.72790  0.66792
##                      Class: 7 Class: 8 Class: 9 Class: 10 Class: 11
## Sensitivity           0.60870  0.85294  0.48000   0.90909   0.40541
## Specificity           0.96635  0.96963  0.95631   0.95000   0.93647
## Pos Pred Value        0.66667  0.69048  0.57143   0.47619   0.35714
## Neg Pred Value        0.95714  0.98810  0.93810   0.99524   0.94762
## Prevalence            0.09957  0.07359  0.10823   0.04762   0.08009
## Detection Rate        0.06061  0.06277  0.05195   0.04329   0.03247
## Detection Prevalence  0.09091  0.09091  0.09091   0.09091   0.09091
## Balanced Accuracy     0.78752  0.91128  0.71816   0.92955   0.67094
confusionMatrix(vowel.test$y,predict(modelFit1_gbm,vowel.test))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  1  2  3  4  5  6  7  8  9 10 11
##         1  30  9  1  0  0  0  0  0  0  2  0
##         2   0 20 12  1  0  1  0  0  6  0  2
##         3   0  1 11  7  0 18  1  0  0  0  4
##         4   0  0  4 21  1 15  0  0  0  0  1
##         5   0  0  0  3 17 11  8  0  0  0  3
##         6   0  0  0  0  5 29  1  0  0  0  7
##         7   0  1  0  1  0  0 38  2  0  0  0
##         8   0  0  0  0  0  0  6 29  7  0  0
##         9   0  1  0  0  0  1  5  9 26  0  0
##         10  2 13  0  0  0  0  0  1  6 20  0
##         11  0  0  0  0  0  9 11  0 17  1  4
## 
## Overall Statistics
##                                           
##                Accuracy : 0.5303          
##                  95% CI : (0.4836, 0.5766)
##     No Information Rate : 0.1818          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.4833          
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity           0.93750  0.44444  0.39286  0.63636  0.73913  0.34524
## Specificity           0.97209  0.94724  0.92857  0.95105  0.94305  0.96561
## Pos Pred Value        0.71429  0.47619  0.26190  0.50000  0.40476  0.69048
## Neg Pred Value        0.99524  0.94048  0.95952  0.97143  0.98571  0.86905
## Prevalence            0.06926  0.09740  0.06061  0.07143  0.04978  0.18182
## Detection Rate        0.06494  0.04329  0.02381  0.04545  0.03680  0.06277
## Detection Prevalence  0.09091  0.09091  0.09091  0.09091  0.09091  0.09091
## Balanced Accuracy     0.95480  0.69584  0.66071  0.79371  0.84109  0.65542
##                      Class: 7 Class: 8 Class: 9 Class: 10 Class: 11
## Sensitivity           0.54286  0.70732  0.41935   0.86957  0.190476
## Specificity           0.98980  0.96912  0.96000   0.94989  0.913832
## Pos Pred Value        0.90476  0.69048  0.61905   0.47619  0.095238
## Neg Pred Value        0.92381  0.97143  0.91429   0.99286  0.959524
## Prevalence            0.15152  0.08874  0.13420   0.04978  0.045455
## Detection Rate        0.08225  0.06277  0.05628   0.04329  0.008658
## Detection Prevalence  0.09091  0.09091  0.09091   0.09091  0.090909
## Balanced Accuracy     0.76633  0.83822  0.68968   0.90973  0.552154
confusionMatrix(predict(modelFit1_rf,vowel.test),predict(modelFit1_gbm,vowel.test))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  1  2  3  4  5  6  7  8  9 10 11
##         1  28  0  0  0  0  0  0  0  0  3  0
##         2   3 42  6  1  0  0  2  0  2  1  3
##         3   1  1 21  7  0 16  4  0  0  2  3
##         4   0  0  1 24  0  7  0  0  0  1  1
##         5   0  0  0  0 16  1 10  2  0  0  2
##         6   0  0  0  1  6 48  8  0  0  0  0
##         7   0  1  0  0  1  0 42  0  2  0  0
##         8   0  0  0  0  0  0  0 34  1  0  0
##         9   0  0  0  0  0  0  1  3 45  0  0
##         10  0  0  0  0  0  0  0  2  4 16  0
##         11  0  1  0  0  0 12  3  0  8  0 12
## 
## Overall Statistics
##                                          
##                Accuracy : 0.71           
##                  95% CI : (0.6662, 0.751)
##     No Information Rate : 0.1818         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.6778         
##  Mcnemar's Test P-Value : NA             
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity           0.87500  0.93333  0.75000  0.72727  0.69565   0.5714
## Specificity           0.99302  0.95683  0.92166  0.97669  0.96583   0.9603
## Pos Pred Value        0.90323  0.70000  0.38182  0.70588  0.51613   0.7619
## Neg Pred Value        0.99072  0.99254  0.98280  0.97897  0.98376   0.9098
## Prevalence            0.06926  0.09740  0.06061  0.07143  0.04978   0.1818
## Detection Rate        0.06061  0.09091  0.04545  0.05195  0.03463   0.1039
## Detection Prevalence  0.06710  0.12987  0.11905  0.07359  0.06710   0.1364
## Balanced Accuracy     0.93401  0.94508  0.83583  0.85198  0.83074   0.7659
##                      Class: 7 Class: 8 Class: 9 Class: 10 Class: 11
## Sensitivity           0.60000  0.82927   0.7258   0.69565   0.57143
## Specificity           0.98980  0.99762   0.9900   0.98633   0.94558
## Pos Pred Value        0.91304  0.97143   0.9184   0.72727   0.33333
## Neg Pred Value        0.93269  0.98361   0.9588   0.98409   0.97887
## Prevalence            0.15152  0.08874   0.1342   0.04978   0.04545
## Detection Rate        0.09091  0.07359   0.0974   0.03463   0.02597
## Detection Prevalence  0.09957  0.07576   0.1061   0.04762   0.07792
## Balanced Accuracy     0.79490  0.91345   0.8579   0.84099   0.75850

Q2

Load the concrete data with the commands: set.seed(3523) library(AppliedPredictiveModeling) data(concrete) inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]] training = concrete[ inTrain,] testing = concrete[-inTrain,] Set the seed to 233 and fit a lasso model to predict Compressive Strength. Which variable is the last coefficient to be set to zero as the penalty increases? (Hint: it may be useful to look up ?plot.enet).

set.seed(3523)
library(AppliedPredictiveModeling)
data(concrete)
inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]]
training = concrete[ inTrain,]
testing = concrete[-inTrain,]
set.seed(233)
modelFit2<- train(CompressiveStrength~.,data=training,method="lasso")
## Loading required package: elasticnet
## Loading required package: lars
## Loaded lars 1.2
plot.enet(modelFit2$finalModel,xvar="penalty",use.color=TRUE)

#Q3 Load the data on the number of visitors to the instructors blog from here: https://d396qusza40orc.cloudfront.net/predmachlearn/gaData.csv Using the commands: library(lubridate) # For year() function below dat = read.csv(“~/Desktop/gaData.csv”) training = dat[year(dat$date) < 2012,] testing = dat[(year(dat$date)) > 2011,] tstrain = ts(training$visitsTumblr) Fit a model using the bats() function in the forecast package to the training time series. Then forecast this model for the remaining time points. For how many of the testing points is the true value within the 95% prediction interval bounds?

url<- "http://d396qusza40orc.cloudfront.net/predmachlearn/gaData.csv"
download.file(url,destfile="./visitor.csv")
library(lubridate)  # For year() function below
## 
## Attaching package: 'lubridate'
## 
## The following object is masked from 'package:plyr':
## 
##     here
dat = read.csv("visitor.csv")
training = dat[year(dat$date) < 2012,]
testing = dat[(year(dat$date)) > 2011,]
tstrain = ts(training$visitsTumblr)

library(forecast)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Loading required package: timeDate
## This is forecast 6.1
modelFit3<- bats(tstrain)
plot(modelFit3)

h<- dim(testing)[1]
fcast<- forecast(modelFit3,level=95,h=h)
plot(fcast,testing$visitsTumblr)

result3 <- c()
l <- length(fcast$lower)

for (i in 1:l){
  x <- testing$visitsTumblr[i]
  a <- fcast$lower[i] < x & x < fcast$upper[i]
  result3 <- c(result3, a)
}

sum(result3)/l * 100
## [1] 96.17021

Q4

Load the concrete data with the commands: set.seed(3523) library(AppliedPredictiveModeling) data(concrete) inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]] training = concrete[ inTrain,] testing = concrete[-inTrain,] Set the seed to 325 and fit a support vector machine using the e1071 package to predict Compressive Strength using the default settings. Predict on the testing set. What is the RMSE?

library(AppliedPredictiveModeling)
data(concrete)
inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]]
training = concrete[ inTrain,]
testing = concrete[-inTrain,]
set.seed(325)
library(e1071)
## 
## Attaching package: 'e1071'
## 
## The following objects are masked from 'package:timeDate':
## 
##     kurtosis, skewness
modelFit4<- svm(CompressiveStrength~.,data=training)
result4<- predict(modelFit4,testing)
accuracy(result4,testing$CompressiveStrength)
##                 ME     RMSE      MAE       MPE     MAPE
## Test set 0.1077803 7.011335 5.276964 -5.663341 18.27887
#Method2
fit <- train(CompressiveStrength ~ ., data = training, method = "svmRadial")
## Loading required package: kernlab
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,9,12,18,22,24,28,33,36,39,40,42,43,45,50,57,58,59,63,66,68,71,76,78,81,85,87,88,89,92,95,98,102,104,106,107,108,110,114,116,119,127,129,131,132,135,138,139,140,143,144,146,153,155,158,162,169,171,177,180,182,184,190,191,193,195,198,202,203,207,210,217,219,220,223,224,228,233,240,242,244,245,248,250,251,253,254,256,258,259,262,263,265,267,269,271,274,279,282,283,285,288,290,294,304,306,309,318,321,322,324,325,332,333,336,337,340,341,346,350,351,353,354,357,361,366,370,376,381,383,385,387,389,391,393,395,396,400,404,410,413,417,418,421,423,429,431,433,435,437,441,447,450,458,462,466,468,471,477,478,484,485,488,493,494,502,508,509,510,513,515,516,519,521,526,528,531,533,536,537,539,545,547,550,553,554,558,561,562,563,564,568,571,574,575,577,579,581,583,585,586,589,590,598,599,601,602,604,606,612,615,616,619,621,622,625,630,631,633,635,636,637,638,640,644,645,650,652,655,659,662,665,666,668,669,673,675,680,682,684,686,687,694,697,700,701,703,705,710,714,715,723,724,735,737,740,742,747,751,754,755,762,764,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,9,12,18,22,24,28,33,36,39,40,42,43,45,50,57,58,59,63,66,68,71,76,78,81,85,87,88,89,92,95,98,102,104,106,107,108,110,114,116,119,127,129,131,132,135,138,139,140,143,144,146,153,155,158,162,169,171,177,180,182,184,190,191,193,195,198,202,203,207,210,217,219,220,223,224,228,233,240,242,244,245,248,250,251,253,254,256,258,259,262,263,265,267,269,271,274,279,282,283,285,288,290,294,304,306,309,318,321,322,324,325,332,333,336,337,340,341,346,350,351,353,354,357,361,366,370,376,381,383,385,387,389,391,393,395,396,400,404,410,413,417,418,421,423,429,431,433,435,437,441,447,450,458,462,466,468,471,477,478,484,485,488,493,494,502,508,509,510,513,515,516,519,521,526,528,531,533,536,537,539,545,547,550,553,554,558,561,562,563,564,568,571,574,575,577,579,581,583,585,586,589,590,598,599,601,602,604,606,612,615,616,619,621,622,625,630,631,633,635,636,637,638,640,644,645,650,652,655,659,662,665,666,668,669,673,675,680,682,684,686,687,694,697,700,701,703,705,710,714,715,723,724,735,737,740,742,747,751,754,755,762,764,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,9,12,18,22,24,28,33,36,39,40,42,43,45,50,57,58,59,63,66,68,71,76,78,81,85,87,88,89,92,95,98,102,104,106,107,108,110,114,116,119,127,129,131,132,135,138,139,140,143,144,146,153,155,158,162,169,171,177,180,182,184,190,191,193,195,198,202,203,207,210,217,219,220,223,224,228,233,240,242,244,245,248,250,251,253,254,256,258,259,262,263,265,267,269,271,274,279,282,283,285,288,290,294,304,306,309,318,321,322,324,325,332,333,336,337,340,341,346,350,351,353,354,357,361,366,370,376,381,383,385,387,389,391,393,395,396,400,404,410,413,417,418,421,423,429,431,433,435,437,441,447,450,458,462,466,468,471,477,478,484,485,488,493,494,502,508,509,510,513,515,516,519,521,526,528,531,533,536,537,539,545,547,550,553,554,558,561,562,563,564,568,571,574,575,577,579,581,583,585,586,589,590,598,599,601,602,604,606,612,615,616,619,621,622,625,630,631,633,635,636,637,638,640,644,645,650,652,655,659,662,665,666,668,669,673,675,680,682,684,686,687,694,697,700,701,703,705,710,714,715