Load the vowel.train and vowel.test data sets: library(ElemStatLearn) data(vowel.train) data(vowel.test) Set the variable y to be a factor variable in both the training and test set. Then set the seed to 33833. Fit (1) a random forest predictor relating the factor variable y to the remaining variables and(2) a boosted predictor using the “gbm” method. Fit these both with the train() command in the caret package. What are the accuracies for the two approaches on the test data set? What is the accuracy among the test set samples where the two methods agree?
set.seed(33833)
library(ElemStatLearn)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
data(vowel.train)
data(vowel.test)
vowel.train$y<- as.factor(vowel.train$y)
vowel.test$y<- as.factor(vowel.test$y)
modelFit1_rf<- train(y~.,data=vowel.train,method="rf")
## Loading required package: randomForest
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
modelFit1_gbm<- train(y~.,data=vowel.train,method="gbm")
## Loading required package: gbm
## Loading required package: survival
##
## Attaching package: 'survival'
##
## The following object is masked from 'package:caret':
##
## cluster
##
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.1
## Loading required package: plyr
##
## Attaching package: 'plyr'
##
## The following object is masked from 'package:ElemStatLearn':
##
## ozone
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3739
## 2 2.1607 nan 0.1000 0.2040
## 3 2.0267 nan 0.1000 0.1647
## 4 1.9098 nan 0.1000 0.1529
## 5 1.8106 nan 0.1000 0.0928
## 6 1.7318 nan 0.1000 0.0989
## 7 1.6524 nan 0.1000 0.0698
## 8 1.5940 nan 0.1000 0.0988
## 9 1.5270 nan 0.1000 0.0693
## 10 1.4741 nan 0.1000 0.0483
## 20 1.0845 nan 0.1000 0.0313
## 40 0.7106 nan 0.1000 0.0064
## 60 0.5128 nan 0.1000 0.0023
## 80 0.3728 nan 0.1000 0.0001
## 100 0.2866 nan 0.1000 -0.0068
## 120 0.2229 nan 0.1000 -0.0026
## 140 0.1727 nan 0.1000 -0.0025
## 150 0.1537 nan 0.1000 -0.0023
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5927
## 2 2.0197 nan 0.1000 0.3493
## 3 1.7939 nan 0.1000 0.2492
## 4 1.6270 nan 0.1000 0.1775
## 5 1.4854 nan 0.1000 0.1445
## 6 1.3750 nan 0.1000 0.1406
## 7 1.2735 nan 0.1000 0.1250
## 8 1.1765 nan 0.1000 0.1033
## 9 1.1006 nan 0.1000 0.0907
## 10 1.0292 nan 0.1000 0.0807
## 20 0.6030 nan 0.1000 0.0331
## 40 0.2597 nan 0.1000 0.0045
## 60 0.1317 nan 0.1000 0.0033
## 80 0.0698 nan 0.1000 0.0012
## 100 0.0390 nan 0.1000 -0.0004
## 120 0.0237 nan 0.1000 0.0001
## 140 0.0142 nan 0.1000 -0.0002
## 150 0.0111 nan 0.1000 -0.0007
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7232
## 2 1.9243 nan 0.1000 0.4178
## 3 1.6462 nan 0.1000 0.2340
## 4 1.4364 nan 0.1000 0.2421
## 5 1.2779 nan 0.1000 0.1865
## 6 1.1485 nan 0.1000 0.1462
## 7 1.0372 nan 0.1000 0.1224
## 8 0.9474 nan 0.1000 0.1166
## 9 0.8660 nan 0.1000 0.0902
## 10 0.7959 nan 0.1000 0.0785
## 20 0.3874 nan 0.1000 0.0249
## 40 0.1278 nan 0.1000 0.0042
## 60 0.0502 nan 0.1000 -0.0001
## 80 0.0219 nan 0.1000 0.0000
## 100 0.0104 nan 0.1000 0.0001
## 120 0.0051 nan 0.1000 -0.0000
## 140 0.0026 nan 0.1000 0.0000
## 150 0.0019 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3969
## 2 2.1541 nan 0.1000 0.2333
## 3 2.0108 nan 0.1000 0.1759
## 4 1.8998 nan 0.1000 0.1275
## 5 1.8100 nan 0.1000 0.1138
## 6 1.7233 nan 0.1000 0.1020
## 7 1.6602 nan 0.1000 0.0555
## 8 1.6112 nan 0.1000 0.0438
## 9 1.5648 nan 0.1000 0.0642
## 10 1.5135 nan 0.1000 0.0382
## 20 1.1310 nan 0.1000 0.0320
## 40 0.7288 nan 0.1000 0.0035
## 60 0.5194 nan 0.1000 -0.0005
## 80 0.3784 nan 0.1000 -0.0026
## 100 0.2892 nan 0.1000 -0.0002
## 120 0.2249 nan 0.1000 -0.0027
## 140 0.1722 nan 0.1000 -0.0026
## 150 0.1529 nan 0.1000 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5889
## 2 2.0138 nan 0.1000 0.3102
## 3 1.7982 nan 0.1000 0.2333
## 4 1.6478 nan 0.1000 0.2039
## 5 1.4989 nan 0.1000 0.1683
## 6 1.3794 nan 0.1000 0.1480
## 7 1.2791 nan 0.1000 0.1153
## 8 1.1934 nan 0.1000 0.0776
## 9 1.1223 nan 0.1000 0.0849
## 10 1.0523 nan 0.1000 0.0647
## 20 0.6083 nan 0.1000 0.0303
## 40 0.2514 nan 0.1000 0.0042
## 60 0.1256 nan 0.1000 0.0022
## 80 0.0695 nan 0.1000 -0.0001
## 100 0.0402 nan 0.1000 -0.0008
## 120 0.0237 nan 0.1000 0.0001
## 140 0.0144 nan 0.1000 0.0000
## 150 0.0112 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7206
## 2 1.9029 nan 0.1000 0.3802
## 3 1.6468 nan 0.1000 0.2733
## 4 1.4609 nan 0.1000 0.2244
## 5 1.3040 nan 0.1000 0.1611
## 6 1.1888 nan 0.1000 0.1410
## 7 1.0807 nan 0.1000 0.1198
## 8 0.9785 nan 0.1000 0.0944
## 9 0.9015 nan 0.1000 0.0833
## 10 0.8297 nan 0.1000 0.0796
## 20 0.3943 nan 0.1000 0.0230
## 40 0.1288 nan 0.1000 0.0051
## 60 0.0506 nan 0.1000 -0.0002
## 80 0.0221 nan 0.1000 -0.0004
## 100 0.0102 nan 0.1000 -0.0000
## 120 0.0048 nan 0.1000 -0.0001
## 140 0.0023 nan 0.1000 -0.0000
## 150 0.0017 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3602
## 2 2.1672 nan 0.1000 0.2212
## 3 2.0262 nan 0.1000 0.1410
## 4 1.9240 nan 0.1000 0.1687
## 5 1.8263 nan 0.1000 0.1134
## 6 1.7490 nan 0.1000 0.0966
## 7 1.6762 nan 0.1000 0.1016
## 8 1.6039 nan 0.1000 0.0865
## 9 1.5443 nan 0.1000 0.0774
## 10 1.4903 nan 0.1000 0.0562
## 20 1.1255 nan 0.1000 0.0294
## 40 0.7281 nan 0.1000 0.0057
## 60 0.5206 nan 0.1000 0.0018
## 80 0.3858 nan 0.1000 -0.0027
## 100 0.2958 nan 0.1000 -0.0007
## 120 0.2293 nan 0.1000 -0.0026
## 140 0.1822 nan 0.1000 -0.0014
## 150 0.1631 nan 0.1000 -0.0014
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5835
## 2 2.0313 nan 0.1000 0.3270
## 3 1.8056 nan 0.1000 0.2620
## 4 1.6349 nan 0.1000 0.1921
## 5 1.4996 nan 0.1000 0.1277
## 6 1.4038 nan 0.1000 0.1261
## 7 1.3092 nan 0.1000 0.1295
## 8 1.2158 nan 0.1000 0.0729
## 9 1.1415 nan 0.1000 0.0953
## 10 1.0667 nan 0.1000 0.0959
## 20 0.6213 nan 0.1000 0.0338
## 40 0.2808 nan 0.1000 0.0060
## 60 0.1403 nan 0.1000 0.0009
## 80 0.0778 nan 0.1000 0.0007
## 100 0.0450 nan 0.1000 -0.0003
## 120 0.0264 nan 0.1000 0.0000
## 140 0.0159 nan 0.1000 -0.0003
## 150 0.0125 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7340
## 2 1.9206 nan 0.1000 0.4202
## 3 1.6353 nan 0.1000 0.2670
## 4 1.4439 nan 0.1000 0.2444
## 5 1.2770 nan 0.1000 0.1677
## 6 1.1576 nan 0.1000 0.1288
## 7 1.0554 nan 0.1000 0.1281
## 8 0.9593 nan 0.1000 0.0784
## 9 0.8905 nan 0.1000 0.0807
## 10 0.8268 nan 0.1000 0.0864
## 20 0.4111 nan 0.1000 0.0236
## 40 0.1337 nan 0.1000 0.0048
## 60 0.0533 nan 0.1000 0.0003
## 80 0.0245 nan 0.1000 -0.0003
## 100 0.0116 nan 0.1000 -0.0001
## 120 0.0057 nan 0.1000 -0.0000
## 140 0.0027 nan 0.1000 -0.0000
## 150 0.0019 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3844
## 2 2.1562 nan 0.1000 0.2183
## 3 2.0139 nan 0.1000 0.1732
## 4 1.9030 nan 0.1000 0.1515
## 5 1.8018 nan 0.1000 0.1078
## 6 1.7184 nan 0.1000 0.1212
## 7 1.6382 nan 0.1000 0.0870
## 8 1.5718 nan 0.1000 0.0735
## 9 1.5147 nan 0.1000 0.0709
## 10 1.4601 nan 0.1000 0.0479
## 20 1.0743 nan 0.1000 0.0246
## 40 0.6892 nan 0.1000 0.0060
## 60 0.4793 nan 0.1000 0.0017
## 80 0.3460 nan 0.1000 -0.0030
## 100 0.2561 nan 0.1000 -0.0045
## 120 0.1985 nan 0.1000 -0.0000
## 140 0.1521 nan 0.1000 -0.0005
## 150 0.1347 nan 0.1000 -0.0030
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6093
## 2 1.9881 nan 0.1000 0.3165
## 3 1.7811 nan 0.1000 0.2876
## 4 1.5847 nan 0.1000 0.2314
## 5 1.4327 nan 0.1000 0.1573
## 6 1.3191 nan 0.1000 0.1319
## 7 1.2177 nan 0.1000 0.0977
## 8 1.1330 nan 0.1000 0.0812
## 9 1.0689 nan 0.1000 0.1101
## 10 0.9878 nan 0.1000 0.0803
## 20 0.5669 nan 0.1000 0.0183
## 40 0.2515 nan 0.1000 0.0005
## 60 0.1254 nan 0.1000 0.0015
## 80 0.0689 nan 0.1000 -0.0006
## 100 0.0373 nan 0.1000 0.0002
## 120 0.0215 nan 0.1000 -0.0002
## 140 0.0128 nan 0.1000 -0.0003
## 150 0.0099 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6591
## 2 1.9453 nan 0.1000 0.4278
## 3 1.6469 nan 0.1000 0.3422
## 4 1.4320 nan 0.1000 0.2295
## 5 1.2783 nan 0.1000 0.1950
## 6 1.1413 nan 0.1000 0.1415
## 7 1.0267 nan 0.1000 0.1276
## 8 0.9318 nan 0.1000 0.1099
## 9 0.8540 nan 0.1000 0.0890
## 10 0.7812 nan 0.1000 0.0783
## 20 0.3736 nan 0.1000 0.0194
## 40 0.1204 nan 0.1000 0.0022
## 60 0.0456 nan 0.1000 0.0001
## 80 0.0198 nan 0.1000 -0.0001
## 100 0.0088 nan 0.1000 0.0001
## 120 0.0039 nan 0.1000 0.0000
## 140 0.0018 nan 0.1000 -0.0000
## 150 0.0012 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.4247
## 2 2.1495 nan 0.1000 0.2451
## 3 1.9933 nan 0.1000 0.1927
## 4 1.8714 nan 0.1000 0.1517
## 5 1.7766 nan 0.1000 0.1150
## 6 1.6980 nan 0.1000 0.1002
## 7 1.6192 nan 0.1000 0.0351
## 8 1.5601 nan 0.1000 0.0995
## 9 1.4967 nan 0.1000 0.0716
## 10 1.4454 nan 0.1000 0.0610
## 20 1.0702 nan 0.1000 0.0231
## 40 0.7107 nan 0.1000 -0.0039
## 60 0.5120 nan 0.1000 0.0030
## 80 0.3782 nan 0.1000 -0.0030
## 100 0.2880 nan 0.1000 -0.0049
## 120 0.2257 nan 0.1000 0.0007
## 140 0.1728 nan 0.1000 -0.0021
## 150 0.1547 nan 0.1000 -0.0034
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6577
## 2 1.9968 nan 0.1000 0.2968
## 3 1.7872 nan 0.1000 0.2548
## 4 1.6122 nan 0.1000 0.1966
## 5 1.4695 nan 0.1000 0.1425
## 6 1.3611 nan 0.1000 0.1247
## 7 1.2630 nan 0.1000 0.0996
## 8 1.1811 nan 0.1000 0.1170
## 9 1.1023 nan 0.1000 0.0881
## 10 1.0236 nan 0.1000 0.0883
## 20 0.6017 nan 0.1000 0.0130
## 40 0.2719 nan 0.1000 0.0035
## 60 0.1373 nan 0.1000 0.0016
## 80 0.0760 nan 0.1000 0.0007
## 100 0.0433 nan 0.1000 -0.0004
## 120 0.0262 nan 0.1000 -0.0002
## 140 0.0159 nan 0.1000 -0.0001
## 150 0.0125 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6503
## 2 1.9152 nan 0.1000 0.3533
## 3 1.6478 nan 0.1000 0.2977
## 4 1.4413 nan 0.1000 0.2133
## 5 1.2859 nan 0.1000 0.1858
## 6 1.1639 nan 0.1000 0.1635
## 7 1.0485 nan 0.1000 0.1098
## 8 0.9595 nan 0.1000 0.0858
## 9 0.8847 nan 0.1000 0.0663
## 10 0.8248 nan 0.1000 0.0755
## 20 0.4035 nan 0.1000 0.0173
## 40 0.1280 nan 0.1000 0.0032
## 60 0.0505 nan 0.1000 0.0005
## 80 0.0227 nan 0.1000 -0.0004
## 100 0.0106 nan 0.1000 -0.0001
## 120 0.0050 nan 0.1000 0.0000
## 140 0.0025 nan 0.1000 -0.0001
## 150 0.0017 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3312
## 2 2.1873 nan 0.1000 0.2229
## 3 2.0489 nan 0.1000 0.1521
## 4 1.9466 nan 0.1000 0.1541
## 5 1.8487 nan 0.1000 0.1199
## 6 1.7646 nan 0.1000 0.0927
## 7 1.7011 nan 0.1000 0.0765
## 8 1.6427 nan 0.1000 0.0776
## 9 1.5818 nan 0.1000 0.0448
## 10 1.5281 nan 0.1000 0.0611
## 20 1.1331 nan 0.1000 0.0205
## 40 0.7367 nan 0.1000 0.0055
## 60 0.5265 nan 0.1000 -0.0016
## 80 0.3881 nan 0.1000 0.0004
## 100 0.2908 nan 0.1000 -0.0036
## 120 0.2226 nan 0.1000 -0.0026
## 140 0.1722 nan 0.1000 -0.0039
## 150 0.1510 nan 0.1000 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5191
## 2 2.0577 nan 0.1000 0.3688
## 3 1.8096 nan 0.1000 0.1967
## 4 1.6585 nan 0.1000 0.1838
## 5 1.5269 nan 0.1000 0.1762
## 6 1.3926 nan 0.1000 0.1302
## 7 1.2913 nan 0.1000 0.1146
## 8 1.2099 nan 0.1000 0.1277
## 9 1.1207 nan 0.1000 0.0841
## 10 1.0508 nan 0.1000 0.0750
## 20 0.6034 nan 0.1000 0.0210
## 40 0.2566 nan 0.1000 0.0011
## 60 0.1268 nan 0.1000 0.0010
## 80 0.0669 nan 0.1000 0.0000
## 100 0.0382 nan 0.1000 0.0006
## 120 0.0220 nan 0.1000 -0.0002
## 140 0.0131 nan 0.1000 0.0001
## 150 0.0101 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6022
## 2 1.9578 nan 0.1000 0.3472
## 3 1.7103 nan 0.1000 0.2892
## 4 1.5033 nan 0.1000 0.2039
## 5 1.3477 nan 0.1000 0.1812
## 6 1.2077 nan 0.1000 0.1749
## 7 1.0817 nan 0.1000 0.1511
## 8 0.9732 nan 0.1000 0.1091
## 9 0.8867 nan 0.1000 0.0916
## 10 0.8128 nan 0.1000 0.0802
## 20 0.3972 nan 0.1000 0.0191
## 40 0.1259 nan 0.1000 0.0016
## 60 0.0482 nan 0.1000 0.0001
## 80 0.0194 nan 0.1000 0.0004
## 100 0.0084 nan 0.1000 -0.0001
## 120 0.0038 nan 0.1000 -0.0001
## 140 0.0018 nan 0.1000 -0.0000
## 150 0.0013 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.4197
## 2 2.1546 nan 0.1000 0.2381
## 3 1.9915 nan 0.1000 0.1761
## 4 1.8678 nan 0.1000 0.1195
## 5 1.7833 nan 0.1000 0.1297
## 6 1.6990 nan 0.1000 0.1085
## 7 1.6278 nan 0.1000 0.0844
## 8 1.5647 nan 0.1000 0.0913
## 9 1.5016 nan 0.1000 0.0733
## 10 1.4450 nan 0.1000 0.0476
## 20 1.0586 nan 0.1000 0.0148
## 40 0.6888 nan 0.1000 0.0008
## 60 0.4894 nan 0.1000 0.0042
## 80 0.3643 nan 0.1000 0.0003
## 100 0.2796 nan 0.1000 -0.0036
## 120 0.2170 nan 0.1000 -0.0036
## 140 0.1711 nan 0.1000 -0.0036
## 150 0.1528 nan 0.1000 -0.0048
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6479
## 2 1.9888 nan 0.1000 0.2756
## 3 1.7760 nan 0.1000 0.2564
## 4 1.5951 nan 0.1000 0.2159
## 5 1.4422 nan 0.1000 0.1711
## 6 1.3302 nan 0.1000 0.1309
## 7 1.2395 nan 0.1000 0.1207
## 8 1.1515 nan 0.1000 0.0948
## 9 1.0741 nan 0.1000 0.0895
## 10 1.0074 nan 0.1000 0.0568
## 20 0.5882 nan 0.1000 0.0290
## 40 0.2540 nan 0.1000 0.0050
## 60 0.1311 nan 0.1000 0.0012
## 80 0.0706 nan 0.1000 -0.0011
## 100 0.0407 nan 0.1000 -0.0004
## 120 0.0236 nan 0.1000 -0.0005
## 140 0.0141 nan 0.1000 -0.0003
## 150 0.0110 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6959
## 2 1.9002 nan 0.1000 0.4420
## 3 1.6176 nan 0.1000 0.2761
## 4 1.4296 nan 0.1000 0.2440
## 5 1.2696 nan 0.1000 0.1905
## 6 1.1435 nan 0.1000 0.1498
## 7 1.0358 nan 0.1000 0.1426
## 8 0.9399 nan 0.1000 0.1063
## 9 0.8590 nan 0.1000 0.1154
## 10 0.7763 nan 0.1000 0.0924
## 20 0.3748 nan 0.1000 0.0221
## 40 0.1182 nan 0.1000 0.0060
## 60 0.0472 nan 0.1000 0.0003
## 80 0.0196 nan 0.1000 0.0000
## 100 0.0086 nan 0.1000 -0.0000
## 120 0.0041 nan 0.1000 -0.0000
## 140 0.0019 nan 0.1000 0.0000
## 150 0.0014 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3542
## 2 2.1556 nan 0.1000 0.2357
## 3 2.0101 nan 0.1000 0.1795
## 4 1.8956 nan 0.1000 0.1566
## 5 1.8017 nan 0.1000 0.1162
## 6 1.7220 nan 0.1000 0.1264
## 7 1.6418 nan 0.1000 0.0858
## 8 1.5764 nan 0.1000 0.0661
## 9 1.5166 nan 0.1000 0.0526
## 10 1.4683 nan 0.1000 0.0687
## 20 1.0884 nan 0.1000 0.0222
## 40 0.7078 nan 0.1000 0.0026
## 60 0.5012 nan 0.1000 0.0036
## 80 0.3667 nan 0.1000 -0.0042
## 100 0.2824 nan 0.1000 -0.0016
## 120 0.2224 nan 0.1000 -0.0028
## 140 0.1759 nan 0.1000 -0.0030
## 150 0.1583 nan 0.1000 -0.0022
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5307
## 2 2.0312 nan 0.1000 0.3870
## 3 1.7770 nan 0.1000 0.2418
## 4 1.6001 nan 0.1000 0.1583
## 5 1.4676 nan 0.1000 0.1419
## 6 1.3612 nan 0.1000 0.1429
## 7 1.2564 nan 0.1000 0.1002
## 8 1.1752 nan 0.1000 0.0818
## 9 1.1025 nan 0.1000 0.0988
## 10 1.0220 nan 0.1000 0.0754
## 20 0.5911 nan 0.1000 0.0299
## 40 0.2637 nan 0.1000 0.0009
## 60 0.1378 nan 0.1000 -0.0026
## 80 0.0783 nan 0.1000 0.0013
## 100 0.0442 nan 0.1000 0.0004
## 120 0.0257 nan 0.1000 -0.0005
## 140 0.0158 nan 0.1000 -0.0001
## 150 0.0122 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6836
## 2 1.8986 nan 0.1000 0.3669
## 3 1.6197 nan 0.1000 0.2891
## 4 1.4224 nan 0.1000 0.2236
## 5 1.2711 nan 0.1000 0.1785
## 6 1.1421 nan 0.1000 0.1324
## 7 1.0427 nan 0.1000 0.1250
## 8 0.9499 nan 0.1000 0.1070
## 9 0.8702 nan 0.1000 0.0538
## 10 0.8157 nan 0.1000 0.0694
## 20 0.4020 nan 0.1000 0.0211
## 40 0.1320 nan 0.1000 0.0020
## 60 0.0542 nan 0.1000 0.0005
## 80 0.0237 nan 0.1000 0.0003
## 100 0.0107 nan 0.1000 -0.0003
## 120 0.0052 nan 0.1000 -0.0000
## 140 0.0025 nan 0.1000 -0.0001
## 150 0.0018 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3362
## 2 2.1618 nan 0.1000 0.2401
## 3 2.0189 nan 0.1000 0.1712
## 4 1.9116 nan 0.1000 0.1041
## 5 1.8244 nan 0.1000 0.1115
## 6 1.7425 nan 0.1000 0.1000
## 7 1.6716 nan 0.1000 0.0736
## 8 1.6107 nan 0.1000 0.0749
## 9 1.5555 nan 0.1000 0.0405
## 10 1.5074 nan 0.1000 0.0574
## 20 1.1338 nan 0.1000 0.0181
## 40 0.7466 nan 0.1000 0.0065
## 60 0.5337 nan 0.1000 0.0011
## 80 0.4010 nan 0.1000 0.0006
## 100 0.3087 nan 0.1000 -0.0004
## 120 0.2410 nan 0.1000 -0.0076
## 140 0.1965 nan 0.1000 -0.0038
## 150 0.1783 nan 0.1000 -0.0026
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5152
## 2 2.0537 nan 0.1000 0.3282
## 3 1.8420 nan 0.1000 0.2612
## 4 1.6614 nan 0.1000 0.1786
## 5 1.5316 nan 0.1000 0.1624
## 6 1.4171 nan 0.1000 0.1502
## 7 1.3044 nan 0.1000 0.0925
## 8 1.2288 nan 0.1000 0.0677
## 9 1.1639 nan 0.1000 0.0668
## 10 1.0931 nan 0.1000 0.1067
## 20 0.6264 nan 0.1000 0.0176
## 40 0.2903 nan 0.1000 0.0010
## 60 0.1557 nan 0.1000 -0.0021
## 80 0.0876 nan 0.1000 -0.0009
## 100 0.0511 nan 0.1000 0.0000
## 120 0.0316 nan 0.1000 0.0000
## 140 0.0195 nan 0.1000 -0.0002
## 150 0.0153 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7368
## 2 1.8834 nan 0.1000 0.3668
## 3 1.6360 nan 0.1000 0.2601
## 4 1.4543 nan 0.1000 0.1854
## 5 1.3166 nan 0.1000 0.1772
## 6 1.1898 nan 0.1000 0.1416
## 7 1.0836 nan 0.1000 0.0918
## 8 0.9977 nan 0.1000 0.0954
## 9 0.9141 nan 0.1000 0.0936
## 10 0.8410 nan 0.1000 0.0643
## 20 0.4146 nan 0.1000 0.0264
## 40 0.1386 nan 0.1000 -0.0001
## 60 0.0577 nan 0.1000 0.0009
## 80 0.0256 nan 0.1000 -0.0004
## 100 0.0120 nan 0.1000 -0.0001
## 120 0.0057 nan 0.1000 -0.0001
## 140 0.0028 nan 0.1000 -0.0000
## 150 0.0020 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3684
## 2 2.1738 nan 0.1000 0.2138
## 3 2.0356 nan 0.1000 0.1813
## 4 1.9171 nan 0.1000 0.1386
## 5 1.8141 nan 0.1000 0.1250
## 6 1.7265 nan 0.1000 0.1111
## 7 1.6412 nan 0.1000 0.0772
## 8 1.5762 nan 0.1000 0.0760
## 9 1.5156 nan 0.1000 0.0549
## 10 1.4620 nan 0.1000 0.0422
## 20 1.0995 nan 0.1000 0.0233
## 40 0.7368 nan 0.1000 -0.0053
## 60 0.5276 nan 0.1000 0.0031
## 80 0.3903 nan 0.1000 -0.0026
## 100 0.2996 nan 0.1000 -0.0015
## 120 0.2333 nan 0.1000 -0.0033
## 140 0.1812 nan 0.1000 -0.0027
## 150 0.1617 nan 0.1000 -0.0032
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5401
