From Annual US Airdata reports available between 2008 and 2015 on US EPA download site and data repositories, 2 pollutants of interest, Ozone and Particulate Material up to 2.5 micro-meters, were selected for comparative and evolutive analysis. The tool was derived from the basic example covered by Dr. Roger D. Peng in the Coursera ’Developing Data Products, Week 4 - yhat module. The core data filtering process is contained in the screener function, where the minimum data is retrieved using an adaptive radius. The screening algorithm is based on the nearest 5 reporting sites, instead of straight averaging within a fixed radius provided. The module also retrieves all data available to date, aggregated on a yearly basis. A yhat module function was also developed to verify functionality, and could be used in a multi-user distributed environment. Multiple methods including averaging a single value per county or mapping the average of the 5 nearest neighbors are performed. Pollutant levels (Ozone and PM2.5) and Radii of Reports are analyzed, indicating the absence of data from HI and very little reporting in AK. The use of radar chart is also quickly demonstrated. However, the evolution of levels and Radii show clear trends over the period 2008 thru 2015 as well as progress in monitoring density overall. A number of interesting differences, distributions and radar charts explain clearly the evolution observed in US. Finally, the choroplethr animation summarizes well the trends in a dynamic web player, and extend mapping to all 50 states.
Before any analysis is performed, let’s start with system and platform documentation in a fresh directory to insure reproducibility.
Sys.info()[1:5] # system info but exclude login and user info
## sysname release version nodename machine
## "Windows" "7 x64" "build 9200" "LEARNING-PC" "x86-64"
userdir<-getwd() # user-defined startup directory
library(plyr)
library(dplyr)
library(tidyr)
library(data.table) # for liner
library(pbapply) # for progressbar
library(magrittr)
library(ggplot2)
library(maps)
library(mapproj)
library(RColorBrewer) # for brewer.pal(...)
library(fields) # for rdist() in screener
library(choroplethr)
library(choroplethrMaps)
sessionInfo() # to document platform
## R version 3.2.1 (2015-06-18)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 8 x64 (build 9200)
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] data.table_1.9.4 yhatr_0.13.6 choroplethrMaps_1.0
## [4] choroplethr_3.1.0 fields_8.2-1 spam_1.0-1
## [7] RColorBrewer_1.1-2 mapproj_1.2-2 maps_2.3-9
## [10] ggplot2_1.0.1 magrittr_1.5 pbapply_1.1-1
## [13] tidyr_0.2.0 dplyr_0.4.2 plyr_1.8.3
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.11.6 formatR_1.2 tools_3.2.1
## [4] rpart_4.1-9 digest_0.6.8 evaluate_0.7
## [7] gtable_0.1.2 lattice_0.20-31 WDI_2.4
## [10] DBI_0.3.1 yaml_2.1.13 parallel_3.2.1
## [13] proto_0.3-10 gridExtra_0.9.1 cluster_2.0.1
## [16] stringr_1.0.0 knitr_1.10.5 nnet_7.3-9
## [19] R6_2.0.1 XML_3.98-1.3 survival_2.38-1
## [22] foreign_0.8-63 rmarkdown_0.7 latticeExtra_0.6-26
## [25] Formula_1.2-1 reshape2_1.4.1 acs_1.2
## [28] scales_0.2.5 Hmisc_3.16-0 htmltools_0.2.6
## [31] MASS_7.3-40 splines_3.2.1 assertthat_0.1
## [34] colorspace_1.2-6 stringi_0.5-5 acepack_1.3-3.3
## [37] munsell_0.4.2 chron_2.3-47
datadir <- "./data"
figdir <- "./Pollution_files/figure-html"
anidir <- "./Animations"
if (!file.exists("data")) { dir.create("data") } # data will reside in subdir ./data
if (!file.exists("figures")) { dir.create("figures") } # figures will reside in subdir ./figures
if (!file.exists("Animations")) { dir.create("Animations") } # for animated gif
All data is obtained reproducibly from documented US airdata source, aggregating the 2 pollutants Ozone and PM2.5 - Local Conditions. Monitoring sites and pollutant averages are populating the two corresponding data frames, as introduced in the Coursera Module.