,723,724,735,737,740,742,747,751,754,755,762,764,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,8,10,14,20,23,25,31,33,35,38,41,43,45,46,51,52,55,57,63,66,68,71,74,77,87,89,91,94,96,99,105,108,110,113,116,120,121,122,124,129,138,140,144,146,150,151,155,158,165,171,174,177,182,186,188,189,192,193,194,196,197,200,203,209,211,213,214,216,217,220,222,229,238,241,246,251,253,256,259,263,266,270,273,275,276,279,280,283,287,290,291,292,295,298,301,302,303,305,307,308,311,318,319,320,321,323,326,327,329,334,335,337,339,343,344,346,348,350,353,356,357,358,361,363,365,366,373,375,378,379,385,387,390,391,392,394,395,396,400,404,405,407,410,414,415,417,419,420,423,425,429,432,433,435,443,451,456,461,462,464,467,468,471,474,475,476,481,484,487,491,494,496,497,498,505,507,511,512,513,521,524,525,528,531,533,539,541,544,546,547,548,552,556,557,560,564,565,567,568,570,573,574,576,580,582,586,589,593,597,599,600,601,603,608,609,613,614,619,621,623,626,627,630,633,635,637,638,641,643,645,651,652,653,654,655,660,665,670,672,673,675,677,678,679,683,684,686,689,692,693,695,699,701,702,703,709,712,713,715,716,723,724,729,730,739,744,745,747,750,751,753,754,756,758,763,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,8,10,14,20,23,25,31,33,35,38,41,43,45,46,51,52,55,57,63,66,68,71,74,77,87,89,91,94,96,99,105,108,110,113,116,120,121,122,124,129,138,140,144,146,150,151,155,158,165,171,174,177,182,186,188,189,192,193,194,196,197,200,203,209,211,213,214,216,217,220,222,229,238,241,246,251,253,256,259,263,266,270,273,275,276,279,280,283,287,290,291,292,295,298,301,302,303,305,307,308,311,318,319,320,321,323,326,327,329,334,335,337,339,343,344,346,348,350,353,356,357,358,361,363,365,366,373,375,378,379,385,387,390,391,392,394,395,396,400,404,405,407,410,414,415,417,419,420,423,425,429,432,433,435,443,451,456,461,462,464,467,468,471,474,475,476,481,484,487,491,494,496,497,498,505,507,511,512,513,521,524,525,528,531,533,539,541,544,546,547,548,552,556,557,560,564,565,567,568,570,573,574,576,580,582,586,589,593,597,599,600,601,603,608,609,613,614,619,621,623,626,627,630,633,635,637,638,641,643,645,651,652,653,654,655,660,665,670,672,673,675,677,678,679,683,684,686,689,692,693,695,699,701,702,703,709,712,713,715,716,723,724,729,730,739,744,745,747,750,751,753,754,756,758,763,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,8,10,14,20,23,25,31,33,35,38,41,43,45,46,51,52,55,57,63,66,68,71,74,77,87,89,91,94,96,99,105,108,110,113,116,120,121,122,124,129,138,140,144,146,150,151,155,158,165,171,174,177,182,186,188,189,192,193,194,196,197,200,203,209,211,213,214,216,217,220,222,229,238,241,246,251,253,256,259,263,266,270,273,275,276,279,280,283,287,290,291,292,295,298,301,302,303,305,307,308,311,318,319,320,321,323,326,327,329,334,335,337,339,343,344,346,348,350,353,356,357,358,361,363,365,366,373,375,378,379,385,387,390,391,392,394,395,396,400,404,405,407,410,414,415,417,419,420,423,425,429,432,433,435,443,451,456,461,462,464,467,468,471,474,475,476,481,484,487,491,494,496,497,498,505,507,511,512,513,521,524,525,528,531,533,539,541,544,546,547,548,552,556,557,560,564,565,567,568,570,573,574,576,580,582,586,589,593,597,599,600,601,603,608,609,613,614,619,621,623,626,627,630,633,635,637,638,641,643,645,651,652,653,654,655,660,665,670,672,673,675,677,678,679,683,684,686,689,692,693,695,699,701,702,703,709,712,713,715,716,723,724,729,730,739,744,745,747,750,751,753,754,756,758,763,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,9,15,17,22,33,36,39,43,44,46,47,52,55,59,61,62,66,68,71,72,74,76,80,84,86,89,94,98,101,102,106,109,112,113,115,120,122,124,125,126,128,130,132,136,139,143,144,149,157,158,160,161,165,167,169,172,175,179,180,183,187,192,194,196,198,199,203,206,208,210,211,213,215,218,221,225,226,227,229,233,236,239,242,248,250,251,253,256,257,266,267,273,278,279,283,284,286,288,292,294,296,299,300,302,303,304,306,308,309,311,314,320,323,324,328,330,335,337,339,342,345,348,350,352,356,362,364,367,368,370,371,374,376,378,379,380,382,386,390,393,394,395,396,400,405,408,412,415,419,423,425,426,427,429,432,433,435,438,440,449,451,454,457,458,462,463,465,467,468,469,471,476,485,486,489,494,495,497,500,503,504,507,511,514,516,517,519,520,525,530,535,538,540,542,543,545,548,550,553,554,557,558,559,561,564,566,568,571,572,573,579,580,581,585,587,588,597,600,604,607,611,614,616,618,621,626,629,630,633,635,636,638,640,641,643,645,646,647,650,653,656,661,662,667,669,670,672,675,677,678,682,684,687,689,691,693,695,700,701,704,705,707,710,711,712,717,719,722,724,725,727,728,729,731,737,738,741,742,743,745,747,750,752,761,762,763,765,769,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,9,15,17,22,33,36,39,43,44,46,47,52,55,59,61,62,66,68,71,72,74,76,80,84,86,89,94,98,101,102,106,109,112,113,115,120,122,124,125,126,128,130,132,136,139,143,144,149,157,158,160,161,165,167,169,172,175,179,180,183,187,192,194,196,198,199,203,206,208,210,211,213,215,218,221,225,226,227,229,233,236,239,242,248,250,251,253,256,257,266,267,273,278,279,283,284,286,288,292,294,296,299,300,302,303,304,306,308,309,311,314,320,323,324,328,330,335,337,339,342,345,348,350,352,356,362,364,367,368,370,371,374,376,378,379,380,382,386,390,393,394,395,396,400,405,408,412,415,419,423,425,426,427,429,432,433,435,438,440,449,451,454,457,458,462,463,465,467,468,469,471,476,485,486,489,494,495,497,500,503,504,507,511,514,516,517,519,520,525,530,535,538,540,542,543,545,548,550,553,554,557,558,559,561,564,566,568,571,572,573,579,580,581,585,587,588,597,600,604,607,611,614,616,618,621,626,629,630,633,635,636,638,640,641,643,645,646,647,650,653,656,661,662,667,669,670,672,675,677,678,682,684,687,689,691,693,695,700,701,704,705,707,710,711,712,717,719,722,724,725,727,728,729,731,737,738,741,742,743,745,747,750,752,761,762,763,765,769,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,9,15,17,22,33,36,39,43,44,46,47,52,55,59,61,62,66,68,71,72,74,76,80,84,86,89,94,98,101,102,106,109,112,113,115,120,122,124,125,126,128,130,132,136,139,143,144,149,157,158,160,161,165,167,169,172,175,179,180,183,187,192,194,196,198,199,203,206,208,210,211,213,215,218,221,225,226,227,229,233,236,239,242,248,250,251,253,256,257,266,267,273,278,279,283,284,286,288,292,294,296,299,300,302,303,304,306,308,309,311,314,320,323,324,328,330,335,337,339,342,345,348,350,352,356,362,364,367,368,370,371,374,376,378,379,380,382,386,390,393,394,395,396,400,405,408,412,415,419,423,425,426,427,429,432,433,435,438,440,449,451,454,457,458,462,463,465,467,468,469,471,476,485,486,489,494,495,497,500,503,504,507,511,514,516,517,519,520,525,530,535,538,540,542,543,545,548,550,553,554,557,558,559,561,564,566,568,571,572,573,579,580,581,585,587,588,597,600,604,607,611,614,616,618,621,626,629,630,633,635,636,638,640,641,643,645,646,647,650,653,656,661,662,667,669,670,672,675,677,678,682,684,687,689,691,693,695,700,701,704,705,707,710,711,712,717,719,722,724,725,727,728,729,731,737,738,741,742,743,745,747,750,752,761,762,763,765,769,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,13,15,16,17,18,21,22,25,26,28,29,31,34,36,38,41,43,44,45,48,50,53,55,59,63,66,67,69,75,83,86,89,90,94,96,97,100,102,108,109,114,115,116,118,122,126,130,137,138,139,141,142,144,148,153,154,160,161,169,171,172,175,181,182,185,188,190,195,197,202,204,205,211,212,215,218,220,221,224,236,242,243,244,245,247,248,253,255,257,260,261,263,265,268,269,272,273,275,277,280,281,282,284,286,292,293,297,299,302,305,308,309,317,318,324,329,330,333,334,335,336,338,339,340,344,345,352,357,360,365,373,374,376,377,378,381,384,387,389,397,399,401,403,405,409,413,414,416,423,425,427,429,432,434,435,437,441,442,443,446,449,455,458,462,463,465,467,468,470,474,475,476,480,482,483,484,490,491,495,497,499,500,505,511,512,514,517,519,521,524,526,530,534,537,542,544,548,549,551,553,555,558,560,564,568,571,578,580,583,586,587,589,592,593,595,597,600,604,605,608,610,611,614,616,617,619,621,623,631,632,633,636,639,640,644,645,646,648,652,656,661,665,667,668,673,676,678,681,682,684,688,693,696,699,706,707,709,710,719,720,722,731,732,743,745,748,750,755,758,764,765,766,769,770,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,13,15,16,17,18,21,22,25,26,28,29,31,34,36,38,41,43,44,45,48,50,53,55,59,63,66,67,69,75,83,86,89,90,94,96,97,100,102,108,109,114,115,116,118,122,126,130,137,138,139,141,142,144,148,153,154,160,161,169,171,172,175,181,182,185,188,190,195,197,202,204,205,211,212,215,218,220,221,224,236,242,243,244,245,247,248,253,255,257,260,261,263,265,268,269,272,273,275,277,280,281,282,284,286,292,293,297,299,302,305,308,309,317,318,324,329,330,333,334,335,336,338,339,340,344,345,352,357,360,365,373,374,376,377,378,381,384,387,389,397,399,401,403,405,409,413,414,416,423,425,427,429,432,434,435,437,441,442,443,446,449,455,458,462,463,465,467,468,470,474,475,476,480,482,483,484,490,491,495,497,499,500,505,511,512,514,517,519,521,524,526,530,534,537,542,544,548,549,551,553,555,558,560,564,568,571,578,580,583,586,587,589,592,593,595,597,600,604,605,608,610,611,614,616,617,619,621,623,631,632,633,636,639,640,644,645,646,648,652,656,661,665,667,668,673,676,678,681,682,684,688,693,696,699,706,707,709,710,719,720,722,731,732,743,745,748,750,755,758,764,765,766,769,770,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,13,15,16,17,18,21,22,25,26,28,29,31,34,36,38,41,43,44,45,48,50,53,55,59,63,66,67,69,75,83,86,89,90,94,96,97,100,102,108,109,114,115,116,118,122,126,130,137,138,139,141,142,144,148,153,154,160,161,169,171,172,175,181,182,185,188,190,195,197,202,204,205,211,212,215,218,220,221,224,236,242,243,244,245,247,248,253,255,257,260,261,263,265,268,269,272,273,275,277,280,281,282,284,286,292,293,297,299,302,305,308,309,317,318,324,329,330,333,334,335,336,338,339,340,344,345,352,357,360,365,373,374,376,377,378,381,384,387,389,397,399,401,403,405,409,413,414,416,423,425,427,429,432,434,435,437,441,442,443,446,449,455,458,462,463,465,467,468,470,474,475,476,480,482,483,484,490,491,495,497,499,500,505,511,512,514,517,519,521,524,526,530,534,537,542,544,548,549,551,553,555,558,560,564,568,571,578,580,583,586,587,589,592,593,595,597,600,604,605,608,610,611,614,616,617,619,621,623,631,632,633,636,639,640,644,645,646,648,652,656,661,665,667,668,673,676,678,681,682,684,688,693,696,699,706,707,709,710,719,720,722,731,732,743,745,748,750,755,758,764,765,766,769,770,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,10,14,16,18,20,22,23,25,26,32,35,36,38,40,42,43,47,55,56,58,59,62,63,65,66,67,69,75,77,81,85,88,91,92,93,97,98,100,101,103,104,106,107,111,113,115,117,120,127,131,132,138,141,143,147,153,156,159,162,165,167,170,172,174,175,180,183,186,189,191,194,195,199,202,207,208,214,216,217,218,228,230,232,236,237,242,245,248,253,259,261,263,264,267,270,274,276,280,281,285,288,293,295,297,301,305,308,312,313,317,321,323,324,327,328,332,334,338,339,340,344,347,352,359,361,364,366,367,370,376,377,378,379,385,387,389,393,397,398,399,400,404,406,407,408,410,413,414,416,420,421,422,426,427,430,433,435,440,441,442,447,448,453,455,456,457,458,460,461,463,468,471,472,475,476,478,480,482,485,486,488,489,490,492,493,494,496,498,500,501,504,505,509,511,514,521,522,525,527,533,535,536,540,542,551,553,555,556,560,561,563,565,566,567,569,571,573,574,576,579,582,590,592,597,602,603,606,609,610,611,615,616,618,621,622,624,631,636,637,638,644,648,650,653,655,658,659,660,663,667,669,671,675,676,678,680,683,684,689,692,693,700,701,705,707,709,711,715,717,720,721,724,726,730,732,733,736,740,741,742,746,747,749,754,757,758,761,763,765,767,772,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,10,14,16,18,20,22,23,25,26,32,35,36,38,40,42,43,47,55,56,58,59,62,63,65,66,67,69,75,77,81,85,88,91,92,93,97,98,100,101,103,104,106,107,111,113,115,117,120,127,131,132,138,141,143,147,153,156,159,162,165,167,170,172,174,175,180,183,186,189,191,194,195,199,202,207,208,214,216,217,218,228,230,232,236,237,242,245,248,253,259,261