## 2 2.0246 nan 0.1000 0.3037
## 3 1.8127 nan 0.1000 0.2792
## 4 1.6293 nan 0.1000 0.2435
## 5 1.4726 nan 0.1000 0.1601
## 6 1.3643 nan 0.1000 0.1339
## 7 1.2592 nan 0.1000 0.1163
## 8 1.1732 nan 0.1000 0.1040
## 9 1.0950 nan 0.1000 0.0888
## 10 1.0289 nan 0.1000 0.0847
## 20 0.6076 nan 0.1000 0.0225
## 40 0.2756 nan 0.1000 0.0042
## 60 0.1385 nan 0.1000 0.0013
## 80 0.0763 nan 0.1000 0.0003
## 100 0.0431 nan 0.1000 0.0002
## 120 0.0253 nan 0.1000 -0.0004
## 140 0.0156 nan 0.1000 -0.0002
## 150 0.0123 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7227
## 2 1.9329 nan 0.1000 0.4026
## 3 1.6508 nan 0.1000 0.2839
## 4 1.4552 nan 0.1000 0.2317
## 5 1.2984 nan 0.1000 0.1540
## 6 1.1725 nan 0.1000 0.1619
## 7 1.0617 nan 0.1000 0.1205
## 8 0.9685 nan 0.1000 0.1150
## 9 0.8837 nan 0.1000 0.0823
## 10 0.8150 nan 0.1000 0.0766
## 20 0.3979 nan 0.1000 0.0290
## 40 0.1278 nan 0.1000 0.0046
## 60 0.0507 nan 0.1000 0.0009
## 80 0.0227 nan 0.1000 0.0001
## 100 0.0110 nan 0.1000 0.0001
## 120 0.0052 nan 0.1000 -0.0001
## 140 0.0025 nan 0.1000 -0.0001
## 150 0.0018 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3709
## 2 2.1795 nan 0.1000 0.1917
## 3 2.0476 nan 0.1000 0.1575
## 4 1.9470 nan 0.1000 0.1279
## 5 1.8521 nan 0.1000 0.0792
## 6 1.7796 nan 0.1000 0.1320
## 7 1.6931 nan 0.1000 0.0884
## 8 1.6275 nan 0.1000 0.0861
## 9 1.5667 nan 0.1000 0.0564
## 10 1.5066 nan 0.1000 0.0739
## 20 1.1225 nan 0.1000 0.0237
## 40 0.7341 nan 0.1000 0.0082
## 60 0.5127 nan 0.1000 -0.0013
## 80 0.3783 nan 0.1000 -0.0042
## 100 0.2856 nan 0.1000 -0.0020
## 120 0.2206 nan 0.1000 -0.0017
## 140 0.1731 nan 0.1000 -0.0022
## 150 0.1527 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5975
## 2 2.0065 nan 0.1000 0.2918
## 3 1.7904 nan 0.1000 0.2994
## 4 1.6071 nan 0.1000 0.1844
## 5 1.4719 nan 0.1000 0.1771
## 6 1.3482 nan 0.1000 0.1191
## 7 1.2412 nan 0.1000 0.1204
## 8 1.1531 nan 0.1000 0.0966
## 9 1.0795 nan 0.1000 0.0807
## 10 1.0088 nan 0.1000 0.0623
## 20 0.5975 nan 0.1000 0.0337
## 40 0.2701 nan 0.1000 0.0040
## 60 0.1335 nan 0.1000 0.0000
## 80 0.0713 nan 0.1000 -0.0021
## 100 0.0424 nan 0.1000 0.0003
## 120 0.0260 nan 0.1000 -0.0001
## 140 0.0155 nan 0.1000 -0.0003
## 150 0.0120 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7405
## 2 1.9276 nan 0.1000 0.3921
## 3 1.6569 nan 0.1000 0.2764
## 4 1.4543 nan 0.1000 0.2146
## 5 1.2921 nan 0.1000 0.1869
## 6 1.1580 nan 0.1000 0.1517
## 7 1.0476 nan 0.1000 0.1118
## 8 0.9666 nan 0.1000 0.1173
## 9 0.8829 nan 0.1000 0.0881
## 10 0.8089 nan 0.1000 0.1039
## 20 0.4029 nan 0.1000 0.0316
## 40 0.1279 nan 0.1000 0.0010
## 60 0.0501 nan 0.1000 0.0005
## 80 0.0221 nan 0.1000 0.0004
## 100 0.0101 nan 0.1000 -0.0000
## 120 0.0048 nan 0.1000 -0.0001
## 140 0.0024 nan 0.1000 -0.0001
## 150 0.0017 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3753
## 2 2.1675 nan 0.1000 0.2647
## 3 2.0152 nan 0.1000 0.1951
## 4 1.8990 nan 0.1000 0.1215
## 5 1.8055 nan 0.1000 0.1071
## 6 1.7296 nan 0.1000 0.0798
## 7 1.6639 nan 0.1000 0.0650
## 8 1.6042 nan 0.1000 0.0842
## 9 1.5407 nan 0.1000 0.0538
## 10 1.4915 nan 0.1000 0.0624
## 20 1.1294 nan 0.1000 0.0226
## 40 0.7321 nan 0.1000 0.0027
## 60 0.5230 nan 0.1000 0.0011
## 80 0.3842 nan 0.1000 -0.0020
## 100 0.2967 nan 0.1000 -0.0016
## 120 0.2274 nan 0.1000 0.0004
## 140 0.1778 nan 0.1000 -0.0023
## 150 0.1578 nan 0.1000 -0.0018
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6200
## 2 2.0177 nan 0.1000 0.3361
## 3 1.7992 nan 0.1000 0.2506
## 4 1.6304 nan 0.1000 0.1834
## 5 1.4901 nan 0.1000 0.1392
## 6 1.3814 nan 0.1000 0.1547
## 7 1.2706 nan 0.1000 0.1011
## 8 1.1964 nan 0.1000 0.0984
## 9 1.1189 nan 0.1000 0.0746
## 10 1.0541 nan 0.1000 0.0744
## 20 0.6233 nan 0.1000 0.0259
## 40 0.2703 nan 0.1000 0.0019
## 60 0.1382 nan 0.1000 0.0000
## 80 0.0734 nan 0.1000 -0.0009
## 100 0.0441 nan 0.1000 -0.0009
## 120 0.0272 nan 0.1000 -0.0008
## 140 0.0170 nan 0.1000 -0.0002
## 150 0.0134 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7998
## 2 1.8861 nan 0.1000 0.4114
## 3 1.6137 nan 0.1000 0.2724
## 4 1.4212 nan 0.1000 0.1976
## 5 1.2670 nan 0.1000 0.1634
## 6 1.1503 nan 0.1000 0.1589
## 7 1.0360 nan 0.1000 0.1122
## 8 0.9481 nan 0.1000 0.1179
## 9 0.8584 nan 0.1000 0.0914
## 10 0.7878 nan 0.1000 0.0854
## 20 0.3803 nan 0.1000 0.0139
## 40 0.1228 nan 0.1000 0.0022
## 60 0.0503 nan 0.1000 0.0003
## 80 0.0226 nan 0.1000 -0.0001
## 100 0.0105 nan 0.1000 0.0000
## 120 0.0049 nan 0.1000 -0.0000
## 140 0.0025 nan 0.1000 -0.0001
## 150 0.0018 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.4039
## 2 2.1520 nan 0.1000 0.2479
## 3 2.0031 nan 0.1000 0.1893
## 4 1.8808 nan 0.1000 0.1470
## 5 1.7824 nan 0.1000 0.1220
## 6 1.7030 nan 0.1000 0.0985
## 7 1.6370 nan 0.1000 0.1108
## 8 1.5635 nan 0.1000 0.0645
## 9 1.5123 nan 0.1000 0.0860
## 10 1.4522 nan 0.1000 0.0708
## 20 1.0689 nan 0.1000 0.0183
## 40 0.6915 nan 0.1000 0.0089
## 60 0.4957 nan 0.1000 0.0006
## 80 0.3692 nan 0.1000 -0.0001
## 100 0.2815 nan 0.1000 0.0006
## 120 0.2160 nan 0.1000 -0.0024
## 140 0.1704 nan 0.1000 -0.0029
## 150 0.1539 nan 0.1000 -0.0029
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6399
## 2 1.9684 nan 0.1000 0.4051
## 3 1.7159 nan 0.1000 0.2620
## 4 1.5461 nan 0.1000 0.1768
## 5 1.4206 nan 0.1000 0.1520
## 6 1.3059 nan 0.1000 0.1473
## 7 1.1997 nan 0.1000 0.0977
## 8 1.1265 nan 0.1000 0.1177
## 9 1.0484 nan 0.1000 0.0622
## 10 0.9891 nan 0.1000 0.0591
## 20 0.5844 nan 0.1000 0.0220
## 40 0.2686 nan 0.1000 0.0086
## 60 0.1392 nan 0.1000 0.0009
## 80 0.0780 nan 0.1000 -0.0006
## 100 0.0448 nan 0.1000 -0.0002
## 120 0.0269 nan 0.1000 0.0001
## 140 0.0164 nan 0.1000 0.0002
## 150 0.0126 nan 0.1000 -0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.8019
## 2 1.8638 nan 0.1000 0.3561
## 3 1.6091 nan 0.1000 0.3054
## 4 1.4073 nan 0.1000 0.1934
## 5 1.2540 nan 0.1000 0.1485
## 6 1.1340 nan 0.1000 0.1595
## 7 1.0290 nan 0.1000 0.1509
## 8 0.9264 nan 0.1000 0.0898
## 9 0.8554 nan 0.1000 0.0865
## 10 0.7853 nan 0.1000 0.0718
## 20 0.3909 nan 0.1000 0.0266
## 40 0.1305 nan 0.1000 0.0018
## 60 0.0506 nan 0.1000 0.0008
## 80 0.0220 nan 0.1000 0.0004
## 100 0.0103 nan 0.1000 -0.0002
## 120 0.0050 nan 0.1000 0.0001
## 140 0.0026 nan 0.1000 -0.0000
## 150 0.0018 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.4254
## 2 2.1537 nan 0.1000 0.2089
## 3 2.0092 nan 0.1000 0.1698
## 4 1.8976 nan 0.1000 0.1052
## 5 1.8122 nan 0.1000 0.1460
## 6 1.7273 nan 0.1000 0.0953
## 7 1.6518 nan 0.1000 0.0763
## 8 1.5906 nan 0.1000 0.0741
## 9 1.5379 nan 0.1000 0.0535
## 10 1.4860 nan 0.1000 0.0567
## 20 1.1189 nan 0.1000 0.0190
## 40 0.7300 nan 0.1000 0.0028
## 60 0.5084 nan 0.1000 0.0056
## 80 0.3772 nan 0.1000 0.0022
## 100 0.2896 nan 0.1000 -0.0029
## 120 0.2224 nan 0.1000 -0.0030
## 140 0.1751 nan 0.1000 -0.0017
## 150 0.1550 nan 0.1000 -0.0035
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5309
## 2 2.0430 nan 0.1000 0.3607
## 3 1.7749 nan 0.1000 0.2826
## 4 1.6045 nan 0.1000 0.2024
## 5 1.4556 nan 0.1000 0.1523
## 6 1.3469 nan 0.1000 0.1516
## 7 1.2433 nan 0.1000 0.0903
## 8 1.1669 nan 0.1000 0.0747
## 9 1.1021 nan 0.1000 0.0930
## 10 1.0248 nan 0.1000 0.0629
## 20 0.5936 nan 0.1000 0.0232
## 40 0.2600 nan 0.1000 0.0006
## 60 0.1325 nan 0.1000 0.0025
## 80 0.0727 nan 0.1000 -0.0012
## 100 0.0425 nan 0.1000 -0.0001
## 120 0.0249 nan 0.1000 -0.0004
## 140 0.0144 nan 0.1000 -0.0003
## 150 0.0113 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7058
## 2 1.8981 nan 0.1000 0.4159
## 3 1.6227 nan 0.1000 0.2624
## 4 1.4325 nan 0.1000 0.2207
## 5 1.2767 nan 0.1000 0.1757
## 6 1.1459 nan 0.1000 0.1388
## 7 1.0407 nan 0.1000 0.1421
## 8 0.9422 nan 0.1000 0.0893
## 9 0.8690 nan 0.1000 0.0879
## 10 0.7986 nan 0.1000 0.0906
## 20 0.3775 nan 0.1000 0.0219
## 40 0.1226 nan 0.1000 0.0033
## 60 0.0480 nan 0.1000 0.0003
## 80 0.0210 nan 0.1000 0.0002
## 100 0.0096 nan 0.1000 -0.0001
## 120 0.0044 nan 0.1000 -0.0001
## 140 0.0021 nan 0.1000 -0.0001
## 150 0.0015 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3533
## 2 2.1823 nan 0.1000 0.2163
## 3 2.0395 nan 0.1000 0.1444
## 4 1.9232 nan 0.1000 0.1334
## 5 1.8232 nan 0.1000 0.0933
## 6 1.7499 nan 0.1000 0.0958
## 7 1.6761 nan 0.1000 0.0771
## 8 1.6137 nan 0.1000 0.0885
## 9 1.5511 nan 0.1000 0.0703
## 10 1.4913 nan 0.1000 0.0701
## 20 1.1133 nan 0.1000 0.0147
## 40 0.7182 nan 0.1000 0.0097
## 60 0.5170 nan 0.1000 0.0023
## 80 0.3820 nan 0.1000 -0.0009
## 100 0.2956 nan 0.1000 -0.0005
## 120 0.2296 nan 0.1000 -0.0023
## 140 0.1783 nan 0.1000 -0.0021
## 150 0.1597 nan 0.1000 -0.0026
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5687
## 2 2.0151 nan 0.1000 0.3663
## 3 1.7806 nan 0.1000 0.2017
## 4 1.6164 nan 0.1000 0.1989
## 5 1.4807 nan 0.1000 0.1819
## 6 1.3581 nan 0.1000 0.1218
## 7 1.2641 nan 0.1000 0.0989
## 8 1.1832 nan 0.1000 0.0962
## 9 1.1011 nan 0.1000 0.0767
## 10 1.0336 nan 0.1000 0.0573
## 20 0.6139 nan 0.1000 0.0261
## 40 0.2660 nan 0.1000 0.0071
## 60 0.1390 nan 0.1000 0.0001
## 80 0.0761 nan 0.1000 -0.0010
## 100 0.0438 nan 0.1000 0.0002
## 120 0.0256 nan 0.1000 -0.0001
## 140 0.0150 nan 0.1000 -0.0000
## 150 0.0117 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7329
## 2 1.9173 nan 0.1000 0.3955
## 3 1.6570 nan 0.1000 0.2910
## 4 1.4575 nan 0.1000 0.2052
## 5 1.3061 nan 0.1000 0.1395
## 6 1.1975 nan 0.1000 0.1502
## 7 1.0881 nan 0.1000 0.1343
## 8 0.9944 nan 0.1000 0.1010
## 9 0.9141 nan 0.1000 0.0756
## 10 0.8452 nan 0.1000 0.0822
## 20 0.4096 nan 0.1000 0.0186
## 40 0.1345 nan 0.1000 0.0050
## 60 0.0532 nan 0.1000 0.0006
## 80 0.0227 nan 0.1000 0.0006
## 100 0.0101 nan 0.1000 0.0000
## 120 0.0047 nan 0.1000 -0.0001
## 140 0.0023 nan 0.1000 -0.0001
## 150 0.0016 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3454
## 2 2.1673 nan 0.1000 0.2129
## 3 2.0150 nan 0.1000 0.1721
## 4 1.8991 nan 0.1000 0.1328
## 5 1.8067 nan 0.1000 0.1315
## 6 1.7171 nan 0.1000 0.0908
## 7 1.6439 nan 0.1000 0.0853
## 8 1.5816 nan 0.1000 0.0799
## 9 1.5234 nan 0.1000 0.0393
## 10 1.4748 nan 0.1000 0.0536
## 20 1.1118 nan 0.1000 0.0168
## 40 0.7401 nan 0.1000 -0.0000
## 60 0.5320 nan 0.1000 -0.0000
## 80 0.3996 nan 0.1000 -0.0019
## 100 0.3090 nan 0.1000 -0.0037
## 120 0.2433 nan 0.1000 -0.0026
## 140 0.1943 nan 0.1000 -0.0026
## 150 0.1738 nan 0.1000 0.0010
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5285
## 2 2.0308 nan 0.1000 0.3550
## 3 1.8024 nan 0.1000 0.2664
## 4 1.6247 nan 0.1000 0.1542
## 5 1.4967 nan 0.1000 0.1653
## 6 1.3817 nan 0.1000 0.1206
## 7 1.2789 nan 0.1000 0.1105
## 8 1.1996 nan 0.1000 0.0862
## 9 1.1217 nan 0.1000 0.0850
## 10 1.0520 nan 0.1000 0.0573
## 20 0.6198 nan 0.1000 0.0247
## 40 0.2690 nan 0.1000 0.0006
## 60 0.1460 nan 0.1000 0.0014
## 80 0.0809 nan 0.1000 -0.0004
## 100 0.0473 nan 0.1000 -0.0003
## 120 0.0280 nan 0.1000 -0.0004
## 140 0.0168 nan 0.1000 -0.0003
## 150 0.0133 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6632
## 2 1.9357 nan 0.1000 0.3809
## 3 1.6542 nan 0.1000 0.2375
## 4 1.4747 nan 0.1000 0.2123
## 5 1.3188 nan 0.1000 0.1797
## 6 1.1920 nan 0.1000 0.1425
## 7 1.0858 nan 0.1000 0.1143
## 8 0.9871 nan 0.1000 0.1018
## 9 0.9083 nan 0.1000 0.0846
## 10 0.8407 nan 0.1000 0.0871
## 20 0.4121 nan 0.1000 0.0288
## 40 0.1368 nan 0.1000 0.0018
## 60 0.0568 nan 0.1000 0.0017
## 80 0.0245 nan 0.1000 0.0003
## 100 0.0115 nan 0.1000 -0.0002
## 120 0.0056 nan 0.1000 -0.0001
## 140 0.0027 nan 0.1000 -0.0001
## 150 0.0019 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3593
## 2 2.1723 nan 0.1000 0.2073
## 3 2.0359 nan 0.1000 0.1763
## 4 1.9220 nan 0.1000 0.1289
## 5 1.8298 nan 0.1000 0.1184
## 6 1.7496 nan 0.1000 0.0863
## 7 1.6869 nan 0.1000 0.0774
## 8 1.6241 nan 0.1000 0.0366
## 9 1.5738 nan 0.1000 0.0731
## 10 1.5167 nan 0.1000 0.0435
## 20 1.1618 nan 0.1000 0.0284
## 40 0.7693 nan 0.1000 0.0130
## 60 0.5544 nan 0.1000 0.0052
## 80 0.4152 nan 0.1000 -0.0030
## 100 0.3192 nan 0.1000 -0.0035
## 120 0.2485 nan 0.1000 -0.0024
## 140 0.1985 nan 0.1000 -0.0022
## 150 0.1778 nan 0.1000 -0.0026
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5073
## 2 2.0273 nan 0.1000 0.3618
## 3 1.8073 nan 0.1000 0.2470
## 4 1.6488 nan 0.1000 0.1580
## 5 1.5352 nan 0.1000 0.1663
## 6 1.4156 nan 0.1000 0.1333
## 7 1.3160 nan 0.1000 0.0927
## 8 1.2399 nan 0.1000 0.0883
## 9 1.1702 nan 0.1000 0.0826
## 10 1.0988 nan 0.1000 0.0718
## 20 0.6371 nan 0.1000 0.0196
## 40 0.2926 nan 0.1000 0.0014
## 60 0.1525 nan 0.1000 0.0003
## 80 0.0855 nan 0.1000 -0.0008
## 100 0.0500 nan 0.1000 0.0001
## 120 0.0296 nan 0.1000 -0.0004
## 140 0.0185 nan 0.1000 -0.0004
## 150 0.0146 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7513
## 2 1.9210 nan 0.1000 0.3368
## 3 1.6773 nan 0.1000 0.2701
## 4 1.4737 nan 0.1000 0.2448
## 5 1.2982 nan 0.1000 0.1817
## 6 1.1681 nan 0.1000 0.1337
## 7 1.0650 nan 0.1000 0.1298
## 8 0.9722 nan 0.1000 0.1135
## 9 0.8935 nan 0.1000 0.0702
## 10 0.8241 nan 0.1000 0.0562
## 20 0.4143 nan 0.1000 0.0276
## 40 0.1344 nan 0.1000 0.0014
## 60 0.0545 nan 0.1000 0.0002
## 80 0.0237 nan 0.1000 0.0000
## 100 0.0112 nan 0.1000 -0.0001
## 120 0.0057 nan 0.1000 -0.0000
## 140 0.0029 nan 0.1000 -0.0000
## 150 0.0021 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3879
## 2 2.1698 nan 0.1000 0.2324
## 3 2.0174 nan 0.1000 0.1808
## 4 1.8947 nan 0.1000 0.1405
## 5 1.7957 nan 0.1000 0.1180
## 6 1.7147 nan 0.1000 0.0641
## 7 1.6562 nan 0.1000 0.0939
## 8 1.5881 nan 0.1000 0.0930
## 9 1.5118 nan 0.1000 0.0812
## 10 1.4548 nan 0.1000 0.0659
## 20 1.0931 nan 0.1000 0.0272
## 40 0.7061 nan 0.1000 0.0115
## 60 0.5068 nan 0.1000 0.0005
## 80 0.3696 nan 0.1000 -0.0031
## 100 0.2796 nan 0.1000 -0.0017
## 120 0.2178 nan 0.1000 -0.0036
## 140 0.1693 nan 0.1000 -0.0022
## 150 0.1490 nan 0.1000 -0.0028
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6830
## 2 1.9785 nan 0.1000 0.3640
## 3 1.7380 nan 0.1000 0.2894
## 4 1.5398 nan 0.1000 0.1612
## 5 1.4208 nan 0.1000 0.1501
## 6 1.3098 nan 0.1000 0.1387
## 7 1.2126 nan 0.1000 0.1019
## 8 1.1373 nan 0.1000 0.0810
## 9 1.0693 nan 0.1000 0.0703
## 10 1.0125 nan 0.1000 0.0554
## 20 0.5877 nan 0.1000 0.0249
## 40 0.2525 nan 0.1000 0.0044
## 60 0.1293 nan 0.1000 0.0008
## 80 0.0686 nan 0.1000 0.0005
## 100 0.0392 nan 0.1000 0.0002
## 120 0.0223 nan 0.1000 -0.0004
## 140 0.0133 nan 0.1000 -0.0002
## 150 0.0104 nan 0.1000 0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.8022
## 2 1.8824 nan 0.1000 0.4135
## 3 1.6078 nan 0.1000 0.3172
## 4 1.4069 nan 0.1000 0.2005
## 5 1.2622 nan 0.1000 0.1823
## 6 1.1385 nan 0.1000 0.1415
## 7 1.0376 nan 0.1000 0.1123
## 8 0.9494 nan 0.1000 0.1198
## 9 0.8673 nan 0.1000 0.0892
## 10 0.7927 nan 0.1000 0.0645
## 20 0.3914 nan 0.1000 0.0061
## 40 0.1273 nan 0.1000 0.0029
## 60 0.0494 nan 0.1000 0.0000
## 80 0.0207 nan 0.1000 0.0008
## 100 0.0089 nan 0.1000 0.0002
## 120 0.0040 nan 0.1000 -0.0001
## 140 0.0020 nan 0.1000 -0.0000
## 150 0.0014 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3158
## 2 2.1831 nan 0.1000 0.2467
## 3 2.0291 nan 0.1000 0.1516
## 4 1.9126 nan 0.1000 0.1409
## 5 1.8193 nan 0.1000 0.1058
## 6 1.7426 nan 0.1000 0.0881
## 7 1.6743 nan 0.1000 0.1130
## 8 1.6062 nan 0.1000 0.0672
## 9 1.5508 nan 0.1000 0.0662
## 10 1.4966 nan 0.1000 0.0668
## 20 1.1246 nan 0.1000 0.0101
## 40 0.7356 nan 0.1000 0.0095
## 60 0.5290 nan 0.1000 0.0022
## 80 0.3942 nan 0.1000 -0.0008
## 100 0.3022 nan 0.1000 -0.0064
## 120 0.2354 nan 0.1000 -0.0048
## 140 0.1888 nan 0.1000 -0.0020
## 150 0.1676 nan 0.1000 -0.0021
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6264
## 2 2.0157 nan 0.1000 0.3144
## 3 1.7938 nan 0.1000 0.2713
## 4 1.6218 nan 0.1000 0.1673
## 5 1.4992 nan 0.1000 0.1539
## 6 1.3851 nan 0.1000 0.1021
## 7 1.2921 nan 0.1000 0.1203
## 8 1.2011 nan 0.1000 0.0948
## 9 1.1208 nan 0.1000 0.0764
## 10 1.0575 nan 0.1000 0.0758
## 20 0.6236 nan 0.1000 0.0225
## 40 0.2710 nan 0.1000 0.0045
## 60 0.1352 nan 0.1000 0.0024
## 80 0.0753 nan 0.1000 0.0002
## 100 0.0430 nan 0.1000 -0.0010
## 120 0.0245 nan 0.1000 -0.0002
## 140 0.0147 nan 0.1000 -0.0002
## 150 0.0114 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6656
## 2 1.8955 nan 0.1000 0.3725
## 3 1.6489 nan 0.1000 0.2799
## 4 1.4467 nan 0.1000 0.2181
## 5 1.2954 nan 0.1000 0.1706
## 6 1.1687 nan 0.1000 0.1282
## 7 1.0648 nan 0.1000 0.1147
## 8 0.9709 nan 0.1000 0.1017
## 9 0.8914 nan 0.1000 0.0774
## 10 0.8181 nan 0.1000 0.0852
## 20 0.3962 nan 0.1000 0.0184
## 40 0.1302 nan 0.1000 0.0032
## 60 0.0523 nan 0.1000 0.0007
## 80 0.0229 nan 0.1000 0.0004
## 100 0.0106 nan 0.1000 -0.0001
## 120 0.0053 nan 0.1000 -0.0000
## 140 0.0025 nan 0.1000 -0.0000
## 150 0.0018 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.4412
## 2 2.1556 nan 0.1000 0.2417
## 3 2.0025 nan 0.1000 0.1934
## 4 1.8799 nan 0.1000 0.1522
## 5 1.7808 nan 0.1000 0.1204
## 6 1.7062 nan 0.1000 0.0895
## 7 1.6373 nan 0.1000 0.0879
## 8 1.5693 nan 0.1000 0.0707
## 9 1.5143 nan 0.1000 0.0650
## 10 1.4481 nan 0.1000 0.0452
## 20 1.0808 nan 0.1000 0.0174
## 40 0.7018 nan 0.1000 0.0067
## 60 0.4904 nan 0.1000 0.0012
## 80 0.3561 nan 0.1000 -0.0109
## 100 0.2709 nan 0.1000 -0.0024
## 120 0.2040 nan 0.1000 -0.0024
## 140 0.1575 nan 0.1000 -0.0010
## 150 0.1379 nan 0.1000 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6037
## 2 1.9955 nan 0.1000 0.3052
## 3 1.7768 nan 0.1000 0.2281
## 4 1.6050 nan 0.1000 0.2212
## 5 1.4530 nan 0.1000 0.1930
## 6 1.3271 nan 0.1000 0.1245
## 7 1.2345 nan 0.1000 0.0953
## 8 1.1521 nan 0.1000 0.0952
## 9 1.0709 nan 0.1000 0.0813
## 10 1.0046 nan 0.1000 0.0635
## 20 0.5956 nan 0.1000 0.0282
## 40 0.2556 nan 0.1000 0.0082
## 60 0.1304 nan 0.1000 0.0017
## 80 0.0722 nan 0.1000 -0.0008
## 100 0.0411 nan 0.1000 0.0004
## 120 0.0247 nan 0.1000 -0.0003
## 140 0.0148 nan 0.1000 -0.0002
## 150 0.0117 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7517
## 2 1.9044 nan 0.1000 0.3968
## 3 1.6080 nan 0.1000 0.2880
## 4 1.4053 nan 0.1000 0.2372
## 5 1.2336 nan 0.1000 0.1630
## 6 1.1165 nan 0.1000 0.1272
## 7 1.0170 nan 0.1000 0.1338
## 8 0.9240 nan 0.1000 0.1076
## 9 0.8469 nan 0.1000 0.0814
## 10 0.7810 nan 0.1000 0.0636
## 20 0.3717 nan 0.1000 0.0161
## 40 0.1168 nan 0.1000 0.0055
## 60 0.0461 nan 0.1000 -0.0006
## 80 0.0211 nan 0.1000 0.0001
## 100 0.0096 nan 0.1000 -0.0002
## 120 0.0046 nan 0.1000 -0.0001
## 140 0.0023 nan 0.1000 -0.0000
## 150 0.0016 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3780
## 2 2.1531 nan 0.1000 0.2437
## 3 2.0039 nan 0.1000 0.1467
## 4 1.9012 nan 0.1000 0.1359
## 5 1.8029 nan 0.1000 0.1140
## 6 1.7283 nan 0.1000 0.0955
## 7 1.6607 nan 0.1000 0.0849
## 8 1.5989 nan 0.1000 0.0678
## 9 1.5449 nan 0.1000 0.0522
## 10 1.4973 nan 0.1000 0.0847
## 20 1.1163 nan 0.1000 0.0285
## 40 0.7431 nan 0.1000 0.0072
## 60 0.5344 nan 0.1000 -0.0032
## 80 0.4012 nan 0.1000 -0.0022
## 100 0.3104 nan 0.1000 -0.0045
## 120 0.2437 nan 0.1000 -0.0040
## 140 0.1958 nan 0.1000 -0.0045
## 150 0.1760 nan 0.1000 -0.0047
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5484