y_monitors<-NULL
y_pollavg<-NULL
for (i in 2008:2015)
{
url<-paste0("http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/annual_all_",as.character(i),".zip",sep='')
filename <- paste(datadir,strsplit(url,"/")[[1]][length(strsplit(url,"/")[[1]])],sep="/")
download.file(url, dest=filename, mode="wb")
unzip (filename, exdir = datadir) # unzip creates and populates the data structure
unlink(filename) # remove the zip file
filename <-gsub(".zip",".csv",filename)
d <- read.csv(filename,stringsAsFactors=FALSE) # populate data frame
sub<-subset(d, Parameter.Name %in% c("PM2.5 - Local Conditions","Ozone")
& Pollutant.Standard %in% c("Ozone 8-Hour 2008","PM25 Annual 2006"),
c(Year,Longitude,Latitude,Parameter.Name, Arithmetic.Mean))
y_poll<-aggregate(sub[,"Arithmetic.Mean"],
sub[,c("Year","Longitude","Latitude","Parameter.Name")],
mean,na.rm=TRUE)
names(y_poll)[5]<-"level"
y_poll$Parameter.Name[y_poll$Parameter.Name=="PM2.5 - Local Conditions"]<-"PM2p5"
y_poll<-transform(y_poll,Parameter.Name=factor(Parameter.Name))
if(is.null(nrow(y_monitors))) {y_pollavg<-y_poll
y_monitors<-data.matrix(y_pollavg[,c("Year","Longitude","Latitude")])
}
else
{y_pollavg<-rbind(y_pollavg,y_poll)
y_monitors<-rbind(y_monitors,data.matrix(y_pollavg[,c("Year","Longitude","Latitude")]))
}
}
names(y_pollavg)[1]<-"yr"
rm(d,sub,datadir,filename,url,i,y_poll)
y_monitors<-as.data.frame(y_monitors)
y_monitors$Year<-as.integer(y_monitors$Year)
y<-spread(y_pollavg,Parameter.Name,level)
# eliminate missing values records
y<-y[!is.na(y$Ozone),]
y<-y[!is.na(y$PM2p5),]
y_pollavg<-gather(y,"Parameter.Name","level",4:5)
rm(y)
The core data filtering processes a positional data frame containing longitude and latitude. It returns the same information in 8 records, one for for each year in 2008:2015 range:
screener <- function(df)
{
#
# input is a data.frame df
# lon lat
# 1 -86.70649 32.4302
# ...
#
# output the complete data.frame df
# lon lat yr radius Ozone PM2p5
# 1 -86.70649 32.4302 2008 77.67187 0.04523967 12.698744
# 2 -86.70649 32.4302 2009 66.45152 0.03956100 10.457460
# 3 -86.70649 32.4302 2010 66.45152 0.04697900 11.594312
# 4 -86.70649 32.4302 2011 66.45152 0.04703300 11.413982
# 5 -86.70649 32.4302 2012 77.67187 0.04431500 10.488044
# 6 -86.70649 32.4302 2013 77.67187 0.03956567 9.688020
# 7 -86.70649 32.4302 2014 77.67187 0.04164267 9.960654
# 8 -86.70649 32.4302 2015 77.67187 0.03565967 9.902436
# ...
n<-nrow(df)
df.in<-df
df.out<-data.frame()
# pb <- txtProgressBar(min = 0, max = n, style = 3,char="+")
for (k in 1:n) {
df<-data.frame(df.in[k,])
dlevel1<-data.frame()
for (j in 2008:2015) {
use<-vector()
d<-rdist.earth(subset(y_pollavg,yr==j,select=-yr),data.matrix(df[,c("lon","lat")]))
use<-lapply(seq_len(ncol(d)),function(i) { head(data.frame(sort(d[,i],decreasing=FALSE,index.return=TRUE)),5)$ix })
r<-max(sapply(seq_len(ncol(d)),function(i) { head(data.frame(sort(d[,i],decreasing=FALSE,index.return=TRUE)),5)$x }))
l.Ozone<-sapply (use,function(idx) {with(subset(y_pollavg,yr==j & Parameter.Name=="Ozone",select=-yr)[idx,],tapply(level, Parameter.Name=="Ozone", mean))})
l.PM2p5<-sapply (use,function(idx) {with(subset(y_pollavg,yr==j & Parameter.Name=="PM2p5",select=-yr)[idx,],tapply(level, Parameter.Name=="PM2p5", mean))})
dlevel1 <- rbind(dlevel1,c(j,r,l.Ozone,l.PM2p5))
# cleanup time
rm(d,r,l.Ozone,l.PM2p5,use)
}
names(dlevel1)<-c("yr","radius","Ozone","PM2p5")
df<-data.frame(df,dlevel1,row.names = NULL)
df.out<-rbind(df.out,df)
# setTxtProgressBar(pb,k)
}
# close(pb)
df<-df.out
rm(df.in,df.out,dlevel1,k,j)
df
}
liner() is a helper function wrapper which may be used on systems where available memory is low. It invoques screener() in a listwise fashion, and presents the advantage of a text progressbar. The returned list is bound quickly using the rbindlist data.table function.