,263,264,267,270,274,276,280,281,285,288,293,295,297,301,305,308,312,313,317,321,323,324,327,328,332,334,338,339,340,344,347,352,359,361,364,366,367,370,376,377,378,379,385,387,389,393,397,398,399,400,404,406,407,408,410,413,414,416,420,421,422,426,427,430,433,435,440,441,442,447,448,453,455,456,457,458,460,461,463,468,471,472,475,476,478,480,482,485,486,488,489,490,492,493,494,496,498,500,501,504,505,509,511,514,521,522,525,527,533,535,536,540,542,551,553,555,556,560,561,563,565,566,567,569,571,573,574,576,579,582,590,592,597,602,603,606,609,610,611,615,616,618,621,622,624,631,636,637,638,644,648,650,653,655,658,659,660,663,667,669,671,675,676,678,680,683,684,689,692,693,700,701,705,707,709,711,715,717,720,721,724,726,730,732,733,736,740,741,742,746,747,749,754,757,758,761,763,765,767,772,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,10,14,16,18,20,22,23,25,26,32,35,36,38,40,42,43,47,55,56,58,59,62,63,65,66,67,69,75,77,81,85,88,91,92,93,97,98,100,101,103,104,106,107,111,113,115,117,120,127,131,132,138,141,143,147,153,156,159,162,165,167,170,172,174,175,180,183,186,189,191,194,195,199,202,207,208,214,216,217,218,228,230,232,236,237,242,245,248,253,259,261,263,264,267,270,274,276,280,281,285,288,293,295,297,301,305,308,312,313,317,321,323,324,327,328,332,334,338,339,340,344,347,352,359,361,364,366,367,370,376,377,378,379,385,387,389,393,397,398,399,400,404,406,407,408,410,413,414,416,420,421,422,426,427,430,433,435,440,441,442,447,448,453,455,456,457,458,460,461,463,468,471,472,475,476,478,480,482,485,486,488,489,490,492,493,494,496,498,500,501,504,505,509,511,514,521,522,525,527,533,535,536,540,542,551,553,555,556,560,561,563,565,566,567,569,571,573,574,576,579,582,590,592,597,602,603,606,609,610,611,615,616,618,621,622,624,631,636,637,638,644,648,650,653,655,658,659,660,663,667,669,671,675,676,678,680,683,684,689,692,693,700,701,705,707,709,711,715,717,720,721,724,726,730,732,733,736,740,741,742,746,747,749,754,757,758,761,763,765,767,772,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,8,9,11,12,16,18,23,26,28,38,40,43,44,50,51,53,55,56,58,59,60,66,70,73,76,81,83,84,87,92,93,94,96,100,103,109,110,113,114,115,119,120,124,126,127,129,132,134,136,138,145,147,150,152,156,163,165,168,170,172,173,180,184,187,188,190,194,195,197,198,202,203,206,210,216,220,222,223,227,230,232,234,236,238,241,242,244,249,252,255,260,263,265,269,275,279,280,283,287,288,289,291,292,295,299,301,307,311,312,318,319,323,325,326,330,331,335,338,342,346,350,351,356,357,358,363,364,366,367,370,372,374,378,379,385,386,389,391,396,397,408,414,416,418,420,421,425,426,431,432,433,434,435,436,439,441,443,445,447,448,450,452,455,456,458,463,465,467,469,471,473,476,478,479,481,482,483,486,489,497,499,502,504,506,509,510,511,512,513,514,516,519,520,524,525,527,529,531,535,538,540,541,543,546,548,550,556,557,559,561,562,565,571,572,574,575,578,581,584,586,589,590,592,595,596,601,604,609,610,612,614,615,618,620,622,624,626,628,631,632,635,636,638,641,645,647,648,650,653,654,657,660,662,663,665,667,675,676,688,693,697,698,704,705,707,708,710,714,716,719,722,725,730,734,735,736,743,747,748,749,753,755,757,758,759,764,767,768,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,8,9,11,12,16,18,23,26,28,38,40,43,44,50,51,53,55,56,58,59,60,66,70,73,76,81,83,84,87,92,93,94,96,100,103,109,110,113,114,115,119,120,124,126,127,129,132,134,136,138,145,147,150,152,156,163,165,168,170,172,173,180,184,187,188,190,194,195,197,198,202,203,206,210,216,220,222,223,227,230,232,234,236,238,241,242,244,249,252,255,260,263,265,269,275,279,280,283,287,288,289,291,292,295,299,301,307,311,312,318,319,323,325,326,330,331,335,338,342,346,350,351,356,357,358,363,364,366,367,370,372,374,378,379,385,386,389,391,396,397,408,414,416,418,420,421,425,426,431,432,433,434,435,436,439,441,443,445,447,448,450,452,455,456,458,463,465,467,469,471,473,476,478,479,481,482,483,486,489,497,499,502,504,506,509,510,511,512,513,514,516,519,520,524,525,527,529,531,535,538,540,541,543,546,548,550,556,557,559,561,562,565,571,572,574,575,578,581,584,586,589,590,592,595,596,601,604,609,610,612,614,615,618,620,622,624,626,628,631,632,635,636,638,641,645,647,648,650,653,654,657,660,662,663,665,667,675,676,688,693,697,698,704,705,707,708,710,714,716,719,722,725,730,734,735,736,743,747,748,749,753,755,757,758,759,764,767,768,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,8,9,11,12,16,18,23,26,28,38,40,43,44,50,51,53,55,56,58,59,60,66,70,73,76,81,83,84,87,92,93,94,96,100,103,109,110,113,114,115,119,120,124,126,127,129,132,134,136,138,145,147,150,152,156,163,165,168,170,172,173,180,184,187,188,190,194,195,197,198,202,203,206,210,216,220,222,223,227,230,232,234,236,238,241,242,244,249,252,255,260,263,265,269,275,279,280,283,287,288,289,291,292,295,299,301,307,311,312,318,319,323,325,326,330,331,335,338,342,346,350,351,356,357,358,363,364,366,367,370,372,374,378,379,385,386,389,391,396,397,408,414,416,418,420,421,425,426,431,432,433,434,435,436,439,441,443,445,447,448,450,452,455,456,458,463,465,467,469,471,473,476,478,479,481,482,483,486,489,497,499,502,504,506,509,510,511,512,513,514,516,519,520,524,525,527,529,531,535,538,540,541,543,546,548,550,556,557,559,561,562,565,571,572,574,575,578,581,584,586,589,590,592,595,596,601,604,609,610,612,614,615,618,620,622,624,626,628,631,632,635,636,638,641,645,647,648,650,653,654,657,660,662,663,665,667,675,676,688,693,697,698,704,705,707,708,710,714,716,719,722,725,730,734,735,736,743,747,748,749,753,755,757,758,759,764,767,768,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,16,19,20,21,22,24,27,29,31,35,38,39,40,47,51,53,55,56,60,61,63,65,70,74,75,77,79,80,81,89,90,92,93,95,96,98,99,102,105,108,113,114,115,117,119,121,122,128,130,136,137,138,140,142,144,147,151,152,154,158,160,162,164,165,167,170,176,179,183,184,186,199,201,205,207,209,211,212,216,218,223,225,229,230,231,238,240,241,244,245,247,248,251,252,253,255,257,259,263,265,266,268,269,271,272,277,278,279,283,288,290,292,294,296,298,299,301,308,310,311,314,322,324,325,327,329,337,338,343,348,351,354,356,360,363,366,371,373,376,377,378,383,387,394,397,401,402,405,410,412,414,415,416,417,420,423,427,428,430,431,432,434,435,436,439,442,446,448,451,454,456,458,459,464,465,467,469,474,476,478,480,483,484,487,488,492,498,503,504,506,507,509,511,515,517,519,521,526,531,533,534,538,541,544,545,548,549,551,554,556,557,558,562,566,570,573,574,577,578,579,580,581,583,584,593,596,602,606,608,610,611,623,624,633,635,636,638,639,642,645,649,653,658,659,662,663,664,667,670,672,679,687,691,695,697,698,702,708,710,712,715,716,720,722,723,725,726,728,732,737,740,745,750,752,753,755,756,764,765,767,768,769,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,16,19,20,21,22,24,27,29,31,35,38,39,40,47,51,53,55,56,60,61,63,65,70,74,75,77,79,80,81,89,90,92,93,95,96,98,99,102,105,108,113,114,115,117,119,121,122,128,130,136,137,138,140,142,144,147,151,152,154,158,160,162,164,165,167,170,176,179,183,184,186,199,201,205,207,209,211,212,216,218,223,225,229,230,231,238,240,241,244,245,247,248,251,252,253,255,257,259,263,265,266,268,269,271,272,277,278,279,283,288,290,292,294,296,298,299,301,308,310,311,314,322,324,325,327,329,337,338,343,348,351,354,356,360,363,366,371,373,376,377,378,383,387,394,397,401,402,405,410,412,414,415,416,417,420,423,427,428,430,431,432,434,435,436,439,442,446,448,451,454,456,458,459,464,465,467,469,474,476,478,480,483,484,487,488,492,498,503,504,506,507,509,511,515,517,519,521,526,531,533,534,538,541,544,545,548,549,551,554,556,557,558,562,566,570,573,574,577,578,579,580,581,583,584,593,596,602,606,608,610,611,623,624,633,635,636,638,639,642,645,649,653,658,659,662,663,664,667,670,672,679,687,691,695,697,698,702,708,710,712,715,716,720,722,723,725,726,728,732,737,740,745,750,752,753,755,756,764,765,767,768,769,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,16,19,20,21,22,24,27,29,31,35,38,39,40,47,51,53,55,56,60,61,63,65,70,74,75,77,79,80,81,89,90,92,93,95,96,98,99,102,105,108,113,114,115,117,119,121,122,128,130,136,137,138,140,142,144,147,151,152,154,158,160,162,164,165,167,170,176,179,183,184,186,199,201,205,207,209,211,212,216,218,223,225,229,230,231,238,240,241,244,245,247,248,251,252,253,255,257,259,263,265,266,268,269,271,272,277,278,279,283,288,290,292,294,296,298,299,301,308,310,311,314,322,324,325,327,329,337,338,343,348,351,354,356,360,363,366,371,373,376,377,378,383,387,394,397,401,402,405,410,412,414,415,416,417,420,423,427,428,430,431,432,434,435,436,439,442,446,448,451,454,456,458,459,464,465,467,469,474,476,478,480,483,484,487,488,492,498,503,504,506,507,509,511,515,517,519,521,526,531,533,534,538,541,544,545,548,549,551,554,556,557,558,562,566,570,573,574,577,578,579,580,581,583,584,593,596,602,606,608,610,611,623,624,633,635,636,638,639,642,645,649,653,658,659,662,663,664,667,670,672,679,687,691,695,697,698,702,708,710,712,715,716,720,722,723,725,726,728,732,737,740,745,750,752,753,755,756,764,765,767,768,769,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,14,17,22,25,34,35,38,39,44,48,49,56,57,59,60,62,65,68,70,72,74,75,77,79,80,81,84,86,89,90,91,93,95,98,103,105,108,110,111,112,115,116,117,119,121,126,131,136,139,143,146,148,150,152,153,164,172,175,176,177,179,181,182,183,186,187,188,190,195,196,197,199,200,201,205,206,214,218,219,221,223,230,232,234,238,240,244,245,250,251,255,270,273,275,282,284,287,288,294,299,300,303,305,309,310,317,320,323,325,326,329,333,334,336,340,342,343,345,346,348,351,352,353,355,358,360,361,365,369,377,378,379,389,390,395,397,398,399,402,407,411,414,418,420,421,422,424,426,429,430,435,436,442,445,446,452,454,457,458,460,462,465,466,471,474,475,483,488,491,492,493,499,503,506,508,510,512,513,517,521,524,528,531,533,534,535,536,542,547,550,554,557,563,564,565,568,574,579,580,583,584,585,587,589,591,593,594,595,598,600,603,605,608,609,611,615,616,618,619,621,624,627,633,636,638,641,642,645,646,648,655,660,661,663,667,677,683,686,687,689,694,695,696,699,701,702,703,704,709,710,711,715,717,718,723,724,728,734,738,740,741,743,746,751,755,760,762,763,765,769,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,14,17,22,25,34,35,38,39,44,48,49,56,57,59,60,62,65,68,70,72,74,75,77,79,80,81,84,86,89,90,91,93,95,98,103,105,108,110,111,112,115,116,117,119,121,126,131,136,139,143,146,148,150,152,153,164,172,175,176,177,179,181,182,183,186,187,188,190,195,196,197,199,200,201,205,206,214,218,219,221,223,230,232,234,238,240,244,245,250,251,255,270,273,275,282,284,287,288,294,299,300,303,305,309,310,317,320,323,325,326,329,333,334,336,340,342,343,345,346,348,351,352,353,355,358,360,361,365,369,377,378,379,389,390,395,397,398,399,402,407,411,414,418,420,421,422,424,426,429,430,435,436,442,445,446,452,454,457,458,460,462,465,466,471,474,475,483,488,491,492,493,499,503,506,508,510,512,513,517,521,524,528,531,533,534,535,536,542,547,550,554,557,563,564,565,568,574,579,580,583,584,585,587,589,591,593,594,595,598,600,603,605,608,609,611,615,616,618,619,621,624,627,633,636,638,641,642,645,646,648,655,660,661,663,667,677,683,686,687,689,694,695,696,699,701,702,703,704,709,710,711,715,717,718,723,724,728,734,738,740,741,743,746,751,755,760,762,763,765,769,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,14,17,22,25,34,35,38,39,44,48,49,56,57,59,60,62,65,68,70,72,74,75,77,79,80,81,84,86,89,90,91,93,95,98,103,105,108,110,111,112,115,116,117,119,121,126,131,136,139,143,146,148,150,152,153,164,172,175,176,177,179,181,182,183,186,187,188,190,195,196,197,199,200,201,205,206,214,218,219,221,223,230,232,234,238,240,244,245,250,251,255,270,273,275,282,284,287,288,294,299,300,303,305,309,310,317,320,323,325,326,329,333,334,336,340,342,343,345,346,348,351,352,353,355,358,360,361,365,369,377,378,379,389,390,395,397,398,399,402,407,411,414,418,420,421,422,424,426,429,430,435,436,442,445,446,452,454,457,458,460,462,465,466,471,474,475,483,488,491,492,493,499,503,506,508,510,