## 2 2.0160 nan 0.1000 0.3497
## 3 1.7781 nan 0.1000 0.2626
## 4 1.5998 nan 0.1000 0.1815
## 5 1.4654 nan 0.1000 0.1541
## 6 1.3568 nan 0.1000 0.0987
## 7 1.2743 nan 0.1000 0.1235
## 8 1.1803 nan 0.1000 0.0676
## 9 1.1216 nan 0.1000 0.0859
## 10 1.0585 nan 0.1000 0.0902
## 20 0.6162 nan 0.1000 0.0193
## 40 0.2807 nan 0.1000 0.0035
## 60 0.1431 nan 0.1000 0.0018
## 80 0.0775 nan 0.1000 -0.0006
## 100 0.0449 nan 0.1000 -0.0000
## 120 0.0269 nan 0.1000 -0.0005
## 140 0.0162 nan 0.1000 -0.0001
## 150 0.0125 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7234
## 2 1.9125 nan 0.1000 0.3879
## 3 1.6329 nan 0.1000 0.2390
## 4 1.4521 nan 0.1000 0.2166
## 5 1.2993 nan 0.1000 0.1645
## 6 1.1745 nan 0.1000 0.1426
## 7 1.0684 nan 0.1000 0.1366
## 8 0.9695 nan 0.1000 0.1089
## 9 0.8906 nan 0.1000 0.1030
## 10 0.8180 nan 0.1000 0.0750
## 20 0.3922 nan 0.1000 0.0273
## 40 0.1272 nan 0.1000 0.0026
## 60 0.0511 nan 0.1000 -0.0001
## 80 0.0226 nan 0.1000 -0.0002
## 100 0.0111 nan 0.1000 -0.0002
## 120 0.0052 nan 0.1000 0.0001
## 140 0.0026 nan 0.1000 0.0000
## 150 0.0018 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3579
## 2 2.1854 nan 0.1000 0.2337
## 3 2.0306 nan 0.1000 0.1530
## 4 1.9278 nan 0.1000 0.1372
## 5 1.8375 nan 0.1000 0.1104
## 6 1.7615 nan 0.1000 0.1002
## 7 1.6859 nan 0.1000 0.0688
## 8 1.6261 nan 0.1000 0.0799
## 9 1.5668 nan 0.1000 0.0864
## 10 1.5062 nan 0.1000 0.0396
## 20 1.1346 nan 0.1000 0.0245
## 40 0.7351 nan 0.1000 0.0083
## 60 0.5243 nan 0.1000 -0.0036
## 80 0.3973 nan 0.1000 -0.0009
## 100 0.3009 nan 0.1000 -0.0018
## 120 0.2329 nan 0.1000 -0.0020
## 140 0.1829 nan 0.1000 -0.0022
## 150 0.1608 nan 0.1000 -0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5432
## 2 2.0224 nan 0.1000 0.3526
## 3 1.7803 nan 0.1000 0.2041
## 4 1.6241 nan 0.1000 0.1755
## 5 1.4937 nan 0.1000 0.1769
## 6 1.3678 nan 0.1000 0.1252
## 7 1.2675 nan 0.1000 0.1085
## 8 1.1808 nan 0.1000 0.1083
## 9 1.1057 nan 0.1000 0.0876
## 10 1.0354 nan 0.1000 0.0667
## 20 0.6125 nan 0.1000 0.0352
## 40 0.2740 nan 0.1000 0.0031
## 60 0.1434 nan 0.1000 0.0007
## 80 0.0778 nan 0.1000 0.0005
## 100 0.0456 nan 0.1000 -0.0005
## 120 0.0279 nan 0.1000 -0.0000
## 140 0.0168 nan 0.1000 -0.0004
## 150 0.0132 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6465
## 2 1.9410 nan 0.1000 0.4232
## 3 1.6558 nan 0.1000 0.2590
## 4 1.4464 nan 0.1000 0.2205
## 5 1.2912 nan 0.1000 0.1756
## 6 1.1664 nan 0.1000 0.1443
## 7 1.0617 nan 0.1000 0.1216
## 8 0.9706 nan 0.1000 0.0992
## 9 0.8959 nan 0.1000 0.0920
## 10 0.8264 nan 0.1000 0.0791
## 20 0.4086 nan 0.1000 0.0145
## 40 0.1338 nan 0.1000 0.0016
## 60 0.0538 nan 0.1000 0.0003
## 80 0.0246 nan 0.1000 -0.0001
## 100 0.0116 nan 0.1000 -0.0000
## 120 0.0057 nan 0.1000 0.0001
## 140 0.0029 nan 0.1000 -0.0000
## 150 0.0021 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3867
## 2 2.1511 nan 0.1000 0.2193
## 3 1.9916 nan 0.1000 0.1848
## 4 1.8786 nan 0.1000 0.1185
## 5 1.7976 nan 0.1000 0.1014
## 6 1.7193 nan 0.1000 0.1137
## 7 1.6417 nan 0.1000 0.0802
## 8 1.5840 nan 0.1000 0.0774
## 9 1.5057 nan 0.1000 0.0573
## 10 1.4590 nan 0.1000 0.0634
## 20 1.0873 nan 0.1000 0.0345
## 40 0.7038 nan 0.1000 0.0111
## 60 0.5054 nan 0.1000 -0.0013
## 80 0.3778 nan 0.1000 -0.0018
## 100 0.2900 nan 0.1000 -0.0050
## 120 0.2217 nan 0.1000 -0.0054
## 140 0.1753 nan 0.1000 -0.0005
## 150 0.1565 nan 0.1000 -0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6081
## 2 2.0010 nan 0.1000 0.3454
## 3 1.7572 nan 0.1000 0.2336
## 4 1.5771 nan 0.1000 0.1886
## 5 1.4519 nan 0.1000 0.1447
## 6 1.3478 nan 0.1000 0.1314
## 7 1.2497 nan 0.1000 0.1204
## 8 1.1620 nan 0.1000 0.0852
## 9 1.0927 nan 0.1000 0.0756
## 10 1.0280 nan 0.1000 0.0821
## 20 0.6022 nan 0.1000 0.0161
## 40 0.2728 nan 0.1000 0.0020
## 60 0.1398 nan 0.1000 0.0012
## 80 0.0755 nan 0.1000 -0.0006
## 100 0.0448 nan 0.1000 0.0004
## 120 0.0261 nan 0.1000 -0.0004
## 140 0.0162 nan 0.1000 -0.0000
## 150 0.0127 nan 0.1000 -0.0002
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7667
## 2 1.8914 nan 0.1000 0.3374
## 3 1.6457 nan 0.1000 0.2911
## 4 1.4495 nan 0.1000 0.2447
## 5 1.2681 nan 0.1000 0.2008
## 6 1.1384 nan 0.1000 0.1488
## 7 1.0288 nan 0.1000 0.1226
## 8 0.9392 nan 0.1000 0.0931
## 9 0.8704 nan 0.1000 0.0778
## 10 0.8042 nan 0.1000 0.0811
## 20 0.3770 nan 0.1000 0.0231
## 40 0.1203 nan 0.1000 0.0025
## 60 0.0477 nan 0.1000 0.0005
## 80 0.0225 nan 0.1000 -0.0001
## 100 0.0109 nan 0.1000 -0.0003
## 120 0.0053 nan 0.1000 -0.0001
## 140 0.0027 nan 0.1000 -0.0001
## 150 0.0019 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3722
## 2 2.1808 nan 0.1000 0.2161
## 3 2.0351 nan 0.1000 0.1806
## 4 1.9232 nan 0.1000 0.1211
## 5 1.8356 nan 0.1000 0.0878
## 6 1.7665 nan 0.1000 0.1108
## 7 1.6836 nan 0.1000 0.0828
## 8 1.6199 nan 0.1000 0.0659
## 9 1.5636 nan 0.1000 0.0747
## 10 1.5061 nan 0.1000 0.0372
## 20 1.1074 nan 0.1000 0.0209
## 40 0.7362 nan 0.1000 0.0114
## 60 0.5289 nan 0.1000 -0.0031
## 80 0.3948 nan 0.1000 -0.0051
## 100 0.3051 nan 0.1000 -0.0012
## 120 0.2428 nan 0.1000 -0.0049
## 140 0.1918 nan 0.1000 -0.0008
## 150 0.1731 nan 0.1000 -0.0035
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6259
## 2 1.9968 nan 0.1000 0.3461
## 3 1.7790 nan 0.1000 0.2148
## 4 1.6206 nan 0.1000 0.1933
## 5 1.4843 nan 0.1000 0.1594
## 6 1.3682 nan 0.1000 0.1259
## 7 1.2694 nan 0.1000 0.1000
## 8 1.1848 nan 0.1000 0.1014
## 9 1.1063 nan 0.1000 0.0794
## 10 1.0355 nan 0.1000 0.0767
## 20 0.6147 nan 0.1000 0.0236
## 40 0.2693 nan 0.1000 0.0007
## 60 0.1404 nan 0.1000 0.0012
## 80 0.0806 nan 0.1000 0.0006
## 100 0.0478 nan 0.1000 -0.0005
## 120 0.0295 nan 0.1000 -0.0006
## 140 0.0185 nan 0.1000 -0.0005
## 150 0.0147 nan 0.1000 -0.0004
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7330
## 2 1.9102 nan 0.1000 0.3880
## 3 1.6388 nan 0.1000 0.2655
## 4 1.4612 nan 0.1000 0.1936
## 5 1.3135 nan 0.1000 0.1723
## 6 1.1843 nan 0.1000 0.1459
## 7 1.0792 nan 0.1000 0.1234
## 8 0.9812 nan 0.1000 0.1061
## 9 0.8940 nan 0.1000 0.1112
## 10 0.8144 nan 0.1000 0.0734
## 20 0.3970 nan 0.1000 0.0198
## 40 0.1350 nan 0.1000 0.0037
## 60 0.0564 nan 0.1000 -0.0005
## 80 0.0259 nan 0.1000 -0.0006
## 100 0.0127 nan 0.1000 -0.0004
## 120 0.0063 nan 0.1000 -0.0001
## 140 0.0032 nan 0.1000 -0.0000
## 150 0.0023 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.3585
## 2 2.1709 nan 0.1000 0.2394
## 3 2.0343 nan 0.1000 0.1780
## 4 1.9206 nan 0.1000 0.1458
## 5 1.8225 nan 0.1000 0.0836
## 6 1.7511 nan 0.1000 0.0902
## 7 1.6772 nan 0.1000 0.0785
## 8 1.6176 nan 0.1000 0.0855
## 9 1.5524 nan 0.1000 0.0621
## 10 1.4991 nan 0.1000 0.0544
## 20 1.0973 nan 0.1000 0.0248
## 40 0.7112 nan 0.1000 0.0064
## 60 0.5013 nan 0.1000 0.0017
## 80 0.3701 nan 0.1000 -0.0010
## 100 0.2790 nan 0.1000 -0.0032
## 120 0.2168 nan 0.1000 -0.0020
## 140 0.1709 nan 0.1000 -0.0022
## 150 0.1518 nan 0.1000 -0.0037
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.5360
## 2 2.0243 nan 0.1000 0.3109
## 3 1.7977 nan 0.1000 0.2762
## 4 1.6163 nan 0.1000 0.1828
## 5 1.4900 nan 0.1000 0.1672
## 6 1.3622 nan 0.1000 0.1442
## 7 1.2564 nan 0.1000 0.1248
## 8 1.1699 nan 0.1000 0.0869
## 9 1.0882 nan 0.1000 0.0885
## 10 1.0206 nan 0.1000 0.0635
## 20 0.5907 nan 0.1000 0.0119
## 40 0.2635 nan 0.1000 0.0033
## 60 0.1273 nan 0.1000 0.0003
## 80 0.0691 nan 0.1000 -0.0001
## 100 0.0394 nan 0.1000 -0.0002
## 120 0.0229 nan 0.1000 -0.0000
## 140 0.0139 nan 0.1000 -0.0001
## 150 0.0110 nan 0.1000 -0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.7004
## 2 1.9035 nan 0.1000 0.3993
## 3 1.6436 nan 0.1000 0.2783
## 4 1.4407 nan 0.1000 0.1974
## 5 1.2979 nan 0.1000 0.1805
## 6 1.1544 nan 0.1000 0.1478
## 7 1.0456 nan 0.1000 0.1361
## 8 0.9482 nan 0.1000 0.1084
## 9 0.8597 nan 0.1000 0.0949
## 10 0.7882 nan 0.1000 0.0757
## 20 0.3789 nan 0.1000 0.0196
## 40 0.1190 nan 0.1000 0.0041
## 60 0.0448 nan 0.1000 -0.0001
## 80 0.0194 nan 0.1000 0.0001
## 100 0.0086 nan 0.1000 0.0000
## 120 0.0039 nan 0.1000 -0.0001
## 140 0.0019 nan 0.1000 -0.0000
## 150 0.0013 nan 0.1000 -0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 2.3979 nan 0.1000 0.6238
## 2 1.9691 nan 0.1000 0.3161
## 3 1.7301 nan 0.1000 0.2699
## 4 1.5253 nan 0.1000 0.1883
## 5 1.3768 nan 0.1000 0.1458
## 6 1.2591 nan 0.1000 0.1357
## 7 1.1478 nan 0.1000 0.1008
## 8 1.0586 nan 0.1000 0.0821
## 9 0.9849 nan 0.1000 0.0779
## 10 0.9130 nan 0.1000 0.0657
## 20 0.4800 nan 0.1000 0.0245
## 40 0.1703 nan 0.1000 0.0023
## 60 0.0760 nan 0.1000 -0.0008
## 80 0.0361 nan 0.1000 -0.0007
## 100 0.0193 nan 0.1000 -0.0000
## 120 0.0106 nan 0.1000 -0.0003
## 140 0.0057 nan 0.1000 -0.0001
## 150 0.0042 nan 0.1000 -0.0000
confusionMatrix(vowel.test$y,predict(modelFit1_rf,vowel.test))
## Confusion Matrix and Statistics
##
## Reference
## Prediction 1 2 3 4 5 6 7 8 9 10 11
## 1 30 12 0 0 0 0 0 0 0 0 0
## 2 0 26 12 0 0 0 0 0 4 0 0
## 3 0 4 33 1 0 2 0 0 0 0 2
## 4 0 0 3 28 0 9 0 0 0 0 2
## 5 0 0 0 3 16 18 3 0 0 0 2
## 6 0 0 0 1 7 24 0 0 0 0 10
## 7 0 2 0 0 8 4 28 0 0 0 0
## 8 0 0 0 0 0 0 7 29 6 0 0
## 9 0 0 0 0 0 0 5 5 24 2 6
## 10 1 15 3 0 0 0 0 0 3 20 0
## 11 0 1 3 1 0 6 3 0 13 0 15
##
## Overall Statistics
##
## Accuracy : 0.5909
## 95% CI : (0.5445, 0.6361)
## No Information Rate : 0.1364
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.55
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity 0.96774 0.43333 0.61111 0.82353 0.51613 0.38095
## Specificity 0.97216 0.96020 0.97794 0.96729 0.93968 0.95489
## Pos Pred Value 0.71429 0.61905 0.78571 0.66667 0.38095 0.57143
## Neg Pred Value 0.99762 0.91905 0.95000 0.98571 0.96429 0.90714
## Prevalence 0.06710 0.12987 0.11688 0.07359 0.06710 0.13636
## Detection Rate 0.06494 0.05628 0.07143 0.06061 0.03463 0.05195
## Detection Prevalence 0.09091 0.09091 0.09091 0.09091 0.09091 0.09091
## Balanced Accuracy 0.96995 0.69677 0.79453 0.89541 0.72790 0.66792
## Class: 7 Class: 8 Class: 9 Class: 10 Class: 11
## Sensitivity 0.60870 0.85294 0.48000 0.90909 0.40541
## Specificity 0.96635 0.96963 0.95631 0.95000 0.93647
## Pos Pred Value 0.66667 0.69048 0.57143 0.47619 0.35714
## Neg Pred Value 0.95714 0.98810 0.93810 0.99524 0.94762
## Prevalence 0.09957 0.07359 0.10823 0.04762 0.08009
## Detection Rate 0.06061 0.06277 0.05195 0.04329 0.03247
## Detection Prevalence 0.09091 0.09091 0.09091 0.09091 0.09091
## Balanced Accuracy 0.78752 0.91128 0.71816 0.92955 0.67094
confusionMatrix(vowel.test$y,predict(modelFit1_gbm,vowel.test))
## Confusion Matrix and Statistics
##
## Reference
## Prediction 1 2 3 4 5 6 7 8 9 10 11
## 1 30 9 1 0 0 0 0 0 0 2 0
## 2 0 20 12 1 0 1 0 0 6 0 2
## 3 0 1 11 7 0 18 1 0 0 0 4
## 4 0 0 4 21 1 15 0 0 0 0 1
## 5 0 0 0 3 17 11 8 0 0 0 3
## 6 0 0 0 0 5 29 1 0 0 0 7
## 7 0 1 0 1 0 0 38 2 0 0 0
## 8 0 0 0 0 0 0 6 29 7 0 0
## 9 0 1 0 0 0 1 5 9 26 0 0
## 10 2 13 0 0 0 0 0 1 6 20 0
## 11 0 0 0 0 0 9 11 0 17 1 4
##
## Overall Statistics
##
## Accuracy : 0.5303
## 95% CI : (0.4836, 0.5766)
## No Information Rate : 0.1818
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.4833
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity 0.93750 0.44444 0.39286 0.63636 0.73913 0.34524
## Specificity 0.97209 0.94724 0.92857 0.95105 0.94305 0.96561
## Pos Pred Value 0.71429 0.47619 0.26190 0.50000 0.40476 0.69048
## Neg Pred Value 0.99524 0.94048 0.95952 0.97143 0.98571 0.86905
## Prevalence 0.06926 0.09740 0.06061 0.07143 0.04978 0.18182
## Detection Rate 0.06494 0.04329 0.02381 0.04545 0.03680 0.06277
## Detection Prevalence 0.09091 0.09091 0.09091 0.09091 0.09091 0.09091
## Balanced Accuracy 0.95480 0.69584 0.66071 0.79371 0.84109 0.65542
## Class: 7 Class: 8 Class: 9 Class: 10 Class: 11
## Sensitivity 0.54286 0.70732 0.41935 0.86957 0.190476
## Specificity 0.98980 0.96912 0.96000 0.94989 0.913832
## Pos Pred Value 0.90476 0.69048 0.61905 0.47619 0.095238
## Neg Pred Value 0.92381 0.97143 0.91429 0.99286 0.959524
## Prevalence 0.15152 0.08874 0.13420 0.04978 0.045455
## Detection Rate 0.08225 0.06277 0.05628 0.04329 0.008658
## Detection Prevalence 0.09091 0.09091 0.09091 0.09091 0.090909
## Balanced Accuracy 0.76633 0.83822 0.68968 0.90973 0.552154
confusionMatrix(predict(modelFit1_rf,vowel.test),predict(modelFit1_gbm,vowel.test))
## Confusion Matrix and Statistics
##
## Reference
## Prediction 1 2 3 4 5 6 7 8 9 10 11
## 1 28 0 0 0 0 0 0 0 0 3 0
## 2 3 42 6 1 0 0 2 0 2 1 3
## 3 1 1 21 7 0 16 4 0 0 2 3
## 4 0 0 1 24 0 7 0 0 0 1 1
## 5 0 0 0 0 16 1 10 2 0 0 2
## 6 0 0 0 1 6 48 8 0 0 0 0
## 7 0 1 0 0 1 0 42 0 2 0 0
## 8 0 0 0 0 0 0 0 34 1 0 0
## 9 0 0 0 0 0 0 1 3 45 0 0
## 10 0 0 0 0 0 0 0 2 4 16 0
## 11 0 1 0 0 0 12 3 0 8 0 12
##
## Overall Statistics
##
## Accuracy : 0.71
## 95% CI : (0.6662, 0.751)
## No Information Rate : 0.1818
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6778
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity 0.87500 0.93333 0.75000 0.72727 0.69565 0.5714
## Specificity 0.99302 0.95683 0.92166 0.97669 0.96583 0.9603
## Pos Pred Value 0.90323 0.70000 0.38182 0.70588 0.51613 0.7619
## Neg Pred Value 0.99072 0.99254 0.98280 0.97897 0.98376 0.9098
## Prevalence 0.06926 0.09740 0.06061 0.07143 0.04978 0.1818
## Detection Rate 0.06061 0.09091 0.04545 0.05195 0.03463 0.1039
## Detection Prevalence 0.06710 0.12987 0.11905 0.07359 0.06710 0.1364
## Balanced Accuracy 0.93401 0.94508 0.83583 0.85198 0.83074 0.7659
## Class: 7 Class: 8 Class: 9 Class: 10 Class: 11
## Sensitivity 0.60000 0.82927 0.7258 0.69565 0.57143
## Specificity 0.98980 0.99762 0.9900 0.98633 0.94558
## Pos Pred Value 0.91304 0.97143 0.9184 0.72727 0.33333
## Neg Pred Value 0.93269 0.98361 0.9588 0.98409 0.97887
## Prevalence 0.15152 0.08874 0.1342 0.04978 0.04545
## Detection Rate 0.09091 0.07359 0.0974 0.03463 0.02597
## Detection Prevalence 0.09957 0.07576 0.1061 0.04762 0.07792
## Balanced Accuracy 0.79490 0.91345 0.8579 0.84099 0.75850
Load the concrete data with the commands: set.seed(3523) library(AppliedPredictiveModeling) data(concrete) inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]] training = concrete[ inTrain,] testing = concrete[-inTrain,] Set the seed to 233 and fit a lasso model to predict Compressive Strength. Which variable is the last coefficient to be set to zero as the penalty increases? (Hint: it may be useful to look up ?plot.enet).
set.seed(3523)
library(AppliedPredictiveModeling)
data(concrete)
inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]]
training = concrete[ inTrain,]
testing = concrete[-inTrain,]
set.seed(233)
modelFit2<- train(CompressiveStrength~.,data=training,method="lasso")
## Loading required package: elasticnet
## Loading required package: lars
## Loaded lars 1.2
plot.enet(modelFit2$finalModel,xvar="penalty",use.color=TRUE)
#Q3 Load the data on the number of visitors to the instructors blog from here: https://d396qusza40orc.cloudfront.net/predmachlearn/gaData.csv Using the commands: library(lubridate) # For year() function below dat = read.csv(“~/Desktop/gaData.csv”) training = dat[year(dat$date) < 2012,] testing = dat[(year(dat$date)) > 2011,] tstrain = ts(training$visitsTumblr) Fit a model using the bats() function in the forecast package to the training time series. Then forecast this model for the remaining time points. For how many of the testing points is the true value within the 95% prediction interval bounds?
url<- "http://d396qusza40orc.cloudfront.net/predmachlearn/gaData.csv"
download.file(url,destfile="./visitor.csv")
library(lubridate) # For year() function below
##
## Attaching package: 'lubridate'
##
## The following object is masked from 'package:plyr':
##
## here
dat = read.csv("visitor.csv")
training = dat[year(dat$date) < 2012,]
testing = dat[(year(dat$date)) > 2011,]
tstrain = ts(training$visitsTumblr)
library(forecast)
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Loading required package: timeDate
## This is forecast 6.1
modelFit3<- bats(tstrain)
plot(modelFit3)
h<- dim(testing)[1]
fcast<- forecast(modelFit3,level=95,h=h)
plot(fcast,testing$visitsTumblr)
result3 <- c()
l <- length(fcast$lower)
for (i in 1:l){
x <- testing$visitsTumblr[i]
a <- fcast$lower[i] < x & x < fcast$upper[i]
result3 <- c(result3, a)
}