liner <- function(v)
{
p <- pblapply(seq_len(nrow(v)), function(i)
{
screener(v[i, ])
})
v <- data.frame(rbindlist(p))
v
}
normalize() is a convenience reformatter function capable of addressing vectors and data frames and is used for radar charting.
normalize <- function(df)
{
if (is.vector(df) == TRUE)
{
m <- max(df)
n <- min(df)
df <- (df - n)/(m - n)
} else
{
df <- data.frame(sapply(seq_len(ncol(df)), function(i)
{
m <- max(df[, i])
n <- min(df[, i])
df[, i] <- (df[, i] - n)/(m - n)
df[, i]
}))
}
df
}
library(yhatr)
model.require <- function() {
library(fields)
library(pbapply)
}
model.transform <- function(df) {
df
}
model.predict <- function(df) {
screener(df)
}
yhat.config follows but is not rendered to keep the apikey private… and function is not redeployed
Only invoke yhat.deploy when changing the model, so we will not re-deploy now.
yhat.deploy("screener")
However, since the function has been deployed previously, we can call yhat.predict. It returns the expected output illustrated in the screner function.
data <-c("lon"=-86.70649,"lat"= 32.4302)
yhat.predict("screener",data)
## lon lat yr radius Ozone PM2p5
## 1 -86.70649 32.4302 2008 77.67187 0.04523967 12.698744
## 2 -86.70649 32.4302 2009 66.45152 0.03956100 10.457460
## 3 -86.70649 32.4302 2010 66.45152 0.04697900 11.594312
## 4 -86.70649 32.4302 2011 66.45152 0.04703300 11.413982
## 5 -86.70649 32.4302 2012 77.67187 0.04431500 10.488044
## 6 -86.70649 32.4302 2013 77.67187 0.03956567 9.688020
## 7 -86.70649 32.4302 2014 77.67187 0.04164267 9.960654
## 8 -86.70649 32.4302 2015 77.67187 0.03565967 9.902436
As a first step in the analysis, the average values obtained by counties are computed.
pollutant<-data.frame()
set.seed(1) # for reproducible example
# this creates an example formatted as a pollutant.map
df<-data.frame(map_data('county'))
names(df)[1]<-'lon'
df[,c("lon","lat")] %>%
screener %>%
merge(df,.,by=c("lon","lat"),all=TRUE) %>%
group_by(region,subregion,yr) %>%
select(-group,-order) %>%
summarise_each(funs(mean)) %>%
as.data.frame %>%
gather("type","level",7:8) -> pollutavg
names(pollutavg)[1:2]<-c("id","region")
#
df %>%
group_by(region,subregion) %>%
select(lon,lat) %>%
summarise_each (funs(mean)) %>%
as.data.frame-> df
df[,c("lon","lat")] %>%
screener %>%
merge(df,.,by=c("lon","lat"),all=TRUE) %>%
as.data.frame -> pollutant
pollutant$yr<-as.factor(pollutant$yr)
It is important to observe pollutant levels, but also essential to realize at which distance the radius monitoring is occuring. Since the screener routing adapts itself to the 5 nearest neighbors mean, we need to see how these radii are distributed.
m1<-ggplot(pollutant,aes(x=radius)) + geom_histogram(binwidth=20,color="grey50",fill='blue') +
labs(title="2008 ~ 2015 Radius (Miles) reporting Pollutants",x="Radius (Miles)",y="Count")+
theme_bw()
m1
m2<-ggplot(pollutant,aes(x=radius,fill=yr))+geom_histogram(binwidth=20,color="grey50") +
facet_wrap(~yr) +
labs(title="Radius (Miles) reporting Pollutants by Year",x="Radius (Miles)",y="Count") +
theme_bw()
m2
With a little re-arranging we a can chart the levels and radii trends for Ozone and PM2.5 using first ggplot(). We tidy the data and merge counties information from the map_data(“county”). Observing that reporting for 2015 is not complete, we will base comparisons and trends up to 2014 at this time.