512,513,517,521,524,528,531,533,534,535,536,542,547,550,554,557,563,564,565,568,574,579,580,583,584,585,587,589,591,593,594,595,598,600,603,605,608,609,611,615,616,618,619,621,624,627,633,636,638,641,642,645,646,648,655,660,661,663,667,677,683,686,687,689,694,695,696,699,701,702,703,704,709,710,711,715,717,718,723,724,728,734,738,740,741,743,746,751,755,760,762,763,765,769,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,11,15,17,21,26,27,33,34,35,37,38,43,46,50,52,55,56,58,71,73,74,76,78,79,80,81,83,85,89,91,96,105,109,110,111,114,117,118,126,127,130,132,134,137,138,140,141,145,147,149,155,157,158,160,162,163,166,169,170,171,174,177,178,179,181,184,185,186,189,191,193,196,197,198,200,202,204,210,213,215,224,228,229,232,235,240,241,242,244,246,250,253,256,257,262,263,267,268,273,274,276,281,283,286,297,300,304,305,306,313,316,317,320,324,326,328,333,334,336,338,339,341,350,351,354,362,365,368,371,373,377,378,380,382,384,385,388,390,391,394,398,399,401,406,407,409,411,414,423,425,427,429,431,433,434,438,439,440,441,444,445,449,450,451,455,458,462,463,465,469,474,475,480,484,486,494,497,498,502,504,508,510,512,513,514,519,523,525,529,530,531,535,536,540,551,553,558,560,563,565,566,568,572,573,585,586,588,590,597,601,603,604,605,608,609,611,616,619,620,621,625,626,627,628,631,635,638,639,641,647,652,656,658,659,660,662,663,667,669,672,679,681,684,686,688,689,690,693,694,701,702,705,707,711,718,720,721,724,727,728,731,736,737,739,741,748,751,753,754,755,757,762,764,765,766,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,11,15,17,21,26,27,33,34,35,37,38,43,46,50,52,55,56,58,71,73,74,76,78,79,80,81,83,85,89,91,96,105,109,110,111,114,117,118,126,127,130,132,134,137,138,140,141,145,147,149,155,157,158,160,162,163,166,169,170,171,174,177,178,179,181,184,185,186,189,191,193,196,197,198,200,202,204,210,213,215,224,228,229,232,235,240,241,242,244,246,250,253,256,257,262,263,267,268,273,274,276,281,283,286,297,300,304,305,306,313,316,317,320,324,326,328,333,334,336,338,339,341,350,351,354,362,365,368,371,373,377,378,380,382,384,385,388,390,391,394,398,399,401,406,407,409,411,414,423,425,427,429,431,433,434,438,439,440,441,444,445,449,450,451,455,458,462,463,465,469,474,475,480,484,486,494,497,498,502,504,508,510,512,513,514,519,523,525,529,530,531,535,536,540,551,553,558,560,563,565,566,568,572,573,585,586,588,590,597,601,603,604,605,608,609,611,616,619,620,621,625,626,627,628,631,635,638,639,641,647,652,656,658,659,660,662,663,667,669,672,679,681,684,686,688,689,690,693,694,701,702,705,707,711,718,720,721,724,727,728,731,736,737,739,741,748,751,753,754,755,757,762,764,765,766,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,11,15,17,21,26,27,33,34,35,37,38,43,46,50,52,55,56,58,71,73,74,76,78,79,80,81,83,85,89,91,96,105,109,110,111,114,117,118,126,127,130,132,134,137,138,140,141,145,147,149,155,157,158,160,162,163,166,169,170,171,174,177,178,179,181,184,185,186,189,191,193,196,197,198,200,202,204,210,213,215,224,228,229,232,235,240,241,242,244,246,250,253,256,257,262,263,267,268,273,274,276,281,283,286,297,300,304,305,306,313,316,317,320,324,326,328,333,334,336,338,339,341,350,351,354,362,365,368,371,373,377,378,380,382,384,385,388,390,391,394,398,399,401,406,407,409,411,414,423,425,427,429,431,433,434,438,439,440,441,444,445,449,450,451,455,458,462,463,465,469,474,475,480,484,486,494,497,498,502,504,508,510,512,513,514,519,523,525,529,530,531,535,536,540,551,553,558,560,563,565,566,568,572,573,585,586,588,590,597,601,603,604,605,608,609,611,616,619,620,621,625,626,627,628,631,635,638,639,641,647,652,656,658,659,660,662,663,667,669,672,679,681,684,686,688,689,690,693,694,701,702,705,707,711,718,720,721,724,727,728,731,736,737,739,741,748,751,753,754,755,757,762,764,765,766,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,6,12,13,16,17,19,24,29,30,32,36,38,41,42,44,48,52,57,61,62,63,67,69,71,72,75,77,81,83,86,88,89,91,92,94,98,100,106,117,123,126,133,134,137,140,142,143,144,148,153,160,162,163,164,166,170,171,175,178,182,184,188,190,191,196,200,203,205,206,207,208,209,211,214,219,223,224,228,235,236,237,239,243,246,248,251,252,253,255,262,265,266,269,270,275,277,279,284,286,287,289,290,292,294,296,297,298,299,300,306,308,311,312,319,322,325,328,331,332,335,337,338,341,342,344,345,346,348,351,353,355,359,360,361,363,365,366,367,368,369,372,375,377,380,389,392,395,397,398,400,402,406,408,409,412,415,420,424,427,430,431,434,436,445,448,450,452,455,456,459,460,467,468,470,471,472,475,479,480,482,485,487,494,495,496,497,501,503,504,506,509,510,512,514,519,521,525,534,536,539,541,545,547,548,549,552,555,556,558,561,566,568,575,581,582,583,587,588,589,594,599,604,608,610,611,614,617,618,620,621,623,625,626,629,631,632,635,638,639,641,644,646,648,649,651,653,654,657,660,666,667,672,674,675,678,682,683,687,688,691,693,695,699,707,709,710,715,717,720,723,725,729,730,732,733,737,740,742,745,746,749,752,754,755,758,759,762,763,766,768,771,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,6,12,13,16,17,19,24,29,30,32,36,38,41,42,44,48,52,57,61,62,63,67,69,71,72,75,77,81,83,86,88,89,91,92,94,98,100,106,117,123,126,133,134,137,140,142,143,144,148,153,160,162,163,164,166,170,171,175,178,182,184,188,190,191,196,200,203,205,206,207,208,209,211,214,219,223,224,228,235,236,237,239,243,246,248,251,252,253,255,262,265,266,269,270,275,277,279,284,286,287,289,290,292,294,296,297,298,299,300,306,308,311,312,319,322,325,328,331,332,335,337,338,341,342,344,345,346,348,351,353,355,359,360,361,363,365,366,367,368,369,372,375,377,380,389,392,395,397,398,400,402,406,408,409,412,415,420,424,427,430,431,434,436,445,448,450,452,455,456,459,460,467,468,470,471,472,475,479,480,482,485,487,494,495,496,497,501,503,504,506,509,510,512,514,519,521,525,534,536,539,541,545,547,548,549,552,555,556,558,561,566,568,575,581,582,583,587,588,589,594,599,604,608,610,611,614,617,618,620,621,623,625,626,629,631,632,635,638,639,641,644,646,648,649,651,653,654,657,660,666,667,672,674,675,678,682,683,687,688,691,693,695,699,707,709,710,715,717,720,723,725,729,730,732,733,737,740,742,745,746,749,752,754,755,758,759,762,763,766,768,771,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,6,12,13,16,17,19,24,29,30,32,36,38,41,42,44,48,52,57,61,62,63,67,69,71,72,75,77,81,83,86,88,89,91,92,94,98,100,106,117,123,126,133,134,137,140,142,143,144,148,153,160,162,163,164,166,170,171,175,178,182,184,188,190,191,196,200,203,205,206,207,208,209,211,214,219,223,224,228,235,236,237,239,243,246,248,251,252,253,255,262,265,266,269,270,275,277,279,284,286,287,289,290,292,294,296,297,298,299,300,306,308,311,312,319,322,325,328,331,332,335,337,338,341,342,344,345,346,348,351,353,355,359,360,361,363,365,366,367,368,369,372,375,377,380,389,392,395,397,398,400,402,406,408,409,412,415,420,424,427,430,431,434,436,445,448,450,452,455,456,459,460,467,468,470,471,472,475,479,480,482,485,487,494,495,496,497,501,503,504,506,509,510,512,514,519,521,525,534,536,539,541,545,547,548,549,552,555,556,558,561,566,568,575,581,582,583,587,588,589,594,599,604,608,610,611,614,617,618,620,621,623,625,626,629,631,632,635,638,639,641,644,646,648,649,651,653,654,657,660,666,667,672,674,675,678,682,683,687,688,691,693,695,699,707,709,710,715,717,720,723,725,729,730,732,733,737,740,742,745,746,749,752,754,755,758,759,762,763,766,768,771,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,5,7,9,11,14,16,24,32,34,36,37,42,45,47,50,52,54,58,59,65,68,69,71,73,75,77,80,81,83,94,96,97,103,109,115,119,120,124,126,127,130,133,135,138,142,148,150,152,156,159,160,162,166,167,173,176,177,178,181,184,185,187,190,192,197,198,202,203,207,210,211,218,223,224,225,229,230,232,235,237,239,240,246,248,249,252,257,260,266,268,269,279,281,283,287,290,293,295,296,299,301,304,305,308,310,312,313,316,330,332,341,343,347,349,351,352,353,360,362,366,368,369,371,379,382,383,386,387,391,393,395,398,399,400,407,412,414,417,418,420,422,424,426,433,435,440,441,442,446,450,451,452,454,455,459,462,465,466,472,475,477,478,481,488,489,491,492,493,504,508,511,512,514,517,518,525,530,532,536,537,544,547,549,550,551,553,555,558,563,565,568,571,572,574,577,578,582,587,590,593,595,598,603,605,607,609,612,617,620,621,622,623,624,626,634,637,642,647,648,652,654,657,658,661,663,665,668,675,680,681,682,684,686,696,697,698,700,702,704,705,706,712,714,715,716,719,722,724,726,728,729,731,732,736,739,744,746,748,751,752,754,755,759,763,767,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,5,7,9,11,14,16,24,32,34,36,37,42,45,47,50,52,54,58,59,65,68,69,71,73,75,77,80,81,83,94,96,97,103,109,115,119,120,124,126,127,130,133,135,138,142,148,150,152,156,159,160,162,166,167,173,176,177,178,181,184,185,187,190,192,197,198,202,203,207,210,211,218,223,224,225,229,230,232,235,237,239,240,246,248,249,252,257,260,266,268,269,279,281,283,287,290,293,295,296,299,301,304,305,308,310,312,313,316,330,332,341,343,347,349,351,352,353,360,362,366,368,369,371,379,382,383,386,387,391,393,395,398,399,400,407,412,414,417,418,420,422,424,426,433,435,440,441,442,446,450,451,452,454,455,459,462,465,466,472,475,477,478,481,488,489,491,492,493,504,508,511,512,514,517,518,525,530,532,536,537,544,547,549,550,551,553,555,558,563,565,568,571,572,574,577,578,582,587,590,593,595,598,603,605,607,609,612,617,620,621,622,623,624,626,634,637,642,647,648,652,654,657,658,661,663,665,668,675,680,681,682,684,686,696,697,698,700,702,704,705,706,712,714,715,716,719,722,724,726,728,729,731,732,736,739,744,746,748,751,752,754,755,759,763,767,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,5,7,9,11,14,16,24,32,34,36,37,42,45,47,50,52,54,58,59,65,68,69,71,73,75,77,80,81,83,94,96,97,103,109,115,119,120,124,126,127,130,133,135,138,142,148,150,152,156,159,160,162,166,167,173,176,177,178,181,184,185,187,190,192,197,198,202,203,207,210,211,218,223,224,225,229,230,232,235,237,239,240,246,248,249,252,257,260,266,268,269,279,281,283,287,290,293,295,296,299,301,304,305,308,310,312,313,316,330,332,341,343,347,349,351,352,353,360,362,366,368,369,371,379,382,383,386,387,391,393,395,398,399,400,407,412,414,417,418,420,422,424,426,433,435,440,441,442,446,450,451,452,454,455,459,462,465,466,472,475,477,478,481,488,489,491,492,493,504,508,511,512,514,517,518,525,530,532,536,537,544,547,549,550,551,553,555,558,563,565,568,571,572,574,577,578,582,587,590,593,595,598,603,605,607,609,612,617,620,621,622,623,624,626,634,637,642,647,648,652,654,657,658,661,663,665,668,675,680,681,682,684,686,696,697,698,700,702,704,705,706,712,714,715,716,719,722,724,726,728,729,731,732,736,739,744,746,748,751,752,754,755,759,763,767,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,18,20,22,23,27,30,32,34,37,41,44,45,47,49,54,55,60,61,69,70,72,74,75,78,80,85,86,93,94,99,100,102,104,107,112,116,117,120,123,125,133,135,136,138,141,144,145,148,152,155,156,157,159,160,166,170,172,177,181,183,184,185,187,189,196,197,198,201,202,206,208,211,213,218,220,223,224,228,229,230,235,237,246,247,253,255,257,259,261,262,263,265,268,269,272,273,278,280,282,283,289,291,293,296,301,310,314,315,318,320,323,324,326,330,334,337,339,342,343,345,348,351,355,357,358,360,362,366,371,372,374,379,382,388,391,392,394,396,400,408,411,413,415,419,421,423,424,426,427,428,431,433,434,436,440,442,445,446,447,451,452,456,458,459,460,462,463,465,468,470,471,473,475,479,482,483,485,486,489,491,493,496,498,501,503,505,507,509,510,516,519,525,526,531,532,535,539,542,543,544,546,551,554,555,557,558,559,562,567,569,571,572,575,577,578,580,585,586,589,590,592,593,594,596,600,601,602,603,606,609,610,612,615,620,621,623,625,627,629,632,633,634,637,638,639,644,647,651,653,656,657,658,660,662,663,665,668,669,674,677,678,680,681,690,691,694,697,701,707,708,710,716,717,721,722,724,725,728,730,731,736,737,743,749,752,757,758,763,764,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,18,20,22,23,27,30,32,34,37,41,44,45,47,49,54,55,60,61,69,70,72,74,75,78,80,85,86,93,94,99,100,