sum(result3)/l * 100
## [1] 96.17021
Load the concrete data with the commands: set.seed(3523) library(AppliedPredictiveModeling) data(concrete) inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]] training = concrete[ inTrain,] testing = concrete[-inTrain,] Set the seed to 325 and fit a support vector machine using the e1071 package to predict Compressive Strength using the default settings. Predict on the testing set. What is the RMSE?
library(AppliedPredictiveModeling)
data(concrete)
inTrain = createDataPartition(concrete$CompressiveStrength, p = 3/4)[[1]]
training = concrete[ inTrain,]
testing = concrete[-inTrain,]
set.seed(325)
library(e1071)
##
## Attaching package: 'e1071'
##
## The following objects are masked from 'package:timeDate':
##
## kurtosis, skewness
modelFit4<- svm(CompressiveStrength~.,data=training)
result4<- predict(modelFit4,testing)
accuracy(result4,testing$CompressiveStrength)
## ME RMSE MAE MPE MAPE
## Test set 0.1077803 7.011335 5.276964 -5.663341 18.27887
#Method2
fit <- train(CompressiveStrength ~ ., data = training, method = "svmRadial")
## Loading required package: kernlab
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,9,12,18,22,24,28,33,36,39,40,42,43,45,50,57,58,59,63,66,68,71,76,78,81,85,87,88,89,92,95,98,102,104,106,107,108,110,114,116,119,127,129,131,132,135,138,139,140,143,144,146,153,155,158,162,169,171,177,180,182,184,190,191,193,195,198,202,203,207,210,217,219,220,223,224,228,233,240,242,244,245,248,250,251,253,254,256,258,259,262,263,265,267,269,271,274,279,282,283,285,288,290,294,304,306,309,318,321,322,324,325,332,333,336,337,340,341,346,350,351,353,354,357,361,366,370,376,381,383,385,387,389,391,393,395,396,400,404,410,413,417,418,421,423,429,431,433,435,437,441,447,450,458,462,466,468,471,477,478,484,485,488,493,494,502,508,509,510,513,515,516,519,521,526,528,531,533,536,537,539,545,547,550,553,554,558,561,562,563,564,568,571,574,575,577,579,581,583,585,586,589,590,598,599,601,602,604,606,612,615,616,619,621,622,625,630,631,633,635,636,637,638,640,644,645,650,652,655,659,662,665,666,668,669,673,675,680,682,684,686,687,694,697,700,701,703,705,710,714,715,723,724,735,737,740,742,747,751,754,755,762,764,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,9,12,18,22,24,28,33,36,39,40,42,43,45,50,57,58,59,63,66,68,71,76,78,81,85,87,88,89,92,95,98,102,104,106,107,108,110,114,116,119,127,129,131,132,135,138,139,140,143,144,146,153,155,158,162,169,171,177,180,182,184,190,191,193,195,198,202,203,207,210,217,219,220,223,224,228,233,240,242,244,245,248,250,251,253,254,256,258,259,262,263,265,267,269,271,274,279,282,283,285,288,290,294,304,306,309,318,321,322,324,325,332,333,336,337,340,341,346,350,351,353,354,357,361,366,370,376,381,383,385,387,389,391,393,395,396,400,404,410,413,417,418,421,423,429,431,433,435,437,441,447,450,458,462,466,468,471,477,478,484,485,488,493,494,502,508,509,510,513,515,516,519,521,526,528,531,533,536,537,539,545,547,550,553,554,558,561,562,563,564,568,571,574,575,577,579,581,583,585,586,589,590,598,599,601,602,604,606,612,615,616,619,621,622,625,630,631,633,635,636,637,638,640,644,645,650,652,655,659,662,665,666,668,669,673,675,680,682,684,686,687,694,697,700,701,703,705,710,714,715,723,724,735,737,740,742,747,751,754,755,762,764,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,9,12,18,22,24,28,33,36,39,40,42,43,45,50,57,58,59,63,66,68,71,76,78,81,85,87,88,89,92,95,98,102,104,106,107,108,110,114,116,119,127,129,131,132,135,138,139,140,143,144,146,153,155,158,162,169,171,177,180,182,184,190,191,193,195,198,202,203,207,210,217,219,220,223,224,228,233,240,242,244,245,248,250,251,253,254,256,258,259,262,263,265,267,269,271,274,279,282,283,285,288,290,294,304,306,309,318,321,322,324,325,332,333,336,337,340,341,346,350,351,353,354,357,361,366,370,376,381,383,385,387,389,391,393,395,396,400,404,410,413,417,418,421,423,429,431,433,435,437,441,447,450,458,462,466,468,471,477,478,484,485,488,493,494,502,508,509,510,513,515,516,519,521,526,528,531,533,536,537,539,545,547,550,553,554,558,561,562,563,564,568,571,574,575,577,579,581,583,585,586,589,590,598,599,601,602,604,606,612,615,616,619,621,622,625,630,631,633,635,636,637,638,640,644,645,650,652,655,659,662,665,666,668,669,673,675,680,682,684,686,687,694,697,700,701,703,705,710,714,715,723,724,735,737,740,742,747,751,754,755,762,764,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,8,10,14,20,23,25,31,33,35,38,41,43,45,46,51,52,55,57,63,66,68,71,74,77,87,89,91,94,96,99,105,108,110,113,116,120,121,122,124,129,138,140,144,146,150,151,155,158,165,171,174,177,182,186,188,189,192,193,194,196,197,200,203,209,211,213,214,216,217,220,222,229,238,241,246,251,253,256,259,263,266,270,273,275,276,279,280,283,287,290,291,292,295,298,301,302,303,305,307,308,311,318,319,320,321,323,326,327,329,334,335,337,339,343,344,346,348,350,353,356,357,358,361,363,365,366,373,375,378,379,385,387,390,391,392,394,395,396,400,404,405,407,410,414,415,417,419,420,423,425,429,432,433,435,443,451,456,461,462,464,467,468,471,474,475,476,481,484,487,491,494,496,497,498,505,507,511,512,513,521,524,525,528,531,533,539,541,544,546,547,548,552,556,557,560,564,565,567,568,570,573,574,576,580,582,586,589,593,597,599,600,601,603,608,609,613,614,619,621,623,626,627,630,633,635,637,638,641,643,645,651,652,653,654,655,660,665,670,672,673,675,677,678,679,683,684,686,689,692,693,695,699,701,702,703,709,712,713,715,716,723,724,729,730,739,744,745,747,750,751,753,754,756,758,763,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,8,10,14,20,23,25,31,33,35,38,41,43,45,46,51,52,55,57,63,66,68,71,74,77,87,89,91,94,96,99,105,108,110,113,116,120,121,122,124,129,138,140,144,146,150,151,155,158,165,171,174,177,182,186,188,189,192,193,194,196,197,200,203,209,211,213,214,216,217,220,222,229,238,241,246,251,253,256,259,263,266,270,273,275,276,279,280,283,287,290,291,292,295,298,301,302,303,305,307,308,311,318,319,320,321,323,326,327,329,334,335,337,339,343,344,346,348,350,353,356,357,358,361,363,365,366,373,375,378,379,385,387,390,391,392,394,395,396,400,404,405,407,410,414,415,417,419,420,423,425,429,432,433,435,443,451,456,461,462,464,467,468,471,474,475,476,481,484,487,491,494,496,497,498,505,507,511,512,513,521,524,525,528,531,533,539,541,544,546,547,548,552,556,557,560,564,565,567,568,570,573,574,576,580,582,586,589,593,597,599,600,601,603,608,609,613,614,619,621,623,626,627,630,633,635,637,638,641,643,645,651,652,653,654,655,660,665,670,672,673,675,677,678,679,683,684,686,689,692,693,695,699,701,702,703,709,712,713,715,716,723,724,729,730,739,744,745,747,750,751,753,754,756,758,763,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,8,10,14,20,23,25,31,33,35,38,41,43,45,46,51,52,55,57,63,66,68,71,74,77,87,89,91,94,96,99,105,108,110,113,116,120,121,122,124,129,138,140,144,146,150,151,155,158,165,171,174,177,182,186,188,189,192,193,194,196,197,200,203,209,211,213,214,216,217,220,222,229,238,241,246,251,253,256,259,263,266,270,273,275,276,279,280,283,287,290,291,292,295,298,301,302,303,305,307,308,311,318,319,320,321,323,326,327,329,334,335,337,339,343,344,346,348,350,353,356,357,358,361,363,365,366,373,375,378,379,385,387,390,391,392,394,395,396,400,404,405,407,410,414,415,417,419,420,423,425,429,432,433,435,443,451,456,461,462,464,467,468,471,474,475,476,481,484,487,491,494,496,497,498,505,507,511,512,513,521,524,525,528,531,533,539,541,544,546,547,548,552,556,557,560,564,565,567,568,570,573,574,576,580,582,586,589,593,597,599,600,601,603,608,609,613,614,619,621,623,626,627,630,633,635,637,638,641,643,645,651,652,653,654,655,660,665,670,672,673,675,677,678,679,683,684,686,689,692,693,695,699,701,702,703,709,712,713,715,716,723,724,729,730,739,744,745,747,750,751,753,754,756,758,763,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,9,15,17,22,33,36,39,43,44,46,47,52,55,59,61,62,66,68,71,72,74,76,80,84,86,89,94,98,101,102,106,109,112,113,115,120,122,124,125,126,128,130,132,136,139,143,144,149,157,158,160,161,165,167,169,172,175,179,180,183,187,192,194,196,198,199,203,206,208,210,211,213,215,218,221,225,226,227,229,233,236,239,242,248,250,251,253,256,257,266,267,273,278,279,283,284,286,288,292,294,296,299,300,302,303,304,306,308,309,311,314,320,323,324,328,330,335,337,339,342,345,348,350,352,356,362,364,367,368,370,371,374,376,378,379,380,382,386,390,393,394,395,396,400,405,408,412,415,419,423,425,426,427,429,432,433,435,438,440,449,451,454,457,458,462,463,465,467,468,469,471,476,485,486,489,494,495,497,500,503,504,507,511,514,516,517,519,520,525,530,535,538,540,542,543,545,548,550,553,554,557,558,559,561,564,566,568,571,572,573,579,580,581,585,587,588,597,600,604,607,611,614,616,618,621,626,629,630,633,635,636,638,640,641,643,645,646,647,650,653,656,661,662,667,669,670,672,675,677,678,682,684,687,689,691,693,695,700,701,704,705,707,710,711,712,717,719,722,724,725,727,728,729,731,737,738,741,742,743,745,747,750,752,761,762,763,765,769,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,9,15,17,22,33,36,39,43,44,46,47,52,55,59,61,62,66,68,71,72,74,76,80,84,86,89,94,98,101,102,106,109,112,113,115,120,122,124,125,126,128,130,132,136,139,143,144,149,157,158,160,161,165,167,169,172,175,179,180,183,187,192,194,196,198,199,203,206,208,210,211,213,215,218,221,225,226,227,229,233,236,239,242,248,250,251,253,256,257,266,267,273,278,279,283,284,286,288,292,294,296,299,300,302,303,304,306,308,309,311,314,320,323,324,328,330,335,337,339,342,345,348,350,352,356,362,364,367,368,370,371,374,376,378,379,380,382,386,390,393,394,395,396,400,405,408,412,415,419,423,425,426,427,429,432,433,435,438,440,449,451,454,457,458,462,463,465,467,468,469,471,476,485,486,489,494,495,497,500,503,504,507,511,514,516,517,519,520,525,530,535,538,540,542,543,545,548,550,553,554,557,558,559,561,564,566,568,571,572,573,579,580,581,585,587,588,597,600,604,607,611,614,616,618,621,626,629,630,633,635,636,638,640,641,643,645,646,647,650,653,656,661,662,667,669,670,672,675,677,678,682,684,687,689,691,693,695,700,701,704,705,707,710,711,712,717,719,722,724,725,727,728,729,731,737,738,741,742,743,745,747,750,752,761,762,763,765,769,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,9,15,17,22,33,36,39,43,44,46,47,52,55,59,61,62,66,68,71,72,74,76,80,84,86,89,94,98,101,102,106,109,112,113,115,120,122,124,125,126,128,130,132,136,139,143,144,149,157,158,160,161,165,167,169,172,175,179,180,183,187,192,194,196,198,199,203,206,208,210,211,213,215,218,221,225,226,227,229,233,236,239,242,248,250,251,253,256,257,266,267,273,278,279,283,284,286,288,292,294,296,299,300,302,303,304,306,308,309,311,314,320,323,324,328,330,335,337,339,342,345,348,350,352,356,362,364,367,368,370,371,374,376,378,379,380,382,386,390,393,394,395,396,400,405,408,412,415,419,423,425,426,427,429,432,433,435,438,440,449,451,454,457,458,462,463,465,467,468,469,471,476,485,486,489,494,495,497,500,503,504,507,511,514,516,517,519,520,525,530,535,538,540,542,543,545,548,550,553,554,557,558,559,561,564,566,568,571,572,573,579,580,581,585,587,588,597,600,604,607,611,614,616,618,621,626,629,630,633,635,636,638,640,641,643,645,646,647,650,653,656,661,662,667,669,670,672,675,677,678,682,684,687,689,691,693,695,700,701,704,705,707,710,711,712,717,719,722,724,725,727,728,729,731,737,738,741,742,743,745,747,750,752,761,762,763,765,769,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,13,15,16,17,18,21,22,25,26,28,29,31,34,36,38,41,43,44,45,48,50,53,55,59,63,66,67,69,75,83,86,89,90,94,96,97,100,102,108,109,114,115,116,118,122,126,130,137,138,139,141,142,144,148,153,154,160,161,169,171,172,175,181,182,185,188,190,195,197,202,204,205,211,212,215,218,220,221,224,236,242,243,244,245,247,248,253,255,257,260,261,263,265,268,269,272,273,275,277,280,281,282,284,286,292,293,297,299,302,305,308,309,317,318,324,329,330,333,334,335,336,338,339,340,344,345,352,357,360,365,373,374,376,377,378,381,384,387,389,397,399,401,403,405,409,413,414,416,423,425,427,429,432,434,435,437,441,442,443,446,449,455,458,462,463,465,467,468,470,474,475,476,480,482,483,484,490,491,495,497,499,500,505,511,512,514,517,519,521,524,526,530,534,537,542,544,548,549,551,553,555,558,560,564,568,571,578,580,583,586,587,589,592,593,595,597,600,604,605,608,610,611,614,616,617,619,621,623,631,632,633,636,639,640,644,645,646,648,652,656,661,665,667,668,673,676,678,681,682,684,688,693,696,699,706,707,709,710,719,720,722,731,732,743,745,748,750,755,758,764,765,766,769,770,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,13,15,16,17,18,21,22,25,26,28,29,31,34,36,38,41,43,44,45,48,50,53,55,59,63,66,67,69,75,83,86,89,90,94,96,97,100,102,108,109,114,115,116,118,122,126,130,137,138,139,141,142,144,148,153,154,160,161,169,171,172,175,181,182,185,188,190,195,197,202,204,205,211,212,215,218,220,221,224,236,242,243,244,245,247,248,253,255,257,260,261,263,265,268,269,272,273,275,277,280,281,282,284,286,292,293,297,299,302,305,308,309,317,318,324,329,330,333,334,335,336,338,339,340,344,345,352,357,360,365,373,374,376,377,378,381,384,387,389,397,399,401,403,405,409,413,414,416,423,425,427,429,432,434,435,437,441,442,443,446,449,455,458,462,463,465,467,468,470,474,475,476,480,482,483,484,490,491,495,497,499,500,505,511,512,514,517,519,521,524,526,530,534,537,542,544,548,549,551,553,555,558,560,564,568,571,578,580,583,586,587,589,592,593,595,597,600,604,605,608,610,611,614,616,617,619,621,623,631,632,633,636,639,640,644,645,646,648,652,656,661,665,667,668,673,676,678,681,682,684,688,693,696,699,706,707,709,710,719,720,722,731,732,743,745,748,750,755,758,764,765,766,769,770,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,5,9,13,15,16,17,18,21,22,25,26,28,29,31,34,36,38,41,43,44,45,48,50,53,55,59,63,66,67,69,75,83,86,89,90,94,96,97,100,102,108,109,114,115,116,118,122,126,130,137,138,139,141,142,144,148,153,154,160,161,169,171,172,175,181,182,185,188,190,195,197,202,204,205,211,212,215,218,220,221,224,236,242,243,244,245,247,248,253,255,257,260,261,263,265,268,269,272,273,275,277,280,281,282,284,286,292,293,297,299,302,305,308,309,317,318,324,329,330,333,334,335,336,338,339,340,344,345,352,357,360,365,373,374,376,377,378,381,384,387,389,397,399,401,403,405,409,413,414,416,423,425,427,429,432,434,435,437,441,442,443,446,449,455,458,462,463,465,467,468,470,474,475,476,480,482,483,484,490,491,495,497,499,500,505,511,512,514,517,519,521,524,526,530,534,537,542,544,548,549,551,553,555,558,560,564,568,571,578,580,583,586,587,589,592,593,595,597,600,604,605,608,610,611,614,616,617,619,621,623,631,632,633,636,639,640,644,645,646,648,652,656,661,665,667,668,673,676,678,681,682,684,688,693,696,699,706,707,709,710,719,720,722,731,732,743,745,748,750,755,758,764,765,766,769,770,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,10,14,16,18,20,22,23,25,26,32,35,36,38,40,42,43,47,55,56,58,59,62,63,65,66,67,69,75,77,81,85,88,91,92,93,97,98,100,101,103,104,106,107,111,113,115,117,120,127,131,132,138,141,143,147,153,156,159,162,165,167,170,172,174,175,180,183,186,189,191,194,195,199,202,207,208,214,216,217,218,228,230,232,236,237,242,245,248,253,259,261,263,264,267,270,274,276,280,281,285,288,293,295,297,301,305,308,312,313,317,321,323,324,327,328,332,334,338,339,340,344,347,352,359,361,364,366,367,370,376,377,378,379,385,387,389,393,397,398,399,400,404,406,407,408,410,413,414,416,420,421,422,426,427,430,433,435,440,441,442,447,448,453,455,456,457,458,460,461,463,468,471,472,475,476,478,480,482,485,486,488,489,490,492,493,494,496,498,500,501,504,505,509,511,514,521,522,525,527,533,535,536,540,542,551,553,555,556,560,561,563,565,566,567,569,571,573,574,576,579,582,590,592,597,602,603,606,609,610,611,615,616,618,621,622,624,631,636,637,638,644,648,650,653,655,658,659,660,663,667,669,671,675,676,678,680,683,684,689,692,693,700,701,705,707,709,711,715,717,720,721,724,726,730,732,733,736,740,741,742,746,747,749,754,757,758,761,763,765,767,772,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,10,14,16,18,20,22,23,25,26,32,35,36,38,40,42,43,47,55,56,58,59,62,63,65,66,67,69,75,77,81,85,88,91,92,93,97,98,100,101,103,104,106,107,111,113,115,117,120,127,131,132,138,141,143,147,153,156,159,162,165,167,170,172,174,175,180,183,186,189,191,194,195,199,202,207,208,214,216,217,218,228,230,232,236,237,242,245,248,253,259,261,263,264,267,270,274,276,280,281,285,288,293,295,297,301,305,308,312,313,317,321,323,324,327,328,332,334,338,339,340,344,347,352,359,361,364,366,367,370,376,377,378,379,385,387,389,393,397,398,399,400,404,406,407,408,410,413,414,416,420,421,422,426,427,430,433,435,440,441,442,447,448,453,455,456,457,458,460,461,463,468,471,472,475,476,478,480,482,485,486,488,489,490,492,493,494,496,498,500,501,504,505,509,511,514,521,522,525,527,533,535,536,540,542,551,553,555,556,560,561,563,565,566,567,569,571,573,574,576,579,582,590,592,597,602,603,606,609,610,611,615,616,618,621,622,624,631,636,637,638,644,648,650,653,655,658,659,660,663,667,669,671,675,676,678,680,683,684,689,692,693,700,701,705,707,709,711,715,717,720,721,724,726,730,732,733,736,740,741,742,746,747,749,754,757,758,761,763,765,767,772,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,10,14,16,18,20,22,23,25,26,32,35,36,38,40,42,43,47,55,56,58,59,62,63,65,66,67,69,75,77,81,85,88,91,92,93,97,98,100,101,103,104,106,107,111,113,115,117,120,127,131,132,138,141,143,147,153,156,159,162,165,167,170,172,174,175,180,183,186,189,191,194,195,199,202,207,208,214,216,217,218,228,230,232,236,237,242,245,248,253,259,261,263,264,267,270,274,276,280,281,285,288,293,295,297,301,305,308,312,313,317,321,323,324,327,328,332,334,338,339,340,344,347,352,359,361,364,366,367,370,376,377