# time to tydy the data
pollutant %>% gather("type","level",7:8) -> pollutant
names(pollutant)[3:4]<-c("id","region")
#
m.usa <- map_data("county")
m.usa <- m.usa[ ,-5]
names(m.usa)[5] <- 'region'
We are now ready to chart these county ggplots…We will slightly adapt the scales as indicated to produce meaningful ranges of Ozone and PM2.5 (in ppm) and radii (in miles).
g1 <- ggplot(subset(pollutant,type=="Ozone"), aes(map_id = region)) +
geom_map(aes(fill = level), map = m.usa) + expand_limits(x = m.usa$long, y = m.usa$lat) +
scale_fill_gradientn("ppm",colours=brewer.pal(9,"YlGnBu"))
g1 <- last_plot() + coord_map() + facet_wrap(~ yr,nrow=3) +
labs(title="Ozone Pollutant level by County, ppm",x="",y="")+ theme_bw()
g1$scales$scales[[1]]$limits<-c(0,0.07)
g1
We observe: West/Southwest highest but decreasing Ozone levels over the 2008-2014 period.
g2 <- ggplot(subset(pollutant,type=="PM2p5"), aes(map_id = region)) +
geom_map(aes(fill = level), map = m.usa) + expand_limits(x = m.usa$long, y = m.usa$lat) +
scale_fill_gradientn("ppm",colours=brewer.pal(9,"YlGnBu"))
g2 <- last_plot() + coord_map() + facet_wrap(~ yr,nrow = 3) +
labs(title="PM2.5 Pollutant level by County, ppm",x="",y="")+ theme_bw()
g2$scales$scales[[1]]$limits<-c(0,21)
g2
We observe: California highest levels, Western US shows low levels of PM2.5.
g3 <- ggplot(subset(pollutant,type=="Ozone"), aes(map_id = region)) +
geom_map(aes(fill = radius), map = m.usa) + expand_limits(x = m.usa$long, y = m.usa$lat) +
scale_fill_gradientn("Miles",colours=brewer.pal(9,"YlGnBu"))
g3 <- last_plot() + coord_map() + facet_wrap(~ yr,nrow = 3) +
labs(title="2008 ~ 2015 Radius reporting Pollutant by County, Miles",x="",y="") + theme_bw()
g3$scales$scales[[1]]$limits<-c(0,400)
g3
We observe generally decreasing radius, indicating data collection density increases. Grey color represents radius in excess of 400 miles.
subset(pollutant,type=="Ozone" & yr %in% c(2010,2014)) %>%
group_by(id,region,yr) %>%
select(-type,-radius) %>%
as.data.frame -> t
t$yr<-as.character(t$yr)
t$yr<-paste0("Y",t$yr)
t %>% spread(yr,level) %>% mutate(level.change=Y2014-Y2010) -> t
g4 <- ggplot(t, aes(map_id = region)) + geom_map(aes(fill = level.change), map = m.usa) +
expand_limits(x = m.usa$long, y = m.usa$lat) +
scale_fill_gradientn("ppm",colours=brewer.pal(9,"YlGnBu"))
g4 <- last_plot() + coord_map() +
labs(title="2010 ~ 2014 Ozone Pollutant Level Change by County, ppm",x="",y="")+ theme_bw()
g4$scales$scales[[1]]$limits<-c(-0.010,0.01)
g4
We note, over 2010-2014, Western US shows worsening while Eastern US shows improving Ozone levels.
subset(pollutant,type=="PM2p5" & yr %in% c(2010,2014)) %>%
group_by(id,region,yr) %>%
select(-type,-radius) %>%
as.data.frame -> t
t$yr<-as.character(t$yr)
t$yr<-paste0("Y",t$yr)
t %>% spread(yr,level) %>% mutate(level.change=Y2014-Y2010) -> t
g5 <- ggplot(t, aes(map_id = region)) + geom_map(aes(fill = level.change), map = m.usa) +
expand_limits(x = m.usa$long, y = m.usa$lat) +
scale_fill_gradientn("ppm",colours=brewer.pal(9,"YlGnBu"))
g5 <- last_plot() + coord_map() +
labs(title="2010 ~ 2014 PM2.5 Pollutant Level Change by County, ppm",x="",y="")+ theme_bw()
g5$scales$scales[[1]]$limits<-c(-4,4)
g5
We note, over 2010-2014, Southwest shows worsening while North-Central US and Midwest show improving PM2.5 levels.