102,104,107,112,116,117,120,123,125,133,135,136,138,141,144,145,148,152,155,156,157,159,160,166,170,172,177,181,183,184,185,187,189,196,197,198,201,202,206,208,211,213,218,220,223,224,228,229,230,235,237,246,247,253,255,257,259,261,262,263,265,268,269,272,273,278,280,282,283,289,291,293,296,301,310,314,315,318,320,323,324,326,330,334,337,339,342,343,345,348,351,355,357,358,360,362,366,371,372,374,379,382,388,391,392,394,396,400,408,411,413,415,419,421,423,424,426,427,428,431,433,434,436,440,442,445,446,447,451,452,456,458,459,460,462,463,465,468,470,471,473,475,479,482,483,485,486,489,491,493,496,498,501,503,505,507,509,510,516,519,525,526,531,532,535,539,542,543,544,546,551,554,555,557,558,559,562,567,569,571,572,575,577,578,580,585,586,589,590,592,593,594,596,600,601,602,603,606,609,610,612,615,620,621,623,625,627,629,632,633,634,637,638,639,644,647,651,653,656,657,658,660,662,663,665,668,669,674,677,678,680,681,690,691,694,697,701,707,708,710,716,717,721,722,724,725,728,730,731,736,737,743,749,752,757,758,763,764,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,18,20,22,23,27,30,32,34,37,41,44,45,47,49,54,55,60,61,69,70,72,74,75,78,80,85,86,93,94,99,100,102,104,107,112,116,117,120,123,125,133,135,136,138,141,144,145,148,152,155,156,157,159,160,166,170,172,177,181,183,184,185,187,189,196,197,198,201,202,206,208,211,213,218,220,223,224,228,229,230,235,237,246,247,253,255,257,259,261,262,263,265,268,269,272,273,278,280,282,283,289,291,293,296,301,310,314,315,318,320,323,324,326,330,334,337,339,342,343,345,348,351,355,357,358,360,362,366,371,372,374,379,382,388,391,392,394,396,400,408,411,413,415,419,421,423,424,426,427,428,431,433,434,436,440,442,445,446,447,451,452,456,458,459,460,462,463,465,468,470,471,473,475,479,482,483,485,486,489,491,493,496,498,501,503,505,507,509,510,516,519,525,526,531,532,535,539,542,543,544,546,551,554,555,557,558,559,562,567,569,571,572,575,577,578,580,585,586,589,590,592,593,594,596,600,601,602,603,606,609,610,612,615,620,621,623,625,627,629,632,633,634,637,638,639,644,647,651,653,656,657,658,660,662,663,665,668,669,674,677,678,680,681,690,691,694,697,701,707,708,710,716,717,721,722,724,725,728,730,731,736,737,743,749,752,757,758,763,764,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,14,20,21,27,28,29,32,36,38,39,42,46,49,52,53,54,58,60,64,68,72,78,80,81,83,84,86,87,90,95,96,99,101,102,107,109,124,125,128,133,134,136,137,138,141,142,147,151,152,155,156,158,159,160,162,163,166,167,168,169,173,175,179,182,183,187,188,192,194,196,203,204,206,208,219,221,222,224,225,227,231,234,239,240,244,247,250,251,257,259,260,262,264,267,269,272,273,277,279,282,285,287,288,289,291,297,299,300,306,307,308,316,319,321,322,326,329,331,341,344,346,347,350,352,353,355,357,359,361,364,366,368,370,371,380,381,383,387,389,390,392,393,409,411,412,417,418,419,425,427,429,431,432,437,441,442,443,445,448,450,456,459,460,470,471,475,477,478,479,481,484,491,496,497,499,500,501,508,511,513,514,516,521,527,530,531,535,538,542,549,554,555,557,558,559,561,563,567,569,576,579,580,581,582,586,587,589,596,600,602,604,607,609,612,613,615,616,619,620,622,624,626,628,631,632,633,637,641,646,648,650,653,657,662,667,669,671,673,675,677,679,681,684,690,691,694,696,698,702,704,708,711,713,714,717,718,723,727,729,733,734,738,742,743,744,745,746,748,751,752,754,755,757,759,760,762,764,766,768,770,771,773,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,14,20,21,27,28,29,32,36,38,39,42,46,49,52,53,54,58,60,64,68,72,78,80,81,83,84,86,87,90,95,96,99,101,102,107,109,124,125,128,133,134,136,137,138,141,142,147,151,152,155,156,158,159,160,162,163,166,167,168,169,173,175,179,182,183,187,188,192,194,196,203,204,206,208,219,221,222,224,225,227,231,234,239,240,244,247,250,251,257,259,260,262,264,267,269,272,273,277,279,282,285,287,288,289,291,297,299,300,306,307,308,316,319,321,322,326,329,331,341,344,346,347,350,352,353,355,357,359,361,364,366,368,370,371,380,381,383,387,389,390,392,393,409,411,412,417,418,419,425,427,429,431,432,437,441,442,443,445,448,450,456,459,460,470,471,475,477,478,479,481,484,491,496,497,499,500,501,508,511,513,514,516,521,527,530,531,535,538,542,549,554,555,557,558,559,561,563,567,569,576,579,580,581,582,586,587,589,596,600,602,604,607,609,612,613,615,616,619,620,622,624,626,628,631,632,633,637,641,646,648,650,653,657,662,667,669,671,673,675,677,679,681,684,690,691,694,696,698,702,704,708,711,713,714,717,718,723,727,729,733,734,738,742,743,744,745,746,748,751,752,754,755,757,759,760,762,764,766,768,770,771,773,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,14,20,21,27,28,29,32,36,38,39,42,46,49,52,53,54,58,60,64,68,72,78,80,81,83,84,86,87,90,95,96,99,101,102,107,109,124,125,128,133,134,136,137,138,141,142,147,151,152,155,156,158,159,160,162,163,166,167,168,169,173,175,179,182,183,187,188,192,194,196,203,204,206,208,219,221,222,224,225,227,231,234,239,240,244,247,250,251,257,259,260,262,264,267,269,272,273,277,279,282,285,287,288,289,291,297,299,300,306,307,308,316,319,321,322,326,329,331,341,344,346,347,350,352,353,355,357,359,361,364,366,368,370,371,380,381,383,387,389,390,392,393,409,411,412,417,418,419,425,427,429,431,432,437,441,442,443,445,448,450,456,459,460,470,471,475,477,478,479,481,484,491,496,497,499,500,501,508,511,513,514,516,521,527,530,531,535,538,542,549,554,555,557,558,559,561,563,567,569,576,579,580,581,582,586,587,589,596,600,602,604,607,609,612,613,615,616,619,620,622,624,626,628,631,632,633,637,641,646,648,650,653,657,662,667,669,671,673,675,677,679,681,684,690,691,694,696,698,702,704,708,711,713,714,717,718,723,727,729,733,734,738,742,743,744,745,746,748,751,752,754,755,757,759,760,762,764,766,768,770,771,773,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,10,15,16,19,20,22,24,27,30,35,36,38,40,42,44,46,47,49,50,52,56,61,64,68,70,74,76,80,86,89,90,106,107,108,109,111,112,116,118,119,125,130,131,136,139,141,143,144,145,149,150,153,155,157,160,164,165,170,172,173,175,177,178,181,182,185,187,191,192,197,201,208,210,211,213,216,218,219,223,229,231,233,235,236,239,241,243,247,249,252,255,257,260,262,263,265,267,269,277,279,280,285,287,288,292,294,297,298,300,302,304,305,307,310,313,315,317,318,319,322,324,325,329,333,336,347,349,350,352,353,356,359,363,372,373,377,381,384,389,392,396,398,399,400,401,403,407,408,410,414,419,421,423,427,429,434,435,436,438,440,444,449,450,452,453,456,459,460,461,464,468,471,474,478,480,486,489,491,493,494,496,498,499,501,502,503,505,507,509,512,514,516,528,532,534,537,543,544,547,548,550,551,556,560,563,565,571,573,574,581,586,589,592,593,594,595,599,601,604,607,611,612,616,617,619,621,624,627,629,633,636,639,642,647,651,653,656,657,661,663,664,667,670,671,676,678,684,689,690,694,699,704,708,711,712,713,718,720,721,725,727,729,733,735,736,738,741,742,746,747,748,751,755,757,761,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,10,15,16,19,20,22,24,27,30,35,36,38,40,42,44,46,47,49,50,52,56,61,64,68,70,74,76,80,86,89,90,106,107,108,109,111,112,116,118,119,125,130,131,136,139,141,143,144,145,149,150,153,155,157,160,164,165,170,172,173,175,177,178,181,182,185,187,191,192,197,201,208,210,211,213,216,218,219,223,229,231,233,235,236,239,241,243,247,249,252,255,257,260,262,263,265,267,269,277,279,280,285,287,288,292,294,297,298,300,302,304,305,307,310,313,315,317,318,319,322,324,325,329,333,336,347,349,350,352,353,356,359,363,372,373,377,381,384,389,392,396,398,399,400,401,403,407,408,410,414,419,421,423,427,429,434,435,436,438,440,444,449,450,452,453,456,459,460,461,464,468,471,474,478,480,486,489,491,493,494,496,498,499,501,502,503,505,507,509,512,514,516,528,532,534,537,543,544,547,548,550,551,556,560,563,565,571,573,574,581,586,589,592,593,594,595,599,601,604,607,611,612,616,617,619,621,624,627,629,633,636,639,642,647,651,653,656,657,661,663,664,667,670,671,676,678,684,689,690,694,699,704,708,711,712,713,718,720,721,725,727,729,733,735,736,738,741,742,746,747,748,751,755,757,761,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,10,15,16,19,20,22,24,27,30,35,36,38,40,42,44,46,47,49,50,52,56,61,64,68,70,74,76,80,86,89,90,106,107,108,109,111,112,116,118,119,125,130,131,136,139,141,143,144,145,149,150,153,155,157,160,164,165,170,172,173,175,177,178,181,182,185,187,191,192,197,201,208,210,211,213,216,218,219,223,229,231,233,235,236,239,241,243,247,249,252,255,257,260,262,263,265,267,269,277,279,280,285,287,288,292,294,297,298,300,302,304,305,307,310,313,315,317,318,319,322,324,325,329,333,336,347,349,350,352,353,356,359,363,372,373,377,381,384,389,392,396,398,399,400,401,403,407,408,410,414,419,421,423,427,429,434,435,436,438,440,444,449,450,452,453,456,459,460,461,464,468,471,474,478,480,486,489,491,493,494,496,498,499,501,502,503,505,507,509,512,514,516,528,532,534,537,543,544,547,548,550,551,556,560,563,565,571,573,574,581,586,589,592,593,594,595,599,601,604,607,611,612,616,617,619,621,624,627,629,633,636,639,642,647,651,653,656,657,661,663,664,667,670,671,676,678,684,689,690,694,699,704,708,711,712,713,718,720,721,725,727,729,733,735,736,738,741,742,746,747,748,751,755,757,761,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,9,11,14,16,17,24,27,28,31,32,34,39,41,45,48,51,55,57,58,63,64,66,69,71,73,79,81,86,91,92,93,96,104,107,109,111,113,114,115,116,120,122,124,126,133,135,141,144,145,146,147,149,151,152,156,158,160,163,167,168,170,172,174,176,179,180,182,186,187,188,189,191,192,194,196,197,198,200,202,203,205,207,209,212,217,218,221,224,226,233,236,237,239,240,242,243,245,248,249,250,252,257,262,263,265,267,269,276,277,279,283,289,290,292,298,299,301,303,305,310,313,315,316,323,325,329,340,341,345,349,350,352,353,354,355,357,358,363,365,367,370,371,372,374,375,378,381,384,387,388,393,394,396,398,399,400,403,412,419,421,423,425,427,428,430,431,435,437,439,442,445,447,452,454,465,471,473,476,478,480,483,484,485,486,497,500,502,503,508,510,516,518,520,521,523,525,530,531,532,534,537,542,545,548,549,554,556,558,560,564,570,571,572,576,583,585,586,590,591,600,601,603,605,606,610,614,616,617,622,624,629,631,635,638,640,643,646,648,650,652,658,660,662,667,668,672,673,676,677,682,683,685,688,693,695,700,701,703,707,708,709,711,712,718,719,721,722,724,725,727,729,730,734,737,740,745,748,749,754,757,758,759,761,762,765
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,9,11,14,16,17,24,27,28,31,32,34,39,41,45,48,51,55,57,58,63,64,66,69,71,73,79,81,86,91,92,93,96,104,107,109,111,113,114,115,116,120,122,124,126,133,135,141,144,145,146,147,149,151,152,156,158,160,163,167,168,170,172,174,176,179,180,182,186,187,188,189,191,192,194,196,197,198,200,202,203,205,207,209,212,217,218,221,224,226,233,236,237,239,240,242,243,245,248,249,250,252,257,262,263,265,267,269,276,277,279,283,289,290,292,298,299,301,303,305,310,313,315,316,323,325,329,340,341,345,349,350,352,353,354,355,357,358,363,365,367,370,371,372,374,375,378,381,384,387,388,393,394,396,398,399,400,403,412,419,421,423,425,427,428,430,431,435,437,439,442,445,447,452,454,465,471,473,476,478,480,483,484,485,486,497,500,502,503,508,510,516,518,520,521,523,525,530,531,532,534,537,542,545,548,549,554,556,558,560,564,570,571,572,576,583,585,586,590,591,600,601,603,605,606,610,614,616,617,622,624,629,631,635,638,640,643,646,648,650,652,658,660,662,667,668,672,673,676,677,682,683,685,688,693,695,700,701,703,707,708,709,711,712,718,719,721,722,724,725,727,729,730,734,737,740,745,748,749,754,757,758,759,761,762,765