,378,379,385,387,389,393,397,398,399,400,404,406,407,408,410,413,414,416,420,421,422,426,427,430,433,435,440,441,442,447,448,453,455,456,457,458,460,461,463,468,471,472,475,476,478,480,482,485,486,488,489,490,492,493,494,496,498,500,501,504,505,509,511,514,521,522,525,527,533,535,536,540,542,551,553,555,556,560,561,563,565,566,567,569,571,573,574,576,579,582,590,592,597,602,603,606,609,610,611,615,616,618,621,622,624,631,636,637,638,644,648,650,653,655,658,659,660,663,667,669,671,675,676,678,680,683,684,689,692,693,700,701,705,707,709,711,715,717,720,721,724,726,730,732,733,736,740,741,742,746,747,749,754,757,758,761,763,765,767,772,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,8,9,11,12,16,18,23,26,28,38,40,43,44,50,51,53,55,56,58,59,60,66,70,73,76,81,83,84,87,92,93,94,96,100,103,109,110,113,114,115,119,120,124,126,127,129,132,134,136,138,145,147,150,152,156,163,165,168,170,172,173,180,184,187,188,190,194,195,197,198,202,203,206,210,216,220,222,223,227,230,232,234,236,238,241,242,244,249,252,255,260,263,265,269,275,279,280,283,287,288,289,291,292,295,299,301,307,311,312,318,319,323,325,326,330,331,335,338,342,346,350,351,356,357,358,363,364,366,367,370,372,374,378,379,385,386,389,391,396,397,408,414,416,418,420,421,425,426,431,432,433,434,435,436,439,441,443,445,447,448,450,452,455,456,458,463,465,467,469,471,473,476,478,479,481,482,483,486,489,497,499,502,504,506,509,510,511,512,513,514,516,519,520,524,525,527,529,531,535,538,540,541,543,546,548,550,556,557,559,561,562,565,571,572,574,575,578,581,584,586,589,590,592,595,596,601,604,609,610,612,614,615,618,620,622,624,626,628,631,632,635,636,638,641,645,647,648,650,653,654,657,660,662,663,665,667,675,676,688,693,697,698,704,705,707,708,710,714,716,719,722,725,730,734,735,736,743,747,748,749,753,755,757,758,759,764,767,768,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,8,9,11,12,16,18,23,26,28,38,40,43,44,50,51,53,55,56,58,59,60,66,70,73,76,81,83,84,87,92,93,94,96,100,103,109,110,113,114,115,119,120,124,126,127,129,132,134,136,138,145,147,150,152,156,163,165,168,170,172,173,180,184,187,188,190,194,195,197,198,202,203,206,210,216,220,222,223,227,230,232,234,236,238,241,242,244,249,252,255,260,263,265,269,275,279,280,283,287,288,289,291,292,295,299,301,307,311,312,318,319,323,325,326,330,331,335,338,342,346,350,351,356,357,358,363,364,366,367,370,372,374,378,379,385,386,389,391,396,397,408,414,416,418,420,421,425,426,431,432,433,434,435,436,439,441,443,445,447,448,450,452,455,456,458,463,465,467,469,471,473,476,478,479,481,482,483,486,489,497,499,502,504,506,509,510,511,512,513,514,516,519,520,524,525,527,529,531,535,538,540,541,543,546,548,550,556,557,559,561,562,565,571,572,574,575,578,581,584,586,589,590,592,595,596,601,604,609,610,612,614,615,618,620,622,624,626,628,631,632,635,636,638,641,645,647,648,650,653,654,657,660,662,663,665,667,675,676,688,693,697,698,704,705,707,708,710,714,716,719,722,725,730,734,735,736,743,747,748,749,753,755,757,758,759,764,767,768,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,8,9,11,12,16,18,23,26,28,38,40,43,44,50,51,53,55,56,58,59,60,66,70,73,76,81,83,84,87,92,93,94,96,100,103,109,110,113,114,115,119,120,124,126,127,129,132,134,136,138,145,147,150,152,156,163,165,168,170,172,173,180,184,187,188,190,194,195,197,198,202,203,206,210,216,220,222,223,227,230,232,234,236,238,241,242,244,249,252,255,260,263,265,269,275,279,280,283,287,288,289,291,292,295,299,301,307,311,312,318,319,323,325,326,330,331,335,338,342,346,350,351,356,357,358,363,364,366,367,370,372,374,378,379,385,386,389,391,396,397,408,414,416,418,420,421,425,426,431,432,433,434,435,436,439,441,443,445,447,448,450,452,455,456,458,463,465,467,469,471,473,476,478,479,481,482,483,486,489,497,499,502,504,506,509,510,511,512,513,514,516,519,520,524,525,527,529,531,535,538,540,541,543,546,548,550,556,557,559,561,562,565,571,572,574,575,578,581,584,586,589,590,592,595,596,601,604,609,610,612,614,615,618,620,622,624,626,628,631,632,635,636,638,641,645,647,648,650,653,654,657,660,662,663,665,667,675,676,688,693,697,698,704,705,707,708,710,714,716,719,722,725,730,734,735,736,743,747,748,749,753,755,757,758,759,764,767,768,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,16,19,20,21,22,24,27,29,31,35,38,39,40,47,51,53,55,56,60,61,63,65,70,74,75,77,79,80,81,89,90,92,93,95,96,98,99,102,105,108,113,114,115,117,119,121,122,128,130,136,137,138,140,142,144,147,151,152,154,158,160,162,164,165,167,170,176,179,183,184,186,199,201,205,207,209,211,212,216,218,223,225,229,230,231,238,240,241,244,245,247,248,251,252,253,255,257,259,263,265,266,268,269,271,272,277,278,279,283,288,290,292,294,296,298,299,301,308,310,311,314,322,324,325,327,329,337,338,343,348,351,354,356,360,363,366,371,373,376,377,378,383,387,394,397,401,402,405,410,412,414,415,416,417,420,423,427,428,430,431,432,434,435,436,439,442,446,448,451,454,456,458,459,464,465,467,469,474,476,478,480,483,484,487,488,492,498,503,504,506,507,509,511,515,517,519,521,526,531,533,534,538,541,544,545,548,549,551,554,556,557,558,562,566,570,573,574,577,578,579,580,581,583,584,593,596,602,606,608,610,611,623,624,633,635,636,638,639,642,645,649,653,658,659,662,663,664,667,670,672,679,687,691,695,697,698,702,708,710,712,715,716,720,722,723,725,726,728,732,737,740,745,750,752,753,755,756,764,765,767,768,769,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,16,19,20,21,22,24,27,29,31,35,38,39,40,47,51,53,55,56,60,61,63,65,70,74,75,77,79,80,81,89,90,92,93,95,96,98,99,102,105,108,113,114,115,117,119,121,122,128,130,136,137,138,140,142,144,147,151,152,154,158,160,162,164,165,167,170,176,179,183,184,186,199,201,205,207,209,211,212,216,218,223,225,229,230,231,238,240,241,244,245,247,248,251,252,253,255,257,259,263,265,266,268,269,271,272,277,278,279,283,288,290,292,294,296,298,299,301,308,310,311,314,322,324,325,327,329,337,338,343,348,351,354,356,360,363,366,371,373,376,377,378,383,387,394,397,401,402,405,410,412,414,415,416,417,420,423,427,428,430,431,432,434,435,436,439,442,446,448,451,454,456,458,459,464,465,467,469,474,476,478,480,483,484,487,488,492,498,503,504,506,507,509,511,515,517,519,521,526,531,533,534,538,541,544,545,548,549,551,554,556,557,558,562,566,570,573,574,577,578,579,580,581,583,584,593,596,602,606,608,610,611,623,624,633,635,636,638,639,642,645,649,653,658,659,662,663,664,667,670,672,679,687,691,695,697,698,702,708,710,712,715,716,720,722,723,725,726,728,732,737,740,745,750,752,753,755,756,764,765,767,768,769,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,5,7,16,19,20,21,22,24,27,29,31,35,38,39,40,47,51,53,55,56,60,61,63,65,70,74,75,77,79,80,81,89,90,92,93,95,96,98,99,102,105,108,113,114,115,117,119,121,122,128,130,136,137,138,140,142,144,147,151,152,154,158,160,162,164,165,167,170,176,179,183,184,186,199,201,205,207,209,211,212,216,218,223,225,229,230,231,238,240,241,244,245,247,248,251,252,253,255,257,259,263,265,266,268,269,271,272,277,278,279,283,288,290,292,294,296,298,299,301,308,310,311,314,322,324,325,327,329,337,338,343,348,351,354,356,360,363,366,371,373,376,377,378,383,387,394,397,401,402,405,410,412,414,415,416,417,420,423,427,428,430,431,432,434,435,436,439,442,446,448,451,454,456,458,459,464,465,467,469,474,476,478,480,483,484,487,488,492,498,503,504,506,507,509,511,515,517,519,521,526,531,533,534,538,541,544,545,548,549,551,554,556,557,558,562,566,570,573,574,577,578,579,580,581,583,584,593,596,602,606,608,610,611,623,624,633,635,636,638,639,642,645,649,653,658,659,662,663,664,667,670,672,679,687,691,695,697,698,702,708,710,712,715,716,720,722,723,725,726,728,732,737,740,745,750,752,753,755,756,764,765,767,768,769,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,14,17,22,25,34,35,38,39,44,48,49,56,57,59,60,62,65,68,70,72,74,75,77,79,80,81,84,86,89,90,91,93,95,98,103,105,108,110,111,112,115,116,117,119,121,126,131,136,139,143,146,148,150,152,153,164,172,175,176,177,179,181,182,183,186,187,188,190,195,196,197,199,200,201,205,206,214,218,219,221,223,230,232,234,238,240,244,245,250,251,255,270,273,275,282,284,287,288,294,299,300,303,305,309,310,317,320,323,325,326,329,333,334,336,340,342,343,345,346,348,351,352,353,355,358,360,361,365,369,377,378,379,389,390,395,397,398,399,402,407,411,414,418,420,421,422,424,426,429,430,435,436,442,445,446,452,454,457,458,460,462,465,466,471,474,475,483,488,491,492,493,499,503,506,508,510,512,513,517,521,524,528,531,533,534,535,536,542,547,550,554,557,563,564,565,568,574,579,580,583,584,585,587,589,591,593,594,595,598,600,603,605,608,609,611,615,616,618,619,621,624,627,633,636,638,641,642,645,646,648,655,660,661,663,667,677,683,686,687,689,694,695,696,699,701,702,703,704,709,710,711,715,717,718,723,724,728,734,738,740,741,743,746,751,755,760,762,763,765,769,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,14,17,22,25,34,35,38,39,44,48,49,56,57,59,60,62,65,68,70,72,74,75,77,79,80,81,84,86,89,90,91,93,95,98,103,105,108,110,111,112,115,116,117,119,121,126,131,136,139,143,146,148,150,152,153,164,172,175,176,177,179,181,182,183,186,187,188,190,195,196,197,199,200,201,205,206,214,218,219,221,223,230,232,234,238,240,244,245,250,251,255,270,273,275,282,284,287,288,294,299,300,303,305,309,310,317,320,323,325,326,329,333,334,336,340,342,343,345,346,348,351,352,353,355,358,360,361,365,369,377,378,379,389,390,395,397,398,399,402,407,411,414,418,420,421,422,424,426,429,430,435,436,442,445,446,452,454,457,458,460,462,465,466,471,474,475,483,488,491,492,493,499,503,506,508,510,512,513,517,521,524,528,531,533,534,535,536,542,547,550,554,557,563,564,565,568,574,579,580,583,584,585,587,589,591,593,594,595,598,600,603,605,608,609,611,615,616,618,619,621,624,627,633,636,638,641,642,645,646,648,655,660,661,663,667,677,683,686,687,689,694,695,696,699,701,702,703,704,709,710,711,715,717,718,723,724,728,734,738,740,741,743,746,751,755,760,762,763,765,769,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,14,17,22,25,34,35,38,39,44,48,49,56,57,59,60,62,65,68,70,72,74,75,77,79,80,81,84,86,89,90,91,93,95,98,103,105,108,110,111,112,115,116,117,119,121,126,131,136,139,143,146,148,150,152,153,164,172,175,176,177,179,181,182,183,186,187,188,190,195,196,197,199,200,201,205,206,214,218,219,221,223,230,232,234,238,240,244,245,250,251,255,270,273,275,282,284,287,288,294,299,300,303,305,309,310,317,320,323,325,326,329,333,334,336,340,342,343,345,346,348,351,352,353,355,358,360,361,365,369,377,378,379,389,390,395,397,398,399,402,407,411,414,418,420,421,422,424,426,429,430,435,436,442,445,446,452,454,457,458,460,462,465,466,471,474,475,483,488,491,492,493,499,503,506,508,510,512,513,517,521,524,528,531,533,534,535,536,542,547,550,554,557,563,564,565,568,574,579,580,583,584,585,587,589,591,593,594,595,598,600,603,605,608,609,611,615,616,618,619,621,624,627,633,636,638,641,642,645,646,648,655,660,661,663,667,677,683,686,687,689,694,695,696,699,701,702,703,704,709,710,711,715,717,718,723,724,728,734,738,740,741,743,746,751,755,760,762,763,765,769,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,11,15,17,21,26,27,33,34,35,37,38,43,46,50,52,55,56,58,71,73,74,76,78,79,80,81,83,85,89,91,96,105,109,110,111,114,117,118,126,127,130,132,134,137,138,140,141,145,147,149,155,157,158,160,162,163,166,169,170,171,174,177,178,179,181,184,185,186,189,191,193,196,197,198,200,202,204,210,213,215,224,228,229,232,235,240,241,242,244,246,250,253,256,257,262,263,267,268,273,274,276,281,283,286,297,300,304,305,306,313,316,317,320,324,326,328,333,334,336,338,339,341,350,351,354,362,365,368,371,373,377,378,380,382,384,385,388,390,391,394,398,399,401,406,407,409,411,414,423,425,427,429,431,433,434,438,439,440,441,444,445,449,450,451,455,458,462,463,465,469,474,475,480,484,486,494,497,498,502,504,508,510,512,513,514,519,523,525,529,530,531,535,536,540,551,553,558,560,563,565,566,568,572,573,585,586,588,590,597,601,603,604,605,608,609,611,616,619,620,621,625,626,627,628,631,635,638,639,641,647,652,656,658,659,660,662,663,667,669,672,679,681,684,686,688,689,690,693,694,701,702,705,707,711,718,720,721,724,727,728,731,736,737,739,741,748,751,753,754,755,757,762,764,765,766,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,11,15,17,21,26,27,33,34,35,37,38,43,46,50,52,55,56,58,71,73,74,76,78,79,80,81,83,85,89,91,96,105,109,110,111,114,117,118,126,127,130,132,134,137,138,140,141,145,147,149,155,157,158,160,162,163,166,169,170,171,174,177,178,179,181,184,185,186,189,191,193,196,197,198,200,202,204,210,213,215,224,228,229,232,235,240,241,242,244,246,250,253,256,257,262,263,267,268,273,274,276,281,283,286,297,300,304,305,306,313,316,317,320,324,326,328,333,334,336,338,339,341,350,351,354,362,365,368,371,373,377,378,380,382,384,385,388,390,391,394,398,399,401,406,407,409,411,414,423,425,427,429,431,433,434,438,439,440,441,444,445,449,450,451,455,458,462,463,465,469,474,475,480,484,486,494,497,498,502,504,508,510,512,513,514,519,523,525,529,530,531,535,536,540,551,553,558,560,563,565,566,568,572,573,585,586,588,590,597,601,603,604,605,608,609,611,616,619,620,621,625,626,627,628,631,635,638,639,641,647,652,656,658,659,660,662,663,667,669,672,679,681,684,686,688,689,690,693,694,701,702,705,707,711,718,720,721,724,727,728,731,736,737,739,741,748,751,753,754,755,757,762,764,765,766,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,3,6,7,11,15,17,21,26,27,33,34,35,37,38,43,46,50,52,55,56,58,71,73,74,76,78,79,80,81,83,85,89,91,96,105,109,110,111,114,117,118,126,127,130,132,134,137,138,140,141,145,147,149,155,157,158,160,162,163,166,169,170,171,174,177,178,179,181,184,185,186,189,191,193,196,197,198,200,202,204,210,213,215,224,228,229,232,235,240,241,242,244,246,250,253,256,257,262,263,267,268,273,274,276,281,283,286,297,300,304,305,306,313,316,317,320,324,326,328,333,334,336,338,339,341,350,351,354,362,365,368,371,373,377,378,380,382,384,385,388,390,391,394,398,399,401,406,407,409,411,414,423,425,427,429,431,433,434,438,439,440,441,444,445,449,450,451,455,458,462,463,465,469,474,475,480,484,486,494,497,498,502,504,508,510,512,513,514,519,523,525,529,530,531,535,536,540,551,553,558,560,563,565,566,568,572,573,585,586,588,590,597,601,603,604,605,608,609,611,616,619,620,621,625,626,627,628,631,635,638,639,641,647,652,656,658,659,660,662,663,667,669,672,679,681,684,686,688,689,690,693,694,701,702,705,707,711,718,720,721,724,727,728,731,736,737,739,741,748,751,753,754,755,757,762,764,765,766,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,6,12,13,16,17,19,24,29,30,32,36,38,41,42,44,48,52,57,61,62,63,67,69,71,72,75,77,81,83,86,88,89,91,92,94,98,100,106,117,123,126,133,134,137,140,142,143,144,148,153,160,162,163,164,166,170,171,175,178,182,184,188,190,191,196,200,203,205,206,207,208,209,211,214,219,223,224,228,235,236,237,239,243,246,248,251,252,253,255,262,265,266,269,270,275,277,279,284,286,287,289,290,292,294,296,297,298,299,300,306,308,311,312,319,322,325,328,331,332,335,337,338,341,342,344,345,346,348,351,353,355,359,360,361,363,365,366,367,368,369,372,375,377,380,389,392,395,397,398,400,402,406,408,409,412,415,420,424,427,430,431,434,436,445,448,450,452,455,456,459,460,467,468,470,471,472,475,479,480,482,485,487,494,495,496,497,501,503,504,506,509,510,512,514,519,521,525,534,536,539,541,545,547,548,549,552,555,556,558,561,566,568,575,581,582,583,587,588,589,594,599,604,608,610,611,614,617,618,620,621,623,625,626,629,631,632,635,638,639,641,644,646,648,649,651,653,654,657,660,666,667,672,674,675,678,682,683,687,688,691,693,695,699,707,709,710,715,717,720,723,725,729,730,732,733,737,740,742,745,746,749,752,754,755,758,759,762,763,766,768,771,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,6,12,13,16,17,19,24,29,30,32,36,38,41,42,44,48,52,57,61,62,63,67,69,71,72,75,77,81,83,86,88,89,91,92,94,98,100,106,117,123,126,133,134,137,140,142,143,144,148,153,160,162,163,164,166,170,171,175,178,182,184,188,190,191,196,200,203,205,206,207,208,209,211,214,219,223,224,228,235,236,237,239,243,246,248,251,252,253,255,262,265,266,269,270,275,277,279,284,286,287,289,290,292,294,296,297,298,299,300,306,308,311,312,319,322,325,328,331,332,335,337,338,341,342,344,345,346,348,351,353,355,359,360,361,363,365,366,367,368,369,372,375,377,380,389,392,395,397,398,400,402,406,408,409,412,415,420,424,427,430,431,434,436,445,448,450,452,455,456,459,460,467,468,470,471,472,475,479,480,482,485,487,494,495,496,497,501,503,504,506,509,510,512,514,519,521,525,534,536,539,541,545,547,548,549,552,555,556,558,561,566,568,575,581,582,583,587,588,589,594,599,604,608,610,611,614,617,618,620,621,623,625,626,629,631,632,635,638,639,641,644,646,648,649,651,653,654,657,660,666,667,672,674,675,678,682,683,687,688,691,693,695,699,707,709,710,715,717,720,723,725,729,730,732,733,737,740,742,745,746,749,752,754,755,758,759,762,763,766,768,771,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,6,12,13,16,17,19,24,29,30,32,36,38,41,42,44,48,52,57,61,62,63,67,69,71,72,75,77,81,83,86,88,89,91,92,94,98,100,106,117,123,126,133,134,137,140,142,143,144,148,153,160,162,163,164,166,170,171,175,178,182,184,188,190,191,196,200,203,205,206,207,208,209,211,214,219,223,224,228,235,236,237,239,243,246,248,251,252,253,255,262,265,266,269,270,275,277,279,284,286,287,289,290,292,294,296,297,298,299,300,306,308,311,312,319,322,325,328,331,332,335,337,338,341,342,344,345,346,348,351,353,355,359,360,361,363,365,366,367,368,369,372,375,377,380,389,392,395,397,398,400,402,406,408,409,412,415,420,424,427,430,431,434,436,445,448,450,452,455,456,459,460,467,468,470,471,472,475,479,480,482,485,487,494,495,496,497,501,503,504,506,509,510,512,514,519,521,525,534,536,539,541,545,547,548,549,552,555,556,558,561,566,568,575,581,582,583,587,588,589,594,599,604,608,610,611,614,617,618,620,621,623,625,626,629,631,632,635,638,639,641,644,646,648,649,651,653,654,657,660,666,667,672,674,675,678,682,683,687,688,691,693,695,699,707,709,710,715,717,720,723,725,729,730,732,733,737,740,742,745,746,749,752,754,755,758,759,762,763,766,768,771,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,5,7,9,11,14,16,24,32,34,36,37,42,45,47,50,52,54,58,59,65,68,69,71,73,75,77,80,81,83,94,96,97,103,109,115,119,120,124,126,127,130,133,135,138,142,148,150,152,156,159,160,162,166,167,173,176,177,178,181,184,185,187,190,192,197,198,202,203,207,210,211,218,223,224,225,229,230,232,235,237,239,240,246,248,249,252,257,260,266,268,269,279,281,283,287,290,293,295,296,299,301,304,305,308,310,312,313,316,330,332,341,343,347,349,351,352,353,360,362,366,368,369,371,379,382,383,386,387,391,393,395,398,399,400,407,412,414,417,418,420,422,424,426,433,435,440,441,442,446,450,451,452,454,455,459,462,465,466,472,475,477,478,481,488,489,491,492,493,504,508,511,512,514,517,518,525,530,532,536,537,544,547,549,550,551,553,555,558,563,565,568,571,572,574,577,578,582,587,590,593,595,598,603,605,607,609,612,617,620,621,622,623,624,626,634,637,642,647,648,652,654,657,658,661,663,665,668,675,680,681,682,684,686,696,697,698,700,702,704,705,706,712,714,715,716,719,722,724,726,728,729,731,732,736,739,744,746,748,751,752,754,755,759,763,767,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,5,7,9,11,14,16,24,32,34,36,37,42,45,47,50,52,54,58,59,65,68,69,71,73,75,77,80,81,83,94,96,97,103,109,115,119,120,124,126,127,130,133,135,138,142,148,150,152,156,159,160,162,166,167,173,176,177,178,181,184,185,187,190,192,197,198,202,203,207,210,211,218,223,224,225,229,230,232,235,237,239,240,246,248,249,252,257,260,266,268,269,279,281,283,287,290,293,295,296,299,301,304,305,308,310,312,313,316,330,332,341,343,347,349,351,352,353,360,362,366,368,369,371,379,382,383,386,387,391,393,395,398,399,400,407,412,414,417,418,420,422,424,426,433,435,440,441,442,446,450,451,452,454,455,459,462,465,466,472,475,477,478,481,488,489,491,492,493,504,508,511,512,514,517,518,525,530,532,536,537,544,547,549,550,551,553,555,558,563,565,568,571,572,574,577,578,582,587,590,593,595,598,603,605,607,609,612,617,620,621,622,623,624,626,634,637,642,647,648,652,654,657,658,661,663,665,668,675,680,681,682,684,686,696,697,698,700,702,704,705,706,712,714,715,716,719,722,724,726,728,729,731,732,736,739,744,746,748,751,752,754,755,759,763,767,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,5,7,9,11,14,16,24,32,34,36,37,42,45,47,50,52,54,58,59,65,68,69,71,73,75,77,80,81,83,94,96,97,103,109,115,119,120,124,126,127,130,133,135,138,142,148,150,152,156,159,160,162,166,167,173,176,177,178,181,184,185,187,190,192,197,198,202,203,207,210,211,218,223,224,225,229,230,232,235,237,239,240,246,248,249,252,257,260,266,268,269,279,281,283,287,290,293,295,296,299,301,304,305,308,310,312,313,316,330,332,341,343,347,349,351,352,353,360,362,366,368,369,371,379,382,383,386,387,391,393,395,398,399,400,407,412,414,417,418,420,422,424,426,433,435,440,441,442,446,450,451,452,454,455,459,462,465,466,472,475,477,478,481,488,489,491,492,493,504,508,511,512,514,517,518,525,530,532,536,537,544,547,549,550,551,553,555,558,563,565,568,571,572,574,577,578,582,587,590,593,595,598,603,605,607,609,612,617,620,621,622,623,624,626,634,637,642,647,648,652,654,657,658,661,663,665,668,675,680,681,682,684,686,696,697,698,700,702,704,705,706,712,714,715,716,719,722,724,726,728,729,731,732,736,739,744,746,748,751,752,754,755,759,763,767,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,18,20,22,23,27,30,32,34,37,41,44,45,47,49,54,55,60,61,69,70,72,74,75,78,80,85,86,93,94,99,100,102,104,107,112,116,117,120,123,125,133,135,136,138,141,144,145,148,152,155,156,157,159,160,166,170,172,177,181,183,184,185,187,189,196,197,198,201,202,206,208,211,213,218,220,223,224,228,229,230,235,237,246,247,253,255,257,259,261,262,263,265,268,269,272,273,278,280,282,283,289,291,293,296,301,310,314,315,318,320,323,324,326,330,334,337,339,342,343,345,348,351,355,357,358,360,362,366,371,372,374,379,382,388,391,392,394,396,400,408,411,413,415,419,421,423,424,426,427,428,431,433,434,436,440,442,445,446,447,451,452,456,458,459,460,462,463,465,468,470,471,473,475,479,482,483,485,486,489,491,493,496,498,501,503,505,507,509,510,516,519,525,526,531,532,535,539,542,543,544,546,551,554,555,557,558,559,562,567,569,571,572,575,577,578,580,585,586,589,590,592,593,594,596,600,601,602,603,606,609,610,612,615,620,621,623,625,627,629,632,633,634,637,638,639,644,647,651,653,656,657,658,660,662,663,665,668,669,674,677,678,680,681,690,691,694,697,701,707,708,710,716,717,721,722,724,725,728,730,731,736,737,743,749,752,757,758,763,764,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,18,20,22,23,27,30,32,34,37,41,44,45,47,49,54,55,60,61,69,70,72,74,75,78,80,85,86,93,94,99,100,102,104,107,112,116,117,120,123,125,133,135,136,138,141,144,145,148,152,155,156,157,159,160,166,170,172,177,181,183,184,185,187,189,196,197,198,201,202,206,208,211,213,218,220,223,224,228,229,230,235,237,246,247,253,255,257,259,261,262,263,265,268,269,272,273,278,280,282,283,289,291,293,296,301,310,314,315,318,320,323,324,326,330,334,337,339,342,343,345,348,351,355,357,358,360,362,366,371,372,374,379,382,388,391,392,394,396,400,408,411,413,415,419,421,423,424,426,427,428,431,433,434,436,440,442,445,446,447,451,452,456,458,459,460,462,463,465,468,470,471,473,475,479,482,483,485,486,489,491,493,496,498,501,503,505,507,509,510,516,519,525,526,531,532,535,539,542,543,544,546,551,554,555,557,558,559,562,567,569,571,572,575,577,578,580,585,586,589,590,592,593,594,596,600,601,602,603,606,609,610,612,615,620,621,623,625,627,629,632,633,634,637,638,639,644,647,651,653,656,657,658,660,662,663,665,668,669,674,677,678,680,681,690,691,694,697,701,707,708,710,716,717,721,722,724,725,728,730,731,736,737,743,749,752,757,758,763,764,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,18,20,22,23,27,30,32,34,37,41,44,45,47,49,54,55,60,61,69,70,72,74,75,78,80,85,86,93,94,99,100,102,104,107,112,116,117,120,123,125,133,135,136,138,141,144,145,148,152,155,156,157,159,160,166,170,172,177,181,183,184,185,187,189,196,197,198,201,202,206,208,211,213,218,220,223,224,228,229,230,235,237,246,247,253,255,257,259,261,262,263,265,268,269,272,273,278,280,282,283,289,291,293,296,301,310,314,315,318,320,323,324,326,330,334,337,339,342,343,345,348,351,355,357,358,360,362,366,371,372,374,379,382,388,391,392,394,396,400,408,411,413,415,419,421,423,424,426,427,428,431,433,434,436,440,442,445,446,447,451,452,456,458,459,460,462,463,465,468,470,471,473,475,479,482,483,485,486,489,491,493,496,498,501,503,505,507,509,510,516,519,525,526,531,532,535,539,542,543,544,546,551,554,555,557,558,559,562,567,569,571,572,575,577,578,580,585,586,589,590,592,593,594,596,600,601,602,603,606,609,610,612,615,620,621,623,625,627,629,632,633,634,637,638,639,644,647,651,653,656,657,658,660,662,663,665,668,669,674,677,678,680,681,690,691,694,697,701,707,708,710,716,717,721,722,724,725,728,730,731,736,737,743,749,752,757,758,763,764,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,14,20,21,27,28,29,32,36,38,39,42,46,49,52,53,54,58,60,64,68,72,78,80,81,83,84,86,87,90,95,96,99,101,102,107,109,124,125,128,133,134,136,137,138,141,142,147,151,152,155,156,158,159,160,162,163,166,167,168,169,173,175,179,182,183,187,188,192,194,196,203,204,206,208,219,221,222,224,225,227,231,234,239,240,244,247,250,251,257,259,260,262,264,267,269,272,273,277,279,282,285,287,288,289,291,297,299,300,306,307,308,316,319,321,322,326,329,331,341,344,346,347,350,352,353,355,357,359,361,364,366,368,370,371,380,381,383,387,389,390,392,393,409,411,412,417,418,419,425,427,429,431,432,437,441,442,443,445,448,450,456,459,460,470,471,475,477,478,479,481,484,491,496,497,499,500,501,508,511,513,514,516,521,527,530,531,535,538,542,549,554,555,557,558,559,561,563,567,569,576,579,580,581,582,586,587,589,596,600,602,604,607,609,612,613,615,616,619,620,622,624,626,628,631,632,633,637,641,646,648,650,653,657,662,667,669,671,673,675,677,679,681,684,690,691,694,696,698,702,704,708,711,713,714,717,718,723,727,729,733,734,738,742,743,744,745,746,748,751,752,754,755,757,759,760,762,764,766,768,770,771,773,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,14,20,21,27,28,29,32,36,38,39,42,46,49,52,53,54,58,60,64,68,72,78,80,81,83,84,86,87,90,95,96,99,101,102,107,109,124,125,128,133,134,136,137,138,141,142,147,151,152,155,156,158,159,160,162,163,166,167,168,169,173,175,179,182,183,187,188,192,194,196,203,204,206,208,219,221,222,224,225,227,231,234,239,240,244,247,250,251,257,259,260,262,264,267,269,272,273,277,279,282,285,287,288,289,291,297,299,300,306,307,308,316,319,321,322,326,329,331,341,344,346,347,350,352,353,355,357,359,361,364,366,368,370,371,380,381,383,387,389,390,392,393,409,411,412,417,418,419,425,427,429,431,432,437,441,442,443,445,448,450,456,459,460,470,471,475,477,478,479,481,484,491,496,497,499,500,501,508,511,513,514,516,521,527,530,531,535,538,542,549,554,555,557,558,559,561,563,567,569,576,579,580,581,582,586,587,589,596,600,602,604,607,609,612,613,615,616,619,620,622,624,626,628,631,632,633,637,641,646,648,650,653,657,662,667,669,671,673,675,677,679,681,684,690,691,694,696,698,702,704,708,711,713,714,717,718,723,727,729,733,734,738,742,743,744,745,746,748,751,752,754,755,757,759,760,762,764,766,768,770,771,773,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 6,10,11,14,20,21,27,28,29,32,36,38,39,42,46,49,52,53,54,58,60,64,68,72,78,80,81,83,84,86,87,90,95,96,99,101,102,107,109,124,125,128,133,134,136,137,138,141,142,147,151,152,155,156,158,159,160,162,163,166,167,168,169,173,175,179,182,183,187,188,192,194,196,203,204,206,208,219,221,222,224,225,227,231,234,239,240,244,247,250,251,257,259,260,262,264,267,269,272,273,277,279,282,285,287,288,289,291,297,299,300,306,307,308,316,319,321,322,326,329,331,341,344,346,347,350,352,353,355,357,359,361,364,366,368,370,371,380,381,383,387,389,390,392,393,409,411,412,417,418,419,425,427,429,431,432,437,441,442,443,445,448,450,456,459,460,470,471,475,477,478,479,481,484,491,496,497,499,500,501,508,511,513,514,516,521,527,530,531,535,538,542,549,554,555,557,558,559,561,563,567,569,576,579,580,581,582,586,587,589,596,600,602,604,607,609,612,613,615,616,619,620,622,624,626,628,631,632,633,637,641,646,648,650,653,657,662,667,669,671,673,675,677,679,681,684,690,691,694,696,698,702,704,708,711,713,714,717,718,723,727,729,733,734,738,742,743,744,745,746,748,751,752,754,755,757,759,760,762,764,766,768,770,771,773,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,10,15,16,19,20,22,24,27,30,35,36,38,40,42,44,46,47,49,50,52,56,61,64,68,70,74,76,80,86,89,90,106,107,108,109,111,112,116,118,119,125,130,131,136,139,141,143,144,145,149,150,153,155,157,160,164,165,170,172,173,175,177,178,181,182,185,187,191,192,197,201,208,210,211,213,216,218,219,223,229,231,233,235,236,239,241,243,247,249,252,255,257,260,262,263,265,267,269,277,279,280,285,287,288,292,294,297,298,300,302,304,305,307,310,313,315,317,318,319,322,324,325,329,333,336,347,349,350,352,353,356,359,363,372,373,377,381,384,389,392,396,398,399,400,401,403,407,408,410,414,419,421,423,427,429,434,435,436,438,440,444,449,450,452,453,456,459,460,461,464,468,471,474,478,480,486,489,491,493,494,496,498,499,501,502,503,505,507,509,512,514,516,528,532,534,537,543,544,547,548,550,551,556,560,563,565,571,573,574,581,586,589,592,593,594,595,599,601,604,607,611,612,616,617,619,621,624,627,629,633,636,639,642,647,651,653,656,657,661,663,664,667,670,671,676,678,684,689,690,694,699,704,708,711,712,713,718,720,721,725,727,729,733,735,736,738,741,742,746,747,748,751,755,757,761,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,10,15,16,19,20,22,24,27,30,35,36,38,40,42,44,46,47,49,50,52,56,61,64,68,70,74,76,80,86,89,90,106,107,108,109,111,112,116,118,119,125,130,131,136,139,141,143,144,145,149,150,153,155,157,160,164,165,170,172,173,175,177,178,181,182,185,187,191,192,197,201,208,210,211,213,216,218,219,223,229,231,233,235,236,239,241,243,247,249,252,255,257,260,262,263,265,267,269,277,279,280,285,287,288,292,294,297,298,300,302,304,305,307,310,313,315,317,318,319,322,324,325,329,333,336,347,349,350,352,353,356,359,363,372,373,377,381,384,389,392,396,398,399,400,401,403,407,408,410,414,419,421,423,427,429,434,435,436,438,440,444,449,450,452,453,456,459,460,461,464,468,471,474,478,480,486,489,491,493,494,496,498,499,501,502,503,505,507,509,512,514,516,528,532,534,537,543,544,547,548,550,551,556,560,563,565,571,573,574,581,586,589,592,593,594,595,599,601,604,607,611,612,616,617,619,621,624,627,629,633,636,639,642,647,651,653,656,657,661,663,664,667,670,671,676,678,684,689,690,694,699,704,708,711,712,713,718,720,721,725,727,729,733,735,736,738,741,742,746,747,748,751,755,757,761,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,10,15,16,19,20,22,24,27,30,35,36,38,40,42,44,46,47,49,50,52,56,61,64,68,70,74,76,80,86,89,90,106,107,108,109,111,112,116,118,119,125,130,131,136,139,141,143,144,145,149,150,153,155,157,160,164,165,170,172,173,175,177,178,181,182,185,187,191,192,197,201,208,210,211,213,216,218,219,223,229,231,233,235,236,239,241,243,247,249,252,255,257,260,262,263,265,267,269,277,279,280,285,287,288,292,294,297,298,300,302,304,305,307,310,313,315,317,318,319,322,324,325,329,333,336,347,349,350,352,353,356,359,363,372,373,377,381,384,389,392,396,398,399,400,401,403,407,408,410,414,419,421,423,427,429,434,435,436,438,440,444,449,450,452,453,456,459,460,461,464,468,471,474,478,480,486,489,491,493,494,496,498,499,501,502,503,505,507,509,512,514,516,528,532,534,537,543,544,547,548,550,551,556,560,563,565,571,573,574,581,586,589,592,593,594,595,599,601,604,607,611,612,616,617,619,621,624,627,629,633,636,639,642,647,651,653,656,657,661,663,664,667,670,671,676,678,684,689,690,694,699,704,708,711,712,713,718,720,721,725,727,729,733,735,736,738,741,742,746,747,748,751,755,757,761,767,768,771,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,9,11,14,16,17,24,27,28,31,32,34,39,41,45,48,51,55,57,58,63,64,66,69,71,73,79,81,86,91,92,93,96,104,107,109,111,113,114,115,116,120,122,124,126,133,135,141,144,145,146,147,149,151,152,156,158,160,163,167,168,170,172,174,176,179,180,182,186,187,188,189,191,192,194,196,197,198,200,202,203,205,207,209,212,217,218,221,224,226,233,236,237,239,240,242,243,245,248,249,250,252,257,262,263,265,267,269,276,277,279,283,289,290,292,298,299,301,303,305,310,313,315,316,323,325,329,340,341,345,349,350,352,353,354,355,357,358,363,365,367,370,371,372,374,375,378,381,384,387,388,393,394,396,398,399,400,403,412,419,421,423,425,427,428,430,431,435,437,439,442,445,447,452,454,465,471,473,476,478,480,483,484,485,486,497,500,502,503,508,510,516,518,520,521,523,525,530,531,532,534,537,542,545,548,549,554,556,558,560,564,570,571,572,576,583,585,586,590,591,600,601,603,605,606,610,614,616,617,622,624,629,631,635,638,640,643,646,648,650,652,658,660,662,667,668,672,673,676,677,682,683,685,688,693,695,700,701,703,707,708,709,711,712,718,719,721,722,724,725,727,729,730,734,737,740,745,748,749,754,757,758,759,761,762,765
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,9,11,14,16,17,24,27,28,31,32,34,39,41,45,48,51,55,57,58,63,64,66,69,71,73,79,81,86,91,92,93,96,104,107,109,111,113,114,115,116,120,122,124,126,133,135,141,144,145,146,147,149,151,152,156,158,160,163,167,168,170,172,174,176,179,180,182,186,187,188,189,191,192,194,196,197,198,200,202,203,205,207,209,212,217,218,221,224,226,233,236,237,239,240,242,243,245,248,249,250,252,257,262,263,265,267,269,276,277,279,283,289,290,292,298,299,301,303,305,310,313,315,316,323,325,329,340,341,345,349,350,352,353,354,355,357,358,363,365,367,370,371,372,374,375,378,381,384,387,388,393,394,396,398,399,400,403,412,419,421,423,425,427,428,430,431,435,437,439,442,445,447,452,454,465,471,473,476,478,480,483,484,485,486,497,500,502,503,508,510,516,518,520,521,523,525,530,531,532,534,537,542,545,548,549,554,556,558,560,564,570,571,572,576,583,585,586,590,591,600,601,603,605,606,610,614,616,617,622,624,629,631,635,638,640,643,646,648,650,652,658,660,662,667,668,672,673,676,677,682,683,685,688,693,695,700,701,703,707,708,709,711,712,718,719,721,722,724,725,727,729,730,734,737,740,745,748,749,754,757,758,759,761,762,765
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,5,9,11,14,16,17,24,27,28,31,32,34,39,41,45,48,51,55,57,58,63,64,66,69,71,73,79,81,86,91,92,93,96,104,107,109,111,113,114,115,116,120,122,124,126,133,135,141,144,145,146,147,149,151,152,156,158,160,163,167,168,170,172,174,176,179,180,182,186,187,188,189,191,192,194,196,197,198,200,202,203,205,207,209,212,217,218,221,224,226,233,236,237,239,240,242,243,245,248,249,250,252,257,262,263,265,267,269,276,277,279,283,289,290,292,298,299,301,303,305,310,313,315,316,323,325,329,340,341,345,349,350,352,353,354,355,357,358,363,365,367,370,371,372,374,375,378,381,384,387,388,393,394,396,398,399,400,403,412,419,421,423,425,427,428,430,431,435,437,439,442,445,447,452,454,465,471,473,476,478,480,483,484,485,486,497,500,502,503,508,510,516,518,520,521,523,525,530,531,532,534,537,542,545,548,549,554,556,558,560,564,570,571,572,576,583,585,586,590,591,600,601,603,605,606,610,614,616,617,622,624,629,631,635,638,640,643,646,648,650,652,658,660,662,667,668,672,673,676,677,682,683,685,688,693,695,700,701,703,707,708,709,711,712,718,719,721,722,724,725,727,729,730,734,737,740,745,748,749,754,757,758,759,761,762,765