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,9,11,14,16,17,24,27,28,31,32,34,39,41,45,48,51,55,57,58,63,64,66,69,71,73,79,81,86,91,92,93,96,104,107,109,111,113,114,115,116,120,122,124,126,133,135,141,144,145,146,147,149,151,152,156,158,160,163,167,168,170,172,174,176,179,180,182,186,187,188,189,191,192,194,196,197,198,200,202,203,205,207,209,212,217,218,221,224,226,233,236,237,239,240,242,243,245,248,249,250,252,257,262,263,265,267,269,276,277,279,283,289,290,292,298,299,301,303,305,310,313,315,316,323,325,329,340,341,345,349,350,352,353,354,355,357,358,363,365,367,370,371,372,374,375,378,381,384,387,388,393,394,396,398,399,400,403,412,419,421,423,425,427,428,430,431,435,437,439,442,445,447,452,454,465,471,473,476,478,480,483,484,485,486,497,500,502,503,508,510,516,518,520,521,523,525,530,531,532,534,537,542,545,548,549,554,556,558,560,564,570,571,572,576,583,585,586,590,591,600,601,603,605,606,610,614,616,617,622,624,629,631,635,638,640,643,646,648,650,652,658,660,662,667,668,672,673,676,677,682,683,685,688,693,695,700,701,703,707,708,709,711,712,718,719,721,722,724,725,727,729,730,734,737,740,745,748,749,754,757,758,759,761,762,765
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,14,19,22,23,24,26,27,30,34,35,37,39,40,44,45,47,50,54,61,63,65,67,71,72,74,75,79,81,84,88,92,94,98,108,111,118,120,123,124,127,130,132,133,135,137,143,144,147,151,153,157,158,159,160,162,164,167,169,176,178,179,185,190,193,197,198,200,202,203,207,211,214,217,219,221,224,226,227,236,238,239,243,244,245,246,251,261,266,268,270,272,273,275,277,278,279,281,282,285,287,289,292,294,295,296,298,301,302,303,305,311,315,318,321,322,324,325,327,328,330,331,332,334,337,341,347,348,352,355,361,362,365,366,368,370,372,373,379,383,384,387,389,394,396,397,405,406,408,409,410,411,412,415,418,421,422,426,431,432,434,435,437,438,440,442,444,449,451,453,454,456,457,461,462,466,470,471,472,477,478,480,483,484,485,491,494,496,497,499,500,502,503,507,508,511,513,514,516,520,522,524,525,527,529,531,533,535,538,542,543,546,549,550,552,559,564,566,569,570,573,581,586,587,588,590,592,596,598,602,604,605,606,610,614,616,617,623,625,629,632,633,636,639,640,643,644,646,651,652,653,655,658,669,670,673,674,675,676,683,687,688,690,691,695,697,703,706,707,713,718,719,721,726,730,731,735,739,742,746,750,751,752,758,765,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,14,19,22,23,24,26,27,30,34,35,37,39,40,44,45,47,50,54,61,63,65,67,71,72,74,75,79,81,84,88,92,94,98,108,111,118,120,123,124,127,130,132,133,135,137,143,144,147,151,153,157,158,159,160,162,164,167,169,176,178,179,185,190,193,197,198,200,202,203,207,211,214,217,219,221,224,226,227,236,238,239,243,244,245,246,251,261,266,268,270,272,273,275,277,278,279,281,282,285,287,289,292,294,295,296,298,301,302,303,305,311,315,318,321,322,324,325,327,328,330,331,332,334,337,341,347,348,352,355,361,362,365,366,368,370,372,373,379,383,384,387,389,394,396,397,405,406,408,409,410,411,412,415,418,421,422,426,431,432,434,435,437,438,440,442,444,449,451,453,454,456,457,461,462,466,470,471,472,477,478,480,483,484,485,491,494,496,497,499,500,502,503,507,508,511,513,514,516,520,522,524,525,527,529,531,533,535,538,542,543,546,549,550,552,559,564,566,569,570,573,581,586,587,588,590,592,596,598,602,604,605,606,610,614,616,617,623,625,629,632,633,636,639,640,643,644,646,651,652,653,655,658,669,670,673,674,675,676,683,687,688,690,691,695,697,703,706,707,713,718,719,721,726,730,731,735,739,742,746,750,751,752,758,765,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,14,19,22,23,24,26,27,30,34,35,37,39,40,44,45,47,50,54,61,63,65,67,71,72,74,75,79,81,84,88,92,94,98,108,111,118,120,123,124,127,130,132,133,135,137,143,144,147,151,153,157,158,159,160,162,164,167,169,176,178,179,185,190,193,197,198,200,202,203,207,211,214,217,219,221,224,226,227,236,238,239,243,244,245,246,251,261,266,268,270,272,273,275,277,278,279,281,282,285,287,289,292,294,295,296,298,301,302,303,305,311,315,318,321,322,324,325,327,328,330,331,332,334,337,341,347,348,352,355,361,362,365,366,368,370,372,373,379,383,384,387,389,394,396,397,405,406,408,409,410,411,412,415,418,421,422,426,431,432,434,435,437,438,440,442,444,449,451,453,454,456,457,461,462,466,470,471,472,477,478,480,483,484,485,491,494,496,497,499,500,502,503,507,508,511,513,514,516,520,522,524,525,527,529,531,533,535,538,542,543,546,549,550,552,559,564,566,569,570,573,581,586,587,588,590,592,596,598,602,604,605,606,610,614,616,617,623,625,629,632,633,636,639,640,643,644,646,651,652,653,655,658,669,670,673,674,675,676,683,687,688,690,691,695,697,703,706,707,713,718,719,721,726,730,731,735,739,742,746,750,751,752,758,765,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,8,9,10,12,17,19,22,23,25,26,27,29,33,34,35,37,38,41,46,47,49,51,56,59,60,63,66,69,74,76,78,79,80,84,85,91,93,95,98,100,103,106,107,110,112,114,117,118,120,121,123,125,127,130,134,135,138,140,141,142,145,147,151,152,155,158,159,164,167,169,173,175,178,179,182,184,187,191,193,194,195,200,202,205,208,210,212,214,215,221,223,225,228,231,233,236,238,243,244,251,256,258,260,264,269,270,273,278,280,286,288,290,293,299,304,306,307,309,312,315,323,325,327,329,330,332,333,334,337,339,343,345,349,350,351,352,355,361,365,377,378,380,382,383,385,388,390,392,393,394,399,403,405,406,409,411,415,421,425,429,430,438,441,442,443,445,447,448,449,452,454,458,463,464,470,473,474,479,483,484,489,491,492,493,494,497,498,499,503,508,510,513,515,519,521,522,525,526,528,531,532,536,537,540,541,543,545,547,548,549,550,554,558,561,562,567,571,578,579,580,582,586,587,590,592,596,598,599,601,604,605,608,611,614,615,616,622,624,626,627,629,631,634,636,638,643,648,651,652,655,656,662,664,666,668,671,676,677,681,683,686,688,689,693,699,701,702,705,707,709,710,712,713,716,728,729,730,733,736,737,740,742,744,745,747,749,752,753,758,759,761,763,768,769,771,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,8,9,10,12,17,19,22,23,25,26,27,29,33,34,35,37,38,41,46,47,49,51,56,59,60,63,66,69,74,76,78,79,80,84,85,91,93,95,98,100,103,106,107,110,112,114,117,118,120,121,123,125,127,130,134,135,138,140,141,142,145,147,151,152,155,158,159,164,167,169,173,175,178,179,182,184,187,191,193,194,195,200,202,205,208,210,212,214,215,221,223,225,228,231,233,236,238,243,244,251,256,258,260,264,269,270,273,278,280,286,288,290,293,299,304,306,307,309,312,315,323,325,327,329,330,332,333,334,337,339,343,345,349,350,351,352,355,361,365,377,378,380,382,383,385,388,390,392,393,394,399,403,405,406,409,411,415,421,425,429,430,438,441,442,443,445,447,448,449,452,454,458,463,464,470,473,474,479,483,484,489,491,492,493,494,497,498,499,503,508,510,513,515,519,521,522,525,526,528,531,532,536,537,540,541,543,545,547,548,549,550,554,558,561,562,567,571,578,579,580,582,586,587,590,592,596,598,599,601,604,605,608,611,614,615,616,622,624,626,627,629,631,634,636,638,643,648,651,652,655,656,662,664,666,668,671,676,677,681,683,686,688,689,693,699,701,702,705,707,709,710,712,713,716,728,729,730,733,736,737,740,742,744,745,747,749,752,753,758,759,761,763,768,769,771,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,8,9,10,12,17,19,22,23,25,26,27,29,33,34,35,37,38,41,46,47,49,51,56,59,60,63,66,69,74,76,78,79,80,84,85,91,93,95,98,100,103,106,107,110,112,114,117,118,120,121,123,125,127,130,134,135,138,140,141,142,145,147,151,152,155,158,159,164,167,169,173,175,178,179,182,184,187,191,193,194,195,200,202,205,208,210,212,214,215,221,223,225,228,231,233,236,238,243,244,251,256,258,260,264,269,270,273,278,280,286,288,290,293,299,304,306,307,309,312,315,323,325,327,329,330,332,333,334,337,339,343,345,349,350,351,352,355,361,365,377,378,380,382,383,385,388,390,392,393,394,399,403,405,406,409,411,415,421,425,429,430,438,441,442,443,445,447,448,449,452,454,458,463,464,470,473,474,479,483,484,489,491,492,493,494,497,498,499,503,508,510,513,515,519,521,522,525,526,528,531,532,536,537,540,541,543,545,547,548,549,550,554,558,561,562,567,571,578,579,580,582,586,587,590,592,596,598,599,601,604,605,608,611,614,615,616,622,624,626,627,629,631,634,636,638,643,648,651,652,655,656,662,664,666,668,671,676,677,681,683,686,688,689,693,699,701,702,705,707,709,710,712,713,716,728,729,730,733,736,737,740,742,744,745,747,749,752,753,758,759,761,763,768,769,771,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,13,15,20,21,24,26,30,33,34,37,39,51,53,55,56,58,60,66,70,72,73,75,77,79,82,83,87,89,96,98,100,102,103,104,106,109,110,115,118,119,121,124,126,128,131,133,134,137,138,140,144,145,150,152,155,158,161,162,164,165,167,168,170,172,173,174,177,178,180,182,187,189,191,192,193,205,211,215,216,218,220,224,227,228,229,231,234,236,237,238,239,247,249,253,255,258,264,265,268,269,270,272,275,280,283,284,286,288,289,291,292,293,295,296,298,299,302,305,307,311,315,316,317,319,321,323,324,326,328,329,332,333,337,340,341,349,350,353,365,371,372,375,377,381,383,386,388,390,393,396,397,399,402,406,408,410,411,412,414,416,417,418,421,425,427,428,431,432,435,437,440,441,443,449,455,459,468,471,475,477,479,481,485,486,489,490,492,498,502,505,507,512,518,519,520,522,527,529,531,533,535,538,542,544,551,553,557,558,560,561,566,567,570,571,572,573,574,577,579,581,586,587,589,591,594,595,597,599,601,604,606,607,610,611,614,618,623,624,632,637,640,641,644,645,649,653,658,660,661,672,674,677,681,683,689,690,693,695,696,701,704,706,710,711,715,717,720,721,723,724,725,726,729,731,734,736,738,741,745,748,749,750,754,755,756,758,759,763,764,767,768,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,13,15,20,21,24,26,30,33,34,37,39,51,53,55,56,58,60,66,70,72,73,75,77,79,82,83,87,89,96,98,100,102,103,104,106,109,110,115,118,119,121,124,126,128,131,133,134,137,138,140,144,145,150,152,155,158,161,162,164,165,167,168,170,172,173,174,177,178,180,182,187,189,191,192,193,205,211,215,216,218,220,224,227,228,229,231,234,236,237,238,239,247,249,253,255,258,264,265,268,269,270,272,275,280,283,284,286,288,289,291,292,293,295,296,298,299,302,305,307,311,315,316,317,319,321,323,324,326,328,329,332,333,337,340,341,349,350,353,365,371,372,375,377,381,383,386,388,390,393,396,397,399,402,406,408,410,411,412,414,416,417,418,421,425,427,428,431,432,435,437,440,441,443,449,455,459,468,471,475,477,479,481,485,486,489,490,492,498,502,505,507,512,518,519,520,522,527,529,531,533,535,538,542,544,551,553,557,558,560,561,566,567,570,571,572,573,574,577,579,581,586,587,589,591,594,595,597,599,601,604,606,607,610,611,614,618,623,624,632,637,640,641,644,645,649,653,658,660,661,672,674,677,681,683,689,690,693,695,696,701,704,706,710,711,715,717,720,721,723,724,725,726,729,731,734,736,738,741,745,748,749,750,754,755,756,758,759,763,764,767,768,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,13,15,20,21,24,26,30,33,34,37,39,51,53,55,56,58,60,66,70,72,73,75,77,79,82,83,87,89,96,98,100,102,103,104,106,109,110,115,118,119,121,124,126,128,131,133,134,137,138,140,144,145,150,152,155,158,161,162,164,165,167,168,170,172,173,174,177,178,180,182,187,189,191,192,193,205,211,215,216,218,220,224,227,228,229,231,234,236,237,238,239,247,249,253,255,258,264,265,268,269,270,272,275,280,283,284,286,288,289,291,292,293,295,296,298,299,302,305,307,311,315,316,317,319,321,323,324,326,328,329,332,333,337,340,341,349,350,353,365,371,372,375,377,381,383,386,388,390,393,396,397,399,402,406,408,410,411,412,414,416,417,418,421,425,427,428,431,432,435,437,440,441,443,449,455,459,468,471,475,477,479,481,485,486,489,490,492,498,502,505,507,512,518,519,520,522,527,529,531,533,535,538,542,544,551,553,557,558,560,561,566,567,570,571,572,573,574,577,579,581,586,587,589,591,594,595,597,599,601,604,606,607,610,611,614,618,623,624,632,637,640,641,644,645,649,653,658,660,661,672,674,677,681,683,689,690,693,695,696,701,704,706,710,711,715,717,720,721,723,724,725,726,729,731,734,736,738,741,745,748,749,750,754,755,756,758,759,763,764,767,768,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 