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,14,19,22,23,24,26,27,30,34,35,37,39,40,44,45,47,50,54,61,63,65,67,71,72,74,75,79,81,84,88,92,94,98,108,111,118,120,123,124,127,130,132,133,135,137,143,144,147,151,153,157,158,159,160,162,164,167,169,176,178,179,185,190,193,197,198,200,202,203,207,211,214,217,219,221,224,226,227,236,238,239,243,244,245,246,251,261,266,268,270,272,273,275,277,278,279,281,282,285,287,289,292,294,295,296,298,301,302,303,305,311,315,318,321,322,324,325,327,328,330,331,332,334,337,341,347,348,352,355,361,362,365,366,368,370,372,373,379,383,384,387,389,394,396,397,405,406,408,409,410,411,412,415,418,421,422,426,431,432,434,435,437,438,440,442,444,449,451,453,454,456,457,461,462,466,470,471,472,477,478,480,483,484,485,491,494,496,497,499,500,502,503,507,508,511,513,514,516,520,522,524,525,527,529,531,533,535,538,542,543,546,549,550,552,559,564,566,569,570,573,581,586,587,588,590,592,596,598,602,604,605,606,610,614,616,617,623,625,629,632,633,636,639,640,643,644,646,651,652,653,655,658,669,670,673,674,675,676,683,687,688,690,691,695,697,703,706,707,713,718,719,721,726,730,731,735,739,742,746,750,751,752,758,765,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,14,19,22,23,24,26,27,30,34,35,37,39,40,44,45,47,50,54,61,63,65,67,71,72,74,75,79,81,84,88,92,94,98,108,111,118,120,123,124,127,130,132,133,135,137,143,144,147,151,153,157,158,159,160,162,164,167,169,176,178,179,185,190,193,197,198,200,202,203,207,211,214,217,219,221,224,226,227,236,238,239,243,244,245,246,251,261,266,268,270,272,273,275,277,278,279,281,282,285,287,289,292,294,295,296,298,301,302,303,305,311,315,318,321,322,324,325,327,328,330,331,332,334,337,341,347,348,352,355,361,362,365,366,368,370,372,373,379,383,384,387,389,394,396,397,405,406,408,409,410,411,412,415,418,421,422,426,431,432,434,435,437,438,440,442,444,449,451,453,454,456,457,461,462,466,470,471,472,477,478,480,483,484,485,491,494,496,497,499,500,502,503,507,508,511,513,514,516,520,522,524,525,527,529,531,533,535,538,542,543,546,549,550,552,559,564,566,569,570,573,581,586,587,588,590,592,596,598,602,604,605,606,610,614,616,617,623,625,629,632,633,636,639,640,643,644,646,651,652,653,655,658,669,670,673,674,675,676,683,687,688,690,691,695,697,703,706,707,713,718,719,721,726,730,731,735,739,742,746,750,751,752,758,765,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,4,6,14,19,22,23,24,26,27,30,34,35,37,39,40,44,45,47,50,54,61,63,65,67,71,72,74,75,79,81,84,88,92,94,98,108,111,118,120,123,124,127,130,132,133,135,137,143,144,147,151,153,157,158,159,160,162,164,167,169,176,178,179,185,190,193,197,198,200,202,203,207,211,214,217,219,221,224,226,227,236,238,239,243,244,245,246,251,261,266,268,270,272,273,275,277,278,279,281,282,285,287,289,292,294,295,296,298,301,302,303,305,311,315,318,321,322,324,325,327,328,330,331,332,334,337,341,347,348,352,355,361,362,365,366,368,370,372,373,379,383,384,387,389,394,396,397,405,406,408,409,410,411,412,415,418,421,422,426,431,432,434,435,437,438,440,442,444,449,451,453,454,456,457,461,462,466,470,471,472,477,478,480,483,484,485,491,494,496,497,499,500,502,503,507,508,511,513,514,516,520,522,524,525,527,529,531,533,535,538,542,543,546,549,550,552,559,564,566,569,570,573,581,586,587,588,590,592,596,598,602,604,605,606,610,614,616,617,623,625,629,632,633,636,639,640,643,644,646,651,652,653,655,658,669,670,673,674,675,676,683,687,688,690,691,695,697,703,706,707,713,718,719,721,726,730,731,735,739,742,746,750,751,752,758,765,767,768,769
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,8,9,10,12,17,19,22,23,25,26,27,29,33,34,35,37,38,41,46,47,49,51,56,59,60,63,66,69,74,76,78,79,80,84,85,91,93,95,98,100,103,106,107,110,112,114,117,118,120,121,123,125,127,130,134,135,138,140,141,142,145,147,151,152,155,158,159,164,167,169,173,175,178,179,182,184,187,191,193,194,195,200,202,205,208,210,212,214,215,221,223,225,228,231,233,236,238,243,244,251,256,258,260,264,269,270,273,278,280,286,288,290,293,299,304,306,307,309,312,315,323,325,327,329,330,332,333,334,337,339,343,345,349,350,351,352,355,361,365,377,378,380,382,383,385,388,390,392,393,394,399,403,405,406,409,411,415,421,425,429,430,438,441,442,443,445,447,448,449,452,454,458,463,464,470,473,474,479,483,484,489,491,492,493,494,497,498,499,503,508,510,513,515,519,521,522,525,526,528,531,532,536,537,540,541,543,545,547,548,549,550,554,558,561,562,567,571,578,579,580,582,586,587,590,592,596,598,599,601,604,605,608,611,614,615,616,622,624,626,627,629,631,634,636,638,643,648,651,652,655,656,662,664,666,668,671,676,677,681,683,686,688,689,693,699,701,702,705,707,709,710,712,713,716,728,729,730,733,736,737,740,742,744,745,747,749,752,753,758,759,761,763,768,769,771,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,8,9,10,12,17,19,22,23,25,26,27,29,33,34,35,37,38,41,46,47,49,51,56,59,60,63,66,69,74,76,78,79,80,84,85,91,93,95,98,100,103,106,107,110,112,114,117,118,120,121,123,125,127,130,134,135,138,140,141,142,145,147,151,152,155,158,159,164,167,169,173,175,178,179,182,184,187,191,193,194,195,200,202,205,208,210,212,214,215,221,223,225,228,231,233,236,238,243,244,251,256,258,260,264,269,270,273,278,280,286,288,290,293,299,304,306,307,309,312,315,323,325,327,329,330,332,333,334,337,339,343,345,349,350,351,352,355,361,365,377,378,380,382,383,385,388,390,392,393,394,399,403,405,406,409,411,415,421,425,429,430,438,441,442,443,445,447,448,449,452,454,458,463,464,470,473,474,479,483,484,489,491,492,493,494,497,498,499,503,508,510,513,515,519,521,522,525,526,528,531,532,536,537,540,541,543,545,547,548,549,550,554,558,561,562,567,571,578,579,580,582,586,587,590,592,596,598,599,601,604,605,608,611,614,615,616,622,624,626,627,629,631,634,636,638,643,648,651,652,655,656,662,664,666,668,671,676,677,681,683,686,688,689,693,699,701,702,705,707,709,710,712,713,716,728,729,730,733,736,737,740,742,744,745,747,749,752,753,758,759,761,763,768,769,771,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 5,7,8,9,10,12,17,19,22,23,25,26,27,29,33,34,35,37,38,41,46,47,49,51,56,59,60,63,66,69,74,76,78,79,80,84,85,91,93,95,98,100,103,106,107,110,112,114,117,118,120,121,123,125,127,130,134,135,138,140,141,142,145,147,151,152,155,158,159,164,167,169,173,175,178,179,182,184,187,191,193,194,195,200,202,205,208,210,212,214,215,221,223,225,228,231,233,236,238,243,244,251,256,258,260,264,269,270,273,278,280,286,288,290,293,299,304,306,307,309,312,315,323,325,327,329,330,332,333,334,337,339,343,345,349,350,351,352,355,361,365,377,378,380,382,383,385,388,390,392,393,394,399,403,405,406,409,411,415,421,425,429,430,438,441,442,443,445,447,448,449,452,454,458,463,464,470,473,474,479,483,484,489,491,492,493,494,497,498,499,503,508,510,513,515,519,521,522,525,526,528,531,532,536,537,540,541,543,545,547,548,549,550,554,558,561,562,567,571,578,579,580,582,586,587,590,592,596,598,599,601,604,605,608,611,614,615,616,622,624,626,627,629,631,634,636,638,643,648,651,652,655,656,662,664,666,668,671,676,677,681,683,686,688,689,693,699,701,702,705,707,709,710,712,713,716,728,729,730,733,736,737,740,742,744,745,747,749,752,753,758,759,761,763,768,769,771,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,13,15,20,21,24,26,30,33,34,37,39,51,53,55,56,58,60,66,70,72,73,75,77,79,82,83,87,89,96,98,100,102,103,104,106,109,110,115,118,119,121,124,126,128,131,133,134,137,138,140,144,145,150,152,155,158,161,162,164,165,167,168,170,172,173,174,177,178,180,182,187,189,191,192,193,205,211,215,216,218,220,224,227,228,229,231,234,236,237,238,239,247,249,253,255,258,264,265,268,269,270,272,275,280,283,284,286,288,289,291,292,293,295,296,298,299,302,305,307,311,315,316,317,319,321,323,324,326,328,329,332,333,337,340,341,349,350,353,365,371,372,375,377,381,383,386,388,390,393,396,397,399,402,406,408,410,411,412,414,416,417,418,421,425,427,428,431,432,435,437,440,441,443,449,455,459,468,471,475,477,479,481,485,486,489,490,492,498,502,505,507,512,518,519,520,522,527,529,531,533,535,538,542,544,551,553,557,558,560,561,566,567,570,571,572,573,574,577,579,581,586,587,589,591,594,595,597,599,601,604,606,607,610,611,614,618,623,624,632,637,640,641,644,645,649,653,658,660,661,672,674,677,681,683,689,690,693,695,696,701,704,706,710,711,715,717,720,721,723,724,725,726,729,731,734,736,738,741,745,748,749,750,754,755,756,758,759,763,764,767,768,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,13,15,20,21,24,26,30,33,34,37,39,51,53,55,56,58,60,66,70,72,73,75,77,79,82,83,87,89,96,98,100,102,103,104,106,109,110,115,118,119,121,124,126,128,131,133,134,137,138,140,144,145,150,152,155,158,161,162,164,165,167,168,170,172,173,174,177,178,180,182,187,189,191,192,193,205,211,215,216,218,220,224,227,228,229,231,234,236,237,238,239,247,249,253,255,258,264,265,268,269,270,272,275,280,283,284,286,288,289,291,292,293,295,296,298,299,302,305,307,311,315,316,317,319,321,323,324,326,328,329,332,333,337,340,341,349,350,353,365,371,372,375,377,381,383,386,388,390,393,396,397,399,402,406,408,410,411,412,414,416,417,418,421,425,427,428,431,432,435,437,440,441,443,449,455,459,468,471,475,477,479,481,485,486,489,490,492,498,502,505,507,512,518,519,520,522,527,529,531,533,535,538,542,544,551,553,557,558,560,561,566,567,570,571,572,573,574,577,579,581,586,587,589,591,594,595,597,599,601,604,606,607,610,611,614,618,623,624,632,637,640,641,644,645,649,653,658,660,661,672,674,677,681,683,689,690,693,695,696,701,704,706,710,711,715,717,720,721,723,724,725,726,729,731,734,736,738,741,745,748,749,750,754,755,756,758,759,763,764,767,768,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,8,13,15,20,21,24,26,30,33,34,37,39,51,53,55,56,58,60,66,70,72,73,75,77,79,82,83,87,89,96,98,100,102,103,104,106,109,110,115,118,119,121,124,126,128,131,133,134,137,138,140,144,145,150,152,155,158,161,162,164,165,167,168,170,172,173,174,177,178,180,182,187,189,191,192,193,205,211,215,216,218,220,224,227,228,229,231,234,236,237,238,239,247,249,253,255,258,264,265,268,269,270,272,275,280,283,284,286,288,289,291,292,293,295,296,298,299,302,305,307,311,315,316,317,319,321,323,324,326,328,329,332,333,337,340,341,349,350,353,365,371,372,375,377,381,383,386,388,390,393,396,397,399,402,406,408,410,411,412,414,416,417,418,421,425,427,428,431,432,435,437,440,441,443,449,455,459,468,471,475,477,479,481,485,486,489,490,492,498,502,505,507,512,518,519,520,522,527,529,531,533,535,538,542,544,551,553,557,558,560,561,566,567,570,571,572,573,574,577,579,581,586,587,589,591,594,595,597,599,601,604,606,607,610,611,614,618,623,624,632,637,640,641,644,645,649,653,658,660,661,672,674,677,681,683,689,690,693,695,696,701,704,706,710,711,715,717,720,721,723,724,725,726,729,731,734,736,738,741,745,748,749,750,754,755,756,758,759,763,764,767,768,770,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 8,10,14,19,22,24,26,28,32,34,35,37,40,41,43,44,48,49,50,53,56,58,59,62,65,66,72,75,76,78,79,81,82,85,90,92,94,96,102,106,109,111,114,115,119,126,130,131,133,137,138,140,142,147,148,149,155,158,163,166,169,171,173,181,182,183,184,188,190,191,194,195,196,197,205,221,224,227,230,234,235,236,242,245,248,250,251,256,259,264,271,281,282,283,285,286,288,289,293,296,297,302,309,311,316,318,320,321,323,324,326,327,328,330,332,335,336,341,343,347,353,355,356,357,360,361,366,367,369,373,374,376,378,380,383,384,386,390,396,397,401,407,412,414,415,416,418,429,434,438,443,447,450,453,456,457,460,462,466,467,469,471,475,476,478,480,483,487,496,497,500,504,505,506,509,511,514,515,517,518,520,525,527,530,533,534,535,540,541,542,546,553,555,558,563,565,570,571,572,574,579,580,581,583,584,586,588,589,591,593,594,595,597,598,599,601,603,606,612,614,616,619,622,624,625,628,630,631,632,634,635,637,639,642,644,646,651,652,655,657,658,661,663,664,666,668,670,673,678,681,686,692,693,700,701,702,705,706,707,714,715,716,717,721,723,725,726,735,736,739,742,744,749,754,755,757,759,764,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 8,10,14,19,22,24,26,28,32,34,35,37,40,41,43,44,48,49,50,53,56,58,59,62,65,66,72,75,76,78,79,81,82,85,90,92,94,96,102,106,109,111,114,115,119,126,130,131,133,137,138,140,142,147,148,149,155,158,163,166,169,171,173,181,182,183,184,188,190,191,194,195,196,197,205,221,224,227,230,234,235,236,242,245,248,250,251,256,259,264,271,281,282,283,285,286,288,289,293,296,297,302,309,311,316,318,320,321,323,324,326,327,328,330,332,335,336,341,343,347,353,355,356,357,360,361,366,367,369,373,374,376,378,380,383,384,386,390,396,397,401,407,412,414,415,416,418,429,434,438,443,447,450,453,456,457,460,462,466,467,469,471,475,476,478,480,483,487,496,497,500,504,505,506,509,511,514,515,517,518,520,525,527,530,533,534,535,540,541,542,546,553,555,558,563,565,570,571,572,574,579,580,581,583,584,586,588,589,591,593,594,595,597,598,599,601,603,606,612,614,616,619,622,624,625,628,630,631,632,634,635,637,639,642,644,646,651,652,655,657,658,661,663,664,666,668,670,673,678,681,686,692,693,700,701,702,705,706,707,714,715,716,717,721,723,725,726,735,736,739,742,744,749,754,755,757,759,764,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 8,10,14,19,22,24,26,28,32,34,35,37,40,41,43,44,48,49,50,53,56,58,59,62,65,66,72,75,76,78,79,81,82,85,90,92,94,96,102,106,109,111,114,115,119,126,130,131,133,137,138,140,142,147,148,149,155,158,163,166,169,171,173,181,182,183,184,188,190,191,194,195,196,197,205,221,224,227,230,234,235,236,242,245,248,250,251,256,259,264,271,281,282,283,285,286,288,289,293,296,297,302,309,311,316,318,320,321,323,324,326,327,328,330,332,335,336,341,343,347,353,355,356,357,360,361,366,367,369,373,374,376,378,380,383,384,386,390,396,397,401,407,412,414,415,416,418,429,434,438,443,447,450,453,456,457,460,462,466,467,469,471,475,476,478,480,483,487,496,497,500,504,505,506,509,511,514,515,517,518,520,525,527,530,533,534,535,540,541,542,546,553,555,558,563,565,570,571,572,574,579,580,581,583,584,586,588,589,591,593,594,595,597,598,599,601,603,606,612,614,616,619,622,624,625,628,630,631,632,634,635,637,639,642,644,646,651,652,655,657,658,661,663,664,666,668,670,673,678,681,686,692,693,700,701,702,705,706,707,714,715,716,717,721,723,725,726,735,736,739,742,744,749,754,755,757,759,764,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,15,16,27,33,37,38,39,41,46,50,52,55,58,60,63,65,68,70,71,76,84,86,87,88,91,93,94,97,98,100,103,106,107,108,109,112,114,116,120,122,123,127,134,135,139,141,143,144,146,150,151,152,155,156,158,159,162,163,164,166,168,176,177,178,180,182,188,192,194,200,202,203,204,208,210,213,214,217,221,225,226,228,231,233,238,240,241,243,247,248,253,256,257,260,265,267,270,272,275,279,281,283,286,287,289,290,293,302,303,305,308,311,312,317,321,323,324,325,330,337,343,344,346,348,355,361,363,367,369,377,378,381,382,384,385,387,394,395,397,398,400,405,407,408,409,411,413,414,416,417,419,422,430,434,435,439,441,445,446,449,452,454,456,458,459,461,463,465,469,470,474,475,477,479,486,491,494,496,500,502,503,504,510,512,514,516,517,520,522,523,525,527,528,530,531,533,534,535,536,540,541,542,543,546,548,551,555,557,560,562,563,566,567,575,576,579,581,582,583,586,594,600,603,611,613,614,618,628,629,631,632,635,636,641,643,645,646,650,651,653,656,659,660,662,664,670,682,683,687,690,693,694,695,696,699,701,702,705,706,708,709,711,713,718,720,721,725,727,728,730,731,733,734,738,739,742,744,748,751,753,759,760,762,763,765,766,770,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,15,16,27,33,37,38,39,41,46,50,52,55,58,60,63,65,68,70,71,76,84,86,87,88,91,93,94,97,98,100,103,106,107,108,109,112,114,116,120,122,123,127,134,135,139,141,143,144,146,150,151,152,155,156,158,159,162,163,164,166,168,176,177,178,180,182,188,192,194,200,202,203,204,208,210,213,214,217,221,225,226,228,231,233,238,240,241,243,247,248,253,256,257,260,265,267,270,272,275,279,281,283,286,287,289,290,293,302,303,305,308,311,312,317,321,323,324,325,330,337,343,344,346,348,355,361,363,367,369,377,378,381,382,384,385,387,394,395,397,398,400,405,407,408,409,411,413,414,416,417,419,422,430,434,435,439,441,445,446,449,452,454,456,458,459,461,463,465,469,470,474,475,477,479,486,491,494,496,500,502,503,504,510,512,514,516,517,520,522,523,525,527,528,530,531,533,534,535,536,540,541,542,543,546,548,551,555,557,560,562,563,566,567,575,576,579,581,582,583,586,594,600,603,611,613,614,618,628,629,631,632,635,636,641,643,645,646,650,651,653,656,659,660,662,664,670,682,683,687,690,693,694,695,696,699,701,702,705,706,708,709,711,713,718,720,721,725,727,728,730,731,733,734,738,739,742,744,748,751,753,759,760,762,763,765,766,770,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,10,15,16,27,33,37,38,39,41,46,50,52,55,58,60,63,65,68,70,71,76,84,86,87,88,91,93,94,97,98,100,103,106,107,108,109,112,114,116,120,122,123,127,134,135,139,141,143,144,146,150,151,152,155,156,158,159,162,163,164,166,168,176,177,178,180,182,188,192,194,200,202,203,204,208,210,213,214,217,221,225,226,228,231,233,238,240,241,243,247,248,253,256,257,260,265,267,270,272,275,279,281,283,286,287,289,290,293,302,303,305,308,311,312,317,321,323,324,325,330,337,343,344,346,348,355,361,363,367,369,377,378,381,382,384,385,387,394,395,397,398,400,405,407,408,409,411,413,414,416,417,419,422,430,434,435,439,441,445,446,449,452,454,456,458,459,461,463,465,469,470,474,475,477,479,486,491,494,496,500,502,503,504,510,512,514,516,517,520,522,523,525,527,528,530,531,533,534,535,536,540,541,542,543,546,548,551,555,557,560,562,563,566,567,575,576,579,581,582,583,586,594,600,603,611,613,614,618,628,629,631,632,635,636,641,643,645,646,650,651,653,656,659,660,662,664,670,682,683,687,690,693,694,695,696,699,701,702,705,706,708,709,711,713,718,720,721,725,727,728,730,731,733,734,738,739,742,744,748,751,753,759,760,762,763,765,766,770,772,774