8,10,14,19,22,24,26,28,32,34,35,37,40,41,43,44,48,49,50,53,56,58,59,62,65,66,72,75,76,78,79,81,82,85,90,92,94,96,102,106,109,111,114,115,119,126,130,131,133,137,138,140,142,147,148,149,155,158,163,166,169,171,173,181,182,183,184,188,190,191,194,195,196,197,205,221,224,227,230,234,235,236,242,245,248,250,251,256,259,264,271,281,282,283,285,286,288,289,293,296,297,302,309,311,316,318,320,321,323,324,326,327,328,330,332,335,336,341,343,347,353,355,356,357,360,361,366,367,369,373,374,376,378,380,383,384,386,390,396,397,401,407,412,414,415,416,418,429,434,438,443,447,450,453,456,457,460,462,466,467,469,471,475,476,478,480,483,487,496,497,500,504,505,506,509,511,514,515,517,518,520,525,527,530,533,534,535,540,541,542,546,553,555,558,563,565,570,571,572,574,579,580,581,583,584,586,588,589,591,593,594,595,597,598,599,601,603,606,612,614,616,619,622,624,625,628,630,631,632,634,635,637,639,642,644,646,651,652,655,657,658,661,663,664,666,668,670,673,678,681,686,692,693,700,701,702,705,706,707,714,715,716,717,721,723,725,726,735,736,739,742,744,749,754,755,757,759,764,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 8,10,14,19,22,24,26,28,32,34,35,37,40,41,43,44,48,49,50,53,56,58,59,62,65,66,72,75,76,78,79,81,82,85,90,92,94,96,102,106,109,111,114,115,119,126,130,131,133,137,138,140,142,147,148,149,155,158,163,166,169,171,173,181,182,183,184,188,190,191,194,195,196,197,205,221,224,227,230,234,235,236,242,245,248,250,251,256,259,264,271,281,282,283,285,286,288,289,293,296,297,302,309,311,316,318,320,321,323,324,326,327,328,330,332,335,336,341,343,347,353,355,356,357,360,361,366,367,369,373,374,376,378,380,383,384,386,390,396,397,401,407,412,414,415,416,418,429,434,438,443,447,450,453,456,457,460,462,466,467,469,471,475,476,478,480,483,487,496,497,500,504,505,506,509,511,514,515,517,518,520,525,527,530,533,534,535,540,541,542,546,553,555,558,563,565,570,571,572,574,579,580,581,583,584,586,588,589,591,593,594,595,597,598,599,601,603,606,612,614,616,619,622,624,625,628,630,631,632,634,635,637,639,642,644,646,651,652,655,657,658,661,663,664,666,668,670,673,678,681,686,692,693,700,701,702,705,706,707,714,715,716,717,721,723,725,726,735,736,739,742,744,749,754,755,757,759,764,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 8,10,14,19,22,24,26,28,32,34,35,37,40,41,43,44,48,49,50,53,56,58,59,62,65,66,72,75,76,78,79,81,82,85,90,92,94,96,102,106,109,111,114,115,119,126,130,131,133,137,138,140,142,147,148,149,155,158,163,166,169,171,173,181,182,183,184,188,190,191,194,195,196,197,205,221,224,227,230,234,235,236,242,245,248,250,251,256,259,264,271,281,282,283,285,286,288,289,293,296,297,302,309,311,316,318,320,321,323,324,326,327,328,330,332,335,336,341,343,347,353,355,356,357,360,361,366,367,369,373,374,376,378,380,383,384,386,390,396,397,401,407,412,414,415,416,418,429,434,438,443,447,450,453,456,457,460,462,466,467,469,471,475,476,478,480,483,487,496,497,500,504,505,506,509,511,514,515,517,518,520,525,527,530,533,534,535,540,541,542,546,553,555,558,563,565,570,571,572,574,579,580,581,583,584,586,588,589,591,593,594,595,597,598,599,601,603,606,612,614,616,619,622,624,625,628,630,631,632,634,635,637,639,642,644,646,651,652,655,657,658,661,663,664,666,668,670,673,678,681,686,692,693,700,701,702,705,706,707,714,715,716,717,721,723,725,726,735,736,739,742,744,749,754,755,757,759,764,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,15,16,27,33,37,38,39,41,46,50,52,55,58,60,63,65,68,70,71,76,84,86,87,88,91,93,94,97,98,100,103,106,107,108,109,112,114,116,120,122,123,127,134,135,139,141,143,144,146,150,151,152,155,156,158,159,162,163,164,166,168,176,177,178,180,182,188,192,194,200,202,203,204,208,210,213,214,217,221,225,226,228,231,233,238,240,241,243,247,248,253,256,257,260,265,267,270,272,275,279,281,283,286,287,289,290,293,302,303,305,308,311,312,317,321,323,324,325,330,337,343,344,346,348,355,361,363,367,369,377,378,381,382,384,385,387,394,395,397,398,400,405,407,408,409,411,413,414,416,417,419,422,430,434,435,439,441,445,446,449,452,454,456,458,459,461,463,465,469,470,474,475,477,479,486,491,494,496,500,502,503,504,510,512,514,516,517,520,522,523,525,527,528,530,531,533,534,535,536,540,541,542,543,546,548,551,555,557,560,562,563,566,567,575,576,579,581,582,583,586,594,600,603,611,613,614,618,628,629,631,632,635,636,641,643,645,646,650,651,653,656,659,660,662,664,670,682,683,687,690,693,694,695,696,699,701,702,705,706,708,709,711,713,718,720,721,725,727,728,730,731,733,734,738,739,742,744,748,751,753,759,760,762,763,765,766,770,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,15,16,27,33,37,38,39,41,46,50,52,55,58,60,63,65,68,70,71,76,84,86,87,88,91,93,94,97,98,100,103,106,107,108,109,112,114,116,120,122,123,127,134,135,139,141,143,144,146,150,151,152,155,156,158,159,162,163,164,166,168,176,177,178,180,182,188,192,194,200,202,203,204,208,210,213,214,217,221,225,226,228,231,233,238,240,241,243,247,248,253,256,257,260,265,267,270,272,275,279,281,283,286,287,289,290,293,302,303,305,308,311,312,317,321,323,324,325,330,337,343,344,346,348,355,361,363,367,369,377,378,381,382,384,385,387,394,395,397,398,400,405,407,408,409,411,413,414,416,417,419,422,430,434,435,439,441,445,446,449,452,454,456,458,459,461,463,465,469,470,474,475,477,479,486,491,494,496,500,502,503,504,510,512,514,516,517,520,522,523,525,527,528,530,531,533,534,535,536,540,541,542,543,546,548,551,555,557,560,562,563,566,567,575,576,579,581,582,583,586,594,600,603,611,613,614,618,628,629,631,632,635,636,641,643,645,646,650,651,653,656,659,660,662,664,670,682,683,687,690,693,694,695,696,699,701,702,705,706,708,709,711,713,718,720,721,725,727,728,730,731,733,734,738,739,742,744,748,751,753,759,760,762,763,765,766,770,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,15,16,27,33,37,38,39,41,46,50,52,55,58,60,63,65,68,70,71,76,84,86,87,88,91,93,94,97,98,100,103,106,107,108,109,112,114,116,120,122,123,127,134,135,139,141,143,144,146,150,151,152,155,156,158,159,162,163,164,166,168,176,177,178,180,182,188,192,194,200,202,203,204,208,210,213,214,217,221,225,226,228,231,233,238,240,241,243,247,248,253,256,257,260,265,267,270,272,275,279,281,283,286,287,289,290,293,302,303,305,308,311,312,317,321,323,324,325,330,337,343,344,346,348,355,361,363,367,369,377,378,381,382,384,385,387,394,395,397,398,400,405,407,408,409,411,413,414,416,417,419,422,430,434,435,439,441,445,446,449,452,454,456,458,459,461,463,465,469,470,474,475,477,479,486,491,494,496,500,502,503,504,510,512,514,516,517,520,522,523,525,527,528,530,531,533,534,535,536,540,541,542,543,546,548,551,555,557,560,562,563,566,567,575,576,579,581,582,583,586,594,600,603,611,613,614,618,628,629,631,632,635,636,641,643,645,646,650,651,653,656,659,660,662,664,670,682,683,687,690,693,694,695,696,699,701,702,705,706,708,709,711,713,718,720,721,725,727,728,730,731,733,734,738,739,742,744,748,751,753,759,760,762,763,765,766,770,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,10,11,13,14,19,36,44,48,50,51,53,57,58,59,63,65,68,73,74,77,79,80,81,85,86,87,90,92,98,104,105,106,107,110,112,117,118,120,121,131,132,135,142,148,150,153,155,162,165,167,169,171,177,178,180,182,183,189,190,192,194,196,197,198,206,208,210,211,214,219,221,223,225,228,229,231,236,237,241,242,243,245,246,248,254,255,260,261,262,263,271,273,278,279,280,282,285,287,288,291,292,296,301,302,304,305,308,310,313,316,318,319,321,322,326,327,329,333,335,337,341,344,348,349,356,357,360,363,364,366,374,376,378,380,381,384,387,390,392,396,398,400,402,405,407,410,412,413,416,418,427,429,431,433,435,440,444,448,453,455,456,458,460,461,466,468,469,474,478,479,480,485,490,492,494,498,501,507,509,511,512,514,515,518,521,524,525,527,529,532,535,537,539,541,543,545,547,549,556,557,560,563,566,568,571,574,576,577,580,582,585,586,588,593,597,598,600,604,605,611,615,618,621,631,632,634,636,641,642,647,649,650,651,652,653,655,656,658,659,662,663,672,675,678,679,681,683,689,690,692,694,695,697,698,700,703,705,706,707,712,713,717,718,723,725,726,728,730,732,734,735,736,737,738,740,741,744,747,750,751,756,759,765,766,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,10,11,13,14,19,36,44,48,50,51,53,57,58,59,63,65,68,73,74,77,79,80,81,85,86,87,90,92,98,104,105,106,107,110,112,117,118,120,121,131,132,135,142,148,150,153,155,162,165,167,169,171,177,178,180,182,183,189,190,192,194,196,197,198,206,208,210,211,214,219,221,223,225,228,229,231,236,237,241,242,243,245,246,248,254,255,260,261,262,263,271,273,278,279,280,282,285,287,288,291,292,296,301,302,304,305,308,310,313,316,318,319,321,322,326,327,329,333,335,337,341,344,348,349,356,357,360,363,364,366,374,376,378,380,381,384,387,390,392,396,398,400,402,405,407,410,412,413,416,418,427,429,431,433,435,440,444,448,453,455,456,458,460,461,466,468,469,474,478,479,480,485,490,492,494,498,501,507,509,511,512,514,515,518,521,524,525,527,529,532,535,537,539,541,543,545,547,549,556,557,560,563,566,568,571,574,576,577,580,582,585,586,588,593,597,598,600,604,605,611,615,618,621,631,632,634,636,641,642,647,649,650,651,652,653,655,656,658,659,662,663,672,675,678,679,681,683,689,690,692,694,695,697,698,700,703,705,706,707,712,713,717,718,723,725,726,728,730,732,734,735,736,737,738,740,741,744,747,750,751,756,759,765,766,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,10,11,13,14,19,36,44,48,50,51,53,57,58,59,63,65,68,73,74,77,79,80,81,85,86,87,90,92,98,104,105,106,107,110,112,117,118,120,121,131,132,135,142,148,150,153,155,162,165,167,169,171,177,178,180,182,183,189,190,192,194,196,197,198,206,208,210,211,214,219,221,223,225,228,229,231,236,237,241,242,243,245,246,248,254,255,260,261,262,263,271,273,278,279,280,282,285,287,288,291,292,296,301,302,304,305,308,310,313,316,318,319,321,322,326,327,329,333,335,337,341,344,348,349,356,357,360,363,364,366,374,376,378,380,381,384,387,390,392,396,398,400,402,405,407,410,412,413,416,418,427,429,431,433,435,440,444,448,453,455,456,458,460,461,466,468,469,474,478,479,480,485,490,492,494,498,501,507,509,511,512,514,515,518,521,524,525,527,529,532,535,537,539,541,543,545,547,549,556,557,560,563,566,568,571,574,576,577,580,582,585,586,588,593,597,598,600,604,605,611,615,618,621,631,632,634,636,641,642,647,649,650,651,652,653,655,656,658,659,662,663,672,675,678,679,681,683,689,690,692,694,695,697,698,700,703,705,706,707,712,713,717,718,723,725,726,728,730,732,734,735,736,737,738,740,741,744,747,750,751,756,759,765,766,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,10,14,15,17,19,20,24,26,30,31,35,37,41,44,47,48,49,51,55,56,58,60,62,63,66,67,69,70,75,77,79,80,82,85,86,89,90,91,93,94,95,98,100,104,105,108,112,113,115,116,118,119,121,124,127,132,133,135,136,138,139,140,141,143,149,152,154,158,161,162,168,171,173,175,178,181,182,184,186,187,188,189,191,193,198,200,201,203,208,212,215,216,218,220,222,224,228,229,235,237,238,243,246,247,249,251,255,257,263,270,272,274,275,279,285,287,288,296,297,299,303,306,307,308,310,313,316,317,321,323,324,326,328,331,332,337,341,342,347,350,351,352,354,355,359,362,369,372,374,376,377,380,387,389,390,393,395,396,401,406,407,411,413,419,421,423,426,430,431,439,455,456,458,461,464,466,469,473,474,478,482,486,487,488,490,496,497,500,501,504,505,512,515,518,520,521,536,537,539,540,542,543,546,547,548,550,551,553,555,560,561,562,564,567,569,573,575,577,578,579,582,583,584,587,590,591,595,598,600,601,603,606,608,609,611,612,613,614,620,625,626,627,630,632,634,636,637,640,642,647,651,652,654,665,669,671,672,678,680,684,691,692,694,696,698,700,706,709,711,714,715,721,724,726,728,729,731,740,743,744,751,753,757,761,762,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,10,14,15,17,19,20,24,26,30,31,35,37,41,44,47,48,49,51,55,56,58,60,62,63,66,67,69,70,75,77,79,80,82,85,86,89,90,91,93,94,95,98,100,104,105,108,112,113,115,116,118,119,121,124,127,132,133,135,136,138,139,140,141,143,149,152,154,158,161,162,168,171,173,175,178,181,182,184,186,187,188,189,191,193,198,200,201,203,208,212,215,216,218,220,222,224,228,229,235,237,238,243,246,247,249,251,255,257,263,270,272,274,275,279,285,287,288,296,297,299,303,306,307,308,310,313,316,317,321,323,324,326,328,331,332,337,341,342,347,350,351,352,354,355,359,362,369,372,374,376,377,380,387,389,390,393,395,396,401,406,407,411,413,419,421,423,426,430,431,439,455,456,458,461,464,466,469,473,474,478,482,486,487,488,490,496,497,500,501,504,505,512,515,518,520,521,536,537,539,540,542,543,546,547,548,550,551,553,555,560,561,562,564,567,569,573,575,577,578,579,582,583,584,587,590,591,595,598,600,601,603,606,608,609,611,612,613,614,620,625,626,627,630,632,634,636,637,640,642,647,651,652,654,665,669,671,672,678,680,684,691,692,694,696,698,700,706,709,711,714,715,721,724,726,728,729,731,740,743,744,751,753,757,761,762,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,10,14,15,17,19,20,24,26,30,31,35,37,41,44,47,48,49,51,55,56,58,60,62,63,66,67,69,70,75,77,79,80,82,85,86,89,90,91,93,94,95,98,100,104,105,108,112,113,115,116,118,119,121,124,127,132,133,135,136,138,139,140,141,143,149,152,154,158,161,162,168,171,173,175,178,181,182,184,186,187,188,189,191,193,198,200,201,203,208,212,215,216,218,220,222,224,228,229,235,237,238,243,246,247,249,251,255,257,263,270,272,274,275,279,285,287,288,296,297,299,303,306,307,308,310,313,316,317,321,323,324,326,328,331,332,337,341,342,347,350,351,352,354,355,359,362,369,372,374,376,377,380,387,389,390,393,395,396,401,406,407,411,413,419,421,423,426,430,431,439,455,456,458,461,464,466,469,473,474,478,482,486,487,488,490,496,497,500,501,504,505,512,515,518,520,521,536,537,539,540,542,543,546,547,548,550,551,553,555,560,561,562,564,567,569,573,575,577,578,579,582,583,584,587,590,591,595,598,600,601,603,606,608,609,611,612,613,614,620,625,626,627,630,632,634,636,637,640,642,647,651,652,654,665,669,671,672,678,680,684,691,692,694,696,698,700,706,709,711,714,715,721,724,726,728,729,731,740,743,744,751,753,757,761,762,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,15,18,22,25,27,28,29,30,34,38,42,43,46,48,50,55,56,62,64,66,69,71,79,82,85,86,93,98,101,103,104,105,107,109,111,112,118,121,123,126,127,131,132,134,141,143,144,145,148,150,152,159,160,162,164,166,169,170,172,173,177,178,180,181,182,184,185,187,190,195,197,198,201,202,203,208,214,215,217,228,229,231,233,234,236,238,242,243,245,246,253,254,255,257,258,259,263,265,269,271,275,276,278,282,284,285,286,291,293,294,300,302,303,305,308,309,313,315,317,319,320,321,323,326,330,334,335,338,342,343,345,349,358,362,363,365,367,369,371,372,374,377,387,388,402,407,413,415,416,418,423,425,432,435,436,441,442,445,446,447,449,451,454,458,459,461,463,467,468,470,473,475,476,479,482,485,487,489,490,491,493,495,499,502,503,504,508,509,510,512,514,516,519,522,525,530,531,534,538,539,541,543,549,553,554,556,557,560,562,564,565,567,570,572,573,576,580,583,585,587,589,594,595,597,602,603,611,612,613,616,617,620,622,624,625,627,634,639,641,643,646,651,652,653,654,656,659,660,667,669,671,672,673,675,682,687,689,690,693,695,698,699,701,714,718,719,720,721,722,725,727,728,732,735,737,742,746,751,754,755,758,759,761,770,771,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,15,18,22,25,27,28,29,30,34,38,42,43,46,48,50,55,56,62,64,66,69,71,79,82,85,86,93,98,101,103,104,105,107,109,111,112,118,121,123,126,127,131,132,134,141,143,144,145,148,150,152,159,160,162,164,166,169,170,172,173,177,178,180,181,182,184,185,187,190,195,197,198,201,202,203,208,214,215,217,228,229,231,233,234,236,238,242,243,245,246,253,254,255,257,258,259,263,265,269,271,275,276,278,282,284,285,286,291,293,294,300,302,303,305,308,309,313,315,317,319,320,321,323,326,330,334,335,338,342,343,345,349,358,362,363,365,367,369,371,372,374,377,387,388,402,407,413,415,416,418,423,425,432,435,436,441,442,445,446,447,449,451,454,458,459,461,463,467,468,470,473,475,476,479,482,485,487,489,490,491,493,495,499,502,503,504,508,509,510,512,514,516,519,522,525,530,531,534,538,539,541,543,549,553,554,556,557,560,562,564,565,567,570,572,573,576,580,583,585,587,589,594,595,597,602,603,611,612,613,616,617,620,622,624,625,627,634,639,641,643,646,651,652,653,654,656,659,660,667,669,671,672,673,675,682,687,689,690,693,695,698,699,701,714,718,719,720,721,722,725,727,728,732,735,737,742,746,751,754,755,758,759,761,770,771,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,15,18,22,25,27,28,29,30,34,38,42,43,46,48,50,55,56,62,64,66,69,71,79,82,85,86,93,98,101,103,104,105,107,109,111,112,118,121,123,126,127,131,132,134,141,143,144,145,148,150,152,159,160,162,164,166,169,170,172,173,177,178,180,181,182,184,185,187,190,195,197,198,201,202,203,208,214,215,217,228,229,231,233,234,236,238,242,243,245,246,253,254,255,257,258,259,263,265,269,271,275,276,278,282,284,285,286,291,293,294,300,302,303,305,308,309,313,315,317,319,320,321,323,326,330,334,335,338,342,343,345,349,358,362,363,365,367,369,371,372,374,377,387,388,402,407,413,415,416,418,423,425,432,435,436,441,442,445,446,447,449,451,454,458,459,461,463,467,468,470,473,475,476,479,482,485,487,489,490,491,493,495,499,502,503,504,508,509,510,512,514,516,519,522,525,530,531,534,538,539,541,543,549,553,554,556,557,560,562,564,565,567,570,572,573,576,580,583,585,587,589,594,595,597,602,603,611,612,613,616,617,620,622,624,625,627,634,639,641,643,646,651,652,653,654,656,659,660,667,669,671,672,673,675,682,687,689,690,693,695,698,699,701,714,718,719,720,721,722,725,727,728,732,735,737,742,746,751,754,755,758,759,761,770,771,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,9,12,16,20,24,26,27,28,35,36,37,39,44,45,47,51,53,54,59,60,61,62,64,65,68,70,74,77,78,81,83,86,87,89,91,97,99,101,102,103,106,111,112,115,116,117,123,127,129,130,133,135,137,139,142,143,149,156,159,160,162,164,166,170,172,174,179,180,181,183,184,185,189,190,194,195,199,200,206,208,209,211,215,217,220,222,228,230,231,235,237,238,239,243,248,251,259,262,267,272,274,276,278,280,282,284,287,288,289,290,293,294,298,300,302,303,306,312,313,316,318,322,324,325,328,333,342,343,346,348,350,353,354,355,360,361,362,366,367,370,375,378,384,386,389,390,392,394,400,401,402,403,410,417,419,420,427,431,433,440,441,444,446,448,451,452,455,456,464,466,467,470,472,473,474,475,480,483,485,486,488,490,491,492,502,503,507,512,514,516,517,520,522,524,526,529,533,536,537,539,541,545,547,549,551,556,560,563,571,572,573,576,578,583,586,590,592,595,608,612,616,618,622,628,633,634,635,637,644,648,654,658,659,662,663,667,670,671,672,675,679,682,683,687,691,694,696,701,702,704,706,710,714,719,720,723,725,727,730,731,738,740,742,743,744,746,747,749,750,754,756,758,761,762,764,765,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,9,12,16,20,24,26,27,28,35,36,37,39,44,45,47,51,53,54,59,60,61,62,64,65,68,70,74,77,78,81,83,86,87,89,91,97,99,101,102,103,106,111,112,115,116,117,123,127,129,130,133,135,137,139,142,143,149,156,159,160,162,164,166,170,172,174,179,180,181,183,184,185,189,190,194,195,199,200,206,208,209,211,215,217,220,222,228,230,231,235,237,238,239,243,248,251,259,262,267,272,274,276,278,280,282,284,287,288,289,290,293,294,298,300,302,303,306,312,313,316,318,322,324,325,328,333,342,343,346,348,350,353,354,355,360,361,362,366,367,370,375,378,384,386,389,390,392,394,400,401,402,403,410,417,419,420,427,431,433,440,441,444,446,448,451,452,455,456,464,466,467,470,472,473,474,475,480,483,485,486,488,490,491,492,502,503,507,512,514,516,517,520,522,524,526,529,533,536,537,539,541,545,547,549,551,556,560,563,571,572,573,576,578,583,586,590,592,595,608,612,616,618,622,628,633,634,635,637,644,648,654,658,659,662,663,667,670,671,672,675,679,682,683,687,691,694,696,701,702,704,706,710,714,719,720,723,725,727,730,731,738,740,742,743,744,746,747,749,750,754,756,758,761,762,764,765,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,9,12,16,20,24,26,27,28,35,36,37,39,44,45,47,51,53,54,59,60,61,62,64,65,68,70,74,77,78,81,83,86,87,89,91,97,99,101,102,103,106,111,112,115,116,117,123,127,129,130,133,135,137,139,142,143,149,156,159,160,162,164,166,170,172,174,179,180,181,183,184,185,189,190,194,195,199,200,206,208,209,211,215,217,220,222,228,230,231,235,237,238,239,243,248,251,259,262,267,272,274,276,278,280,282,284,287,288,289,290,293,294,298,300,302,303,306,312,313,316,318,322,324,325,328,333,342,343,346,348,350,353,354,355,360,361,362,366,367,370,375,378,384,386,389,390,392,394,400,401,402,403,410,417,419,420,427,431,433,440,441,444,446,448,451,452,455,456,464,466,467,470,472,473,474,475,480,483,485,486,488,490,491,492,502,503,507,512,514,516,517,520,522,524,526,529,533,536,537,539,541,545,547,549,551,556,560,563,571,572,573,576,578,583,586,590,592,595,608,612,616,618,622,628,633,634,635,637,644,648,654,658,659,662,663,667,670,671,672,675,679,682,683,687,691,694,696,701,702,704,706,710,714,719,720,723,725,727,730,731,738,740,742,743,744,746,747,749,750,754,756,758,761,762,764,765,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,10,20,22,23,24,25,27,28,35,37,38,40,42,44,46,49,51,53,55,58,59,60,64,74,79,80,84,88,91,92,97,100,101,102,103,104,119,121,124,125,127,129,137,138,142,144,145,146,148,149,152,162,165,167,170,175,177,181,189,190,193,195,196,197,198,199,201,208,209,213,214,217,218,220,221,223,224,230,231,235,237,242,243,244,246,248,251,253,258,265,266,269,270,277,278,280,285,286,289,292,293,297,301,304,308,312,313,314,316,322,326,328,329,332,336,341,343,345,346,349,351,352,354,356,358,361,366,367,369,372,373,375,378,381,383,387,390,393,395,399,400,401,403,407,410,412,413,415,420,424,426,427,428,430,432,433,435,439,440,442,445,447,451,452,454,457,458,460,465,470,477,479,483,487,489,493,497,506,507,509,514,517,523,526,531,533,537,538,541,543,545,548,553,555,558,562,565,570,574,577,583,585,587,590,591,593,594,599,601,602,605,606,609,615,618,621,622,624,625,626,630,632,634,635,638,639,640,644,646,648,651,653,657,665,668,669,671,672,673,674,679,680,682,685,689,693,697,698,700,703,706,707,709,712,713,716,723,727,728,731,732,735,736,738,740,741,743,747,754,755,762,764,767,768,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,10,20,22,23,24,25,27,28,35,37,38,40,42,44,46,49,51,53,55,58,59,60,64,74,79,80,84,88,91,92,97,100,101,102,103,104,119,121,124,125,127,129,137,138,142,144,145,146,148,149,152,162,165,167,170,175,177,181,189,190,193,195,196,197,198,199,201,208,209,213,214,217,218,220,221,223,224,230,231,235,237,242,243,244,246,248,251,253,258,265,266,269,270,277,278,280,285,286,289,292,293,297,301,304,308,312,313,314,316,322,326,328,329,332,336,341,343,345,346,349,351,352,354,356,358,361,366,367,369,372,373,375,378,381,383,387,390,393,395,399,400,401,403,407,410,412,413,415,420,424,426,427,428,430,432,433,435,439,440,442,445,447,451,452,454,457,458,460,465,470,477,479,483,487,489,493,497,506,507,509,514,517,523,526,531,533,537,538,541,543,545,548,553,555,558,562,565,570,574,577,583,585,587,590,591,593,594,599,601,602,605,606,609,615,618,621,622,624,625,626,630,632,634,635,638,639,640,644,646,648,651,653,657,665,668,669,671,672,673,674,679,680,682,685,689,693,697,698,700,703,706,707,709,712,713,716,723,727,728,731,732,735,736,738,740,741,743,747,754,755,762,764,767,768,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,10,20,22,23,24,25,27,28,35,37,38,40,42,44,46,49,51,53,55,58,59,60,64,74,79,80,84,88,91,92,97,100,101,102,103,104,119,121,124,125,127,129,137,138,142,144,145,146,148,149,152,162,165,167,170,175,177,181,189,190,193,195,196,197,198,199,201,208,209,213,214,217,218,220,221,223,224,230,231,235,237,242,243,244,246,248,251,253,258,265,266,269,270,277,278,280,285,286,289,292,293,297,301,304,308,312,313,314,316,322,326,328,329,332,336,341,343,345,346,349,351,352,354,356,358,361,366,367,369,372,373,375,378,381,383,387,390,393,395,399,400,401,403,407,410,412,413,415,420,424,426,427,428,430,432,433,435,439,440,442,445,447,451,452,454,457,458,460,465,470,477,479,483,487,489,493,497,506,507,509,514,517,523,526,531,533,537,538,541,543,545,548,553,555,558,562,565,570,574,577,583,585,587,590,591,593,594,599,601,602,605,606,609,615,618,621,622,624,625,626,630,632,634,635,638,639,640,644,646,648,651,653,657,665,668,669,671,672,673,674,679,680,682,685,689,693,697,698,700,703,706,707,709,712,713,716,723,727,728,731,732,735,736,738,740,741,743,747,754,755,762,764,767,768,771
## --> row.names NOT used
prediction <- predict(fit, testing)
accuracy(prediction, testing$CompressiveStrength)
##                 ME    RMSE      MAE       MPE     MAPE
## Test set 0.1468318 7.05385 5.292581 -5.538106 18.23349