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,10,11,13,14,19,36,44,48,50,51,53,57,58,59,63,65,68,73,74,77,79,80,81,85,86,87,90,92,98,104,105,106,107,110,112,117,118,120,121,131,132,135,142,148,150,153,155,162,165,167,169,171,177,178,180,182,183,189,190,192,194,196,197,198,206,208,210,211,214,219,221,223,225,228,229,231,236,237,241,242,243,245,246,248,254,255,260,261,262,263,271,273,278,279,280,282,285,287,288,291,292,296,301,302,304,305,308,310,313,316,318,319,321,322,326,327,329,333,335,337,341,344,348,349,356,357,360,363,364,366,374,376,378,380,381,384,387,390,392,396,398,400,402,405,407,410,412,413,416,418,427,429,431,433,435,440,444,448,453,455,456,458,460,461,466,468,469,474,478,479,480,485,490,492,494,498,501,507,509,511,512,514,515,518,521,524,525,527,529,532,535,537,539,541,543,545,547,549,556,557,560,563,566,568,571,574,576,577,580,582,585,586,588,593,597,598,600,604,605,611,615,618,621,631,632,634,636,641,642,647,649,650,651,652,653,655,656,658,659,662,663,672,675,678,679,681,683,689,690,692,694,695,697,698,700,703,705,706,707,712,713,717,718,723,725,726,728,730,732,734,735,736,737,738,740,741,744,747,750,751,756,759,765,766,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,10,11,13,14,19,36,44,48,50,51,53,57,58,59,63,65,68,73,74,77,79,80,81,85,86,87,90,92,98,104,105,106,107,110,112,117,118,120,121,131,132,135,142,148,150,153,155,162,165,167,169,171,177,178,180,182,183,189,190,192,194,196,197,198,206,208,210,211,214,219,221,223,225,228,229,231,236,237,241,242,243,245,246,248,254,255,260,261,262,263,271,273,278,279,280,282,285,287,288,291,292,296,301,302,304,305,308,310,313,316,318,319,321,322,326,327,329,333,335,337,341,344,348,349,356,357,360,363,364,366,374,376,378,380,381,384,387,390,392,396,398,400,402,405,407,410,412,413,416,418,427,429,431,433,435,440,444,448,453,455,456,458,460,461,466,468,469,474,478,479,480,485,490,492,494,498,501,507,509,511,512,514,515,518,521,524,525,527,529,532,535,537,539,541,543,545,547,549,556,557,560,563,566,568,571,574,576,577,580,582,585,586,588,593,597,598,600,604,605,611,615,618,621,631,632,634,636,641,642,647,649,650,651,652,653,655,656,658,659,662,663,672,675,678,679,681,683,689,690,692,694,695,697,698,700,703,705,706,707,712,713,717,718,723,725,726,728,730,732,734,735,736,737,738,740,741,744,747,750,751,756,759,765,766,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,5,6,10,11,13,14,19,36,44,48,50,51,53,57,58,59,63,65,68,73,74,77,79,80,81,85,86,87,90,92,98,104,105,106,107,110,112,117,118,120,121,131,132,135,142,148,150,153,155,162,165,167,169,171,177,178,180,182,183,189,190,192,194,196,197,198,206,208,210,211,214,219,221,223,225,228,229,231,236,237,241,242,243,245,246,248,254,255,260,261,262,263,271,273,278,279,280,282,285,287,288,291,292,296,301,302,304,305,308,310,313,316,318,319,321,322,326,327,329,333,335,337,341,344,348,349,356,357,360,363,364,366,374,376,378,380,381,384,387,390,392,396,398,400,402,405,407,410,412,413,416,418,427,429,431,433,435,440,444,448,453,455,456,458,460,461,466,468,469,474,478,479,480,485,490,492,494,498,501,507,509,511,512,514,515,518,521,524,525,527,529,532,535,537,539,541,543,545,547,549,556,557,560,563,566,568,571,574,576,577,580,582,585,586,588,593,597,598,600,604,605,611,615,618,621,631,632,634,636,641,642,647,649,650,651,652,653,655,656,658,659,662,663,672,675,678,679,681,683,689,690,692,694,695,697,698,700,703,705,706,707,712,713,717,718,723,725,726,728,730,732,734,735,736,737,738,740,741,744,747,750,751,756,759,765,766,770
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,10,14,15,17,19,20,24,26,30,31,35,37,41,44,47,48,49,51,55,56,58,60,62,63,66,67,69,70,75,77,79,80,82,85,86,89,90,91,93,94,95,98,100,104,105,108,112,113,115,116,118,119,121,124,127,132,133,135,136,138,139,140,141,143,149,152,154,158,161,162,168,171,173,175,178,181,182,184,186,187,188,189,191,193,198,200,201,203,208,212,215,216,218,220,222,224,228,229,235,237,238,243,246,247,249,251,255,257,263,270,272,274,275,279,285,287,288,296,297,299,303,306,307,308,310,313,316,317,321,323,324,326,328,331,332,337,341,342,347,350,351,352,354,355,359,362,369,372,374,376,377,380,387,389,390,393,395,396,401,406,407,411,413,419,421,423,426,430,431,439,455,456,458,461,464,466,469,473,474,478,482,486,487,488,490,496,497,500,501,504,505,512,515,518,520,521,536,537,539,540,542,543,546,547,548,550,551,553,555,560,561,562,564,567,569,573,575,577,578,579,582,583,584,587,590,591,595,598,600,601,603,606,608,609,611,612,613,614,620,625,626,627,630,632,634,636,637,640,642,647,651,652,654,665,669,671,672,678,680,684,691,692,694,696,698,700,706,709,711,714,715,721,724,726,728,729,731,740,743,744,751,753,757,761,762,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,10,14,15,17,19,20,24,26,30,31,35,37,41,44,47,48,49,51,55,56,58,60,62,63,66,67,69,70,75,77,79,80,82,85,86,89,90,91,93,94,95,98,100,104,105,108,112,113,115,116,118,119,121,124,127,132,133,135,136,138,139,140,141,143,149,152,154,158,161,162,168,171,173,175,178,181,182,184,186,187,188,189,191,193,198,200,201,203,208,212,215,216,218,220,222,224,228,229,235,237,238,243,246,247,249,251,255,257,263,270,272,274,275,279,285,287,288,296,297,299,303,306,307,308,310,313,316,317,321,323,324,326,328,331,332,337,341,342,347,350,351,352,354,355,359,362,369,372,374,376,377,380,387,389,390,393,395,396,401,406,407,411,413,419,421,423,426,430,431,439,455,456,458,461,464,466,469,473,474,478,482,486,487,488,490,496,497,500,501,504,505,512,515,518,520,521,536,537,539,540,542,543,546,547,548,550,551,553,555,560,561,562,564,567,569,573,575,577,578,579,582,583,584,587,590,591,595,598,600,601,603,606,608,609,611,612,613,614,620,625,626,627,630,632,634,636,637,640,642,647,651,652,654,665,669,671,672,678,680,684,691,692,694,696,698,700,706,709,711,714,715,721,724,726,728,729,731,740,743,744,751,753,757,761,762,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,10,14,15,17,19,20,24,26,30,31,35,37,41,44,47,48,49,51,55,56,58,60,62,63,66,67,69,70,75,77,79,80,82,85,86,89,90,91,93,94,95,98,100,104,105,108,112,113,115,116,118,119,121,124,127,132,133,135,136,138,139,140,141,143,149,152,154,158,161,162,168,171,173,175,178,181,182,184,186,187,188,189,191,193,198,200,201,203,208,212,215,216,218,220,222,224,228,229,235,237,238,243,246,247,249,251,255,257,263,270,272,274,275,279,285,287,288,296,297,299,303,306,307,308,310,313,316,317,321,323,324,326,328,331,332,337,341,342,347,350,351,352,354,355,359,362,369,372,374,376,377,380,387,389,390,393,395,396,401,406,407,411,413,419,421,423,426,430,431,439,455,456,458,461,464,466,469,473,474,478,482,486,487,488,490,496,497,500,501,504,505,512,515,518,520,521,536,537,539,540,542,543,546,547,548,550,551,553,555,560,561,562,564,567,569,573,575,577,578,579,582,583,584,587,590,591,595,598,600,601,603,606,608,609,611,612,613,614,620,625,626,627,630,632,634,636,637,640,642,647,651,652,654,665,669,671,672,678,680,684,691,692,694,696,698,700,706,709,711,714,715,721,724,726,728,729,731,740,743,744,751,753,757,761,762,764,766,768,769,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,15,18,22,25,27,28,29,30,34,38,42,43,46,48,50,55,56,62,64,66,69,71,79,82,85,86,93,98,101,103,104,105,107,109,111,112,118,121,123,126,127,131,132,134,141,143,144,145,148,150,152,159,160,162,164,166,169,170,172,173,177,178,180,181,182,184,185,187,190,195,197,198,201,202,203,208,214,215,217,228,229,231,233,234,236,238,242,243,245,246,253,254,255,257,258,259,263,265,269,271,275,276,278,282,284,285,286,291,293,294,300,302,303,305,308,309,313,315,317,319,320,321,323,326,330,334,335,338,342,343,345,349,358,362,363,365,367,369,371,372,374,377,387,388,402,407,413,415,416,418,423,425,432,435,436,441,442,445,446,447,449,451,454,458,459,461,463,467,468,470,473,475,476,479,482,485,487,489,490,491,493,495,499,502,503,504,508,509,510,512,514,516,519,522,525,530,531,534,538,539,541,543,549,553,554,556,557,560,562,564,565,567,570,572,573,576,580,583,585,587,589,594,595,597,602,603,611,612,613,616,617,620,622,624,625,627,634,639,641,643,646,651,652,653,654,656,659,660,667,669,671,672,673,675,682,687,689,690,693,695,698,699,701,714,718,719,720,721,722,725,727,728,732,735,737,742,746,751,754,755,758,759,761,770,771,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,15,18,22,25,27,28,29,30,34,38,42,43,46,48,50,55,56,62,64,66,69,71,79,82,85,86,93,98,101,103,104,105,107,109,111,112,118,121,123,126,127,131,132,134,141,143,144,145,148,150,152,159,160,162,164,166,169,170,172,173,177,178,180,181,182,184,185,187,190,195,197,198,201,202,203,208,214,215,217,228,229,231,233,234,236,238,242,243,245,246,253,254,255,257,258,259,263,265,269,271,275,276,278,282,284,285,286,291,293,294,300,302,303,305,308,309,313,315,317,319,320,321,323,326,330,334,335,338,342,343,345,349,358,362,363,365,367,369,371,372,374,377,387,388,402,407,413,415,416,418,423,425,432,435,436,441,442,445,446,447,449,451,454,458,459,461,463,467,468,470,473,475,476,479,482,485,487,489,490,491,493,495,499,502,503,504,508,509,510,512,514,516,519,522,525,530,531,534,538,539,541,543,549,553,554,556,557,560,562,564,565,567,570,572,573,576,580,583,585,587,589,594,595,597,602,603,611,612,613,616,617,620,622,624,625,627,634,639,641,643,646,651,652,653,654,656,659,660,667,669,671,672,673,675,682,687,689,690,693,695,698,699,701,714,718,719,720,721,722,725,727,728,732,735,737,742,746,751,754,755,758,759,761,770,771,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 3,9,15,18,22,25,27,28,29,30,34,38,42,43,46,48,50,55,56,62,64,66,69,71,79,82,85,86,93,98,101,103,104,105,107,109,111,112,118,121,123,126,127,131,132,134,141,143,144,145,148,150,152,159,160,162,164,166,169,170,172,173,177,178,180,181,182,184,185,187,190,195,197,198,201,202,203,208,214,215,217,228,229,231,233,234,236,238,242,243,245,246,253,254,255,257,258,259,263,265,269,271,275,276,278,282,284,285,286,291,293,294,300,302,303,305,308,309,313,315,317,319,320,321,323,326,330,334,335,338,342,343,345,349,358,362,363,365,367,369,371,372,374,377,387,388,402,407,413,415,416,418,423,425,432,435,436,441,442,445,446,447,449,451,454,458,459,461,463,467,468,470,473,475,476,479,482,485,487,489,490,491,493,495,499,502,503,504,508,509,510,512,514,516,519,522,525,530,531,534,538,539,541,543,549,553,554,556,557,560,562,564,565,567,570,572,573,576,580,583,585,587,589,594,595,597,602,603,611,612,613,616,617,620,622,624,625,627,634,639,641,643,646,651,652,653,654,656,659,660,667,669,671,672,673,675,682,687,689,690,693,695,698,699,701,714,718,719,720,721,722,725,727,728,732,735,737,742,746,751,754,755,758,759,761,770,771,773
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,9,12,16,20,24,26,27,28,35,36,37,39,44,45,47,51,53,54,59,60,61,62,64,65,68,70,74,77,78,81,83,86,87,89,91,97,99,101,102,103,106,111,112,115,116,117,123,127,129,130,133,135,137,139,142,143,149,156,159,160,162,164,166,170,172,174,179,180,181,183,184,185,189,190,194,195,199,200,206,208,209,211,215,217,220,222,228,230,231,235,237,238,239,243,248,251,259,262,267,272,274,276,278,280,282,284,287,288,289,290,293,294,298,300,302,303,306,312,313,316,318,322,324,325,328,333,342,343,346,348,350,353,354,355,360,361,362,366,367,370,375,378,384,386,389,390,392,394,400,401,402,403,410,417,419,420,427,431,433,440,441,444,446,448,451,452,455,456,464,466,467,470,472,473,474,475,480,483,485,486,488,490,491,492,502,503,507,512,514,516,517,520,522,524,526,529,533,536,537,539,541,545,547,549,551,556,560,563,571,572,573,576,578,583,586,590,592,595,608,612,616,618,622,628,633,634,635,637,644,648,654,658,659,662,663,667,670,671,672,675,679,682,683,687,691,694,696,701,702,704,706,710,714,719,720,723,725,727,730,731,738,740,742,743,744,746,747,749,750,754,756,758,761,762,764,765,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,9,12,16,20,24,26,27,28,35,36,37,39,44,45,47,51,53,54,59,60,61,62,64,65,68,70,74,77,78,81,83,86,87,89,91,97,99,101,102,103,106,111,112,115,116,117,123,127,129,130,133,135,137,139,142,143,149,156,159,160,162,164,166,170,172,174,179,180,181,183,184,185,189,190,194,195,199,200,206,208,209,211,215,217,220,222,228,230,231,235,237,238,239,243,248,251,259,262,267,272,274,276,278,280,282,284,287,288,289,290,293,294,298,300,302,303,306,312,313,316,318,322,324,325,328,333,342,343,346,348,350,353,354,355,360,361,362,366,367,370,375,378,384,386,389,390,392,394,400,401,402,403,410,417,419,420,427,431,433,440,441,444,446,448,451,452,455,456,464,466,467,470,472,473,474,475,480,483,485,486,488,490,491,492,502,503,507,512,514,516,517,520,522,524,526,529,533,536,537,539,541,545,547,549,551,556,560,563,571,572,573,576,578,583,586,590,592,595,608,612,616,618,622,628,633,634,635,637,644,648,654,658,659,662,663,667,670,671,672,675,679,682,683,687,691,694,696,701,702,704,706,710,714,719,720,723,725,727,730,731,738,740,742,743,744,746,747,749,750,754,756,758,761,762,764,765,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 2,4,7,9,12,16,20,24,26,27,28,35,36,37,39,44,45,47,51,53,54,59,60,61,62,64,65,68,70,74,77,78,81,83,86,87,89,91,97,99,101,102,103,106,111,112,115,116,117,123,127,129,130,133,135,137,139,142,143,149,156,159,160,162,164,166,170,172,174,179,180,181,183,184,185,189,190,194,195,199,200,206,208,209,211,215,217,220,222,228,230,231,235,237,238,239,243,248,251,259,262,267,272,274,276,278,280,282,284,287,288,289,290,293,294,298,300,302,303,306,312,313,316,318,322,324,325,328,333,342,343,346,348,350,353,354,355,360,361,362,366,367,370,375,378,384,386,389,390,392,394,400,401,402,403,410,417,419,420,427,431,433,440,441,444,446,448,451,452,455,456,464,466,467,470,472,473,474,475,480,483,485,486,488,490,491,492,502,503,507,512,514,516,517,520,522,524,526,529,533,536,537,539,541,545,547,549,551,556,560,563,571,572,573,576,578,583,586,590,592,595,608,612,616,618,622,628,633,634,635,637,644,648,654,658,659,662,663,667,670,671,672,675,679,682,683,687,691,694,696,701,702,704,706,710,714,719,720,723,725,727,730,731,738,740,742,743,744,746,747,749,750,754,756,758,761,762,764,765,768,770,772
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,10,20,22,23,24,25,27,28,35,37,38,40,42,44,46,49,51,53,55,58,59,60,64,74,79,80,84,88,91,92,97,100,101,102,103,104,119,121,124,125,127,129,137,138,142,144,145,146,148,149,152,162,165,167,170,175,177,181,189,190,193,195,196,197,198,199,201,208,209,213,214,217,218,220,221,223,224,230,231,235,237,242,243,244,246,248,251,253,258,265,266,269,270,277,278,280,285,286,289,292,293,297,301,304,308,312,313,314,316,322,326,328,329,332,336,341,343,345,346,349,351,352,354,356,358,361,366,367,369,372,373,375,378,381,383,387,390,393,395,399,400,401,403,407,410,412,413,415,420,424,426,427,428,430,432,433,435,439,440,442,445,447,451,452,454,457,458,460,465,470,477,479,483,487,489,493,497,506,507,509,514,517,523,526,531,533,537,538,541,543,545,548,553,555,558,562,565,570,574,577,583,585,587,590,591,593,594,599,601,602,605,606,609,615,618,621,622,624,625,626,630,632,634,635,638,639,640,644,646,648,651,653,657,665,668,669,671,672,673,674,679,680,682,685,689,693,697,698,700,703,706,707,709,712,713,716,723,727,728,731,732,735,736,738,740,741,743,747,754,755,762,764,767,768,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,10,20,22,23,24,25,27,28,35,37,38,40,42,44,46,49,51,53,55,58,59,60,64,74,79,80,84,88,91,92,97,100,101,102,103,104,119,121,124,125,127,129,137,138,142,144,145,146,148,149,152,162,165,167,170,175,177,181,189,190,193,195,196,197,198,199,201,208,209,213,214,217,218,220,221,223,224,230,231,235,237,242,243,244,246,248,251,253,258,265,266,269,270,277,278,280,285,286,289,292,293,297,301,304,308,312,313,314,316,322,326,328,329,332,336,341,343,345,346,349,351,352,354,356,358,361,366,367,369,372,373,375,378,381,383,387,390,393,395,399,400,401,403,407,410,412,413,415,420,424,426,427,428,430,432,433,435,439,440,442,445,447,451,452,454,457,458,460,465,470,477,479,483,487,489,493,497,506,507,509,514,517,523,526,531,533,537,538,541,543,545,548,553,555,558,562,565,570,574,577,583,585,587,590,591,593,594,599,601,602,605,606,609,615,618,621,622,624,625,626,630,632,634,635,638,639,640,644,646,648,651,653,657,665,668,669,671,672,673,674,679,680,682,685,689,693,697,698,700,703,706,707,709,712,713,716,723,727,728,731,732,735,736,738,740,741,743,747,754,755,762,764,767,768,771
## --> row.names NOT used
## Warning in data.row.names(row.names, rowsi, i): some row.names duplicated:
## 4,10,20,22,23,24,25,27,28,35,37,38,40,42,44,46,49,51,53,55,58,59,60,64,74,79,80,84,88,91,92,97,100,101,102,103,104,119,121,124,125,127,129,137,138,142,144,145,146,148,149,152,162,165,167,170,175,177,181,189,190,193,195,196,197,198,199,201,208,209,213,214,217,218,220,221,223,224,230,231,235,237,242,243,244,246,248,251,253,258,265,266,269,270,277,278,280,285,286,289,292,293,297,301,304,308,312,313,314,316,322,326,328,329,332,336,341,343,345,346,349,351,352,354,356,358,361,366,367,369,372,373,375,378,381,383,387,390,393,395,399,400,401,403,407,410,412,413,415,420,424,426,427,428,430,432,433,435,439,440,442,445,447,451,452,454,457,458,460,465,470,477,479,483,487,489,493,497,506,507,509,514,517,523,526,531,533,537,538,541,543,545,548,553,555,558,562,565,570,574,577,583,585,587,590,591,593,594,599,601,602,605,606,609,615,618,621,622,624,625,626,630,632,634,635,638,639,640,644,646,648,651,653,657,665,668,669,671,672,673,674,679,680,682,685,689,693,697,698,700,703,706,707,709,712,713,716,723,727,728,731,732,735,736,738,740,741,743,747,754,755,762,764,767,768,771
## --> row.names NOT used
prediction <- predict(fit, testing)
accuracy(prediction, testing$CompressiveStrength)
## ME RMSE MAE MPE MAPE
## Test set 0.1468318 7.05385 5.292581 -5.538106 18.23349