subset(pollutant,yr %in% c(2010,2014)) %>%
group_by(id,region,yr) %>%
select(-type,-level) %>%
unique %>%
as.data.frame -> t
t$yr<-as.character(t$yr)
t$yr<-paste0("Y",t$yr)
t %>% spread(yr,radius) %>% mutate(radius.change=Y2014-Y2010) -> t
g6 <- ggplot(t, aes(map_id = region)) + geom_map(aes(fill = radius.change),map = m.usa) +
expand_limits(x = m.usa$long, y = m.usa$lat) +
scale_fill_gradientn("Miles",colours=brewer.pal(9,"YlGnBu"))
g6 <- last_plot() + coord_map() +
labs(title="2010 ~ 2014 Radius reporting Pollutant Change by County, Miles",x="",y="") + theme_bw()
g6$scales$scales[[1]]$limits<-c(-200,200)
g6
rm(m.usa) # cleanup
We observe some significant improvements in CO (arapahoe, denver, adams…),
head(t[order(t$radius.change), ], 10, addrownums = FALSE)
## lon lat id region Y2010 Y2015
## 227 -104.6889 39.64247 colorado arapahoe 218.3803 21.66127
## 233 -104.8871 39.73921 colorado denver 206.9454 17.20032
## 221 -104.6211 39.87180 colorado adams 219.9444 33.40823
## 207 -103.9712 39.24188 colorado elbert 246.4280 66.54129
## 240 -105.0952 39.35511 colorado douglas 201.5075 29.74580
## 242 -105.2001 39.47554 colorado jefferson 193.9689 23.44929
## 237 -105.0451 39.98195 colorado broomfield 196.9444 30.98158
## 157 -102.6266 39.34814 colorado kit carson 294.5524 131.17645
## 188 -103.4590 38.90765 colorado lincoln 258.0934 102.36305
## 214 -104.4224 40.41759 colorado weld 222.4992 70.08007
## radius.change
## 227 -196.7190
## 233 -189.7451
## 221 -186.5362
## 207 -179.8867
## 240 -171.7617
## 242 -170.5196
## 237 -165.9628
## 157 -163.3760
## 188 -155.7303
## 214 -152.4192
and degradations in ND (divide, burke, mountrail,…) and MT (sheridan, richland).
tail(t[order(t$radius.change), ], 10, addrownums = FALSE)
## lon lat id region Y2010 Y2015
## 226 -104.6665 47.93255 montana richland 93.76708 579.4643
## 143 -102.4381 47.60624 north dakota dunn 66.14310 558.0431
## 181 -103.2988 48.00286 north dakota mckenzie 60.46663 576.9340
## 102 -101.6470 48.72481 north dakota renville 109.87447 627.8183
## 222 -104.6380 48.75871 montana sheridan 102.40774 623.3193
## 107 -101.7281 48.39747 north dakota ward 92.08654 613.5227
## 189 -103.4602 48.10385 north dakota williams 61.24037 582.7381
## 150 -102.5202 48.05274 north dakota mountrail 62.86422 587.1816
## 145 -102.4587 48.73006 north dakota burke 104.06226 633.5181
## 184 -103.3960 48.76116 north dakota divide 83.09438 628.1797
## radius.change
## 226 485.6973
## 143 491.9000
## 181 516.4674
## 102 517.9438
## 222 520.9116
## 107 521.4362
## 189 521.4977
## 150 524.3174
## 145 529.4559
## 184 545.0854
Finally, we attempt another approach with choroplethr, athough there is little data for AK and HI… we want to undertake the challenge to visualize not only the lower 48 but also the 49th and 50th US states… This requires a download of the complete county list for all states, a dataset available from the US Census and data repository.
pollutant<-data.frame()
set.seed(1) # for reproducible example
# this creates an example formatted as a pollutant.map
datadir<-"./data" ; if (!file.exists("data")) { dir.create("data") } # data will reside in subdir
url<-"http://www2.census.gov/geo/docs/maps-data/data/gazetteer/Gaz_counties_national.zip"
filename <- paste(datadir,strsplit(url,"/")[[1]][length(strsplit(url,"/")[[1]])],sep="/")
download.file(url, dest=filename, mode="wb")
unzip (filename, exdir = datadir) # unzip creates and populates the data structure
unlink(filename) # remove the zip file
filename <-gsub(".zip",".txt",filename)
d <- read.delim(filename,header=TRUE,sep="\t",stringsAsFactors=FALSE) # populate data frame
# cleanup
rm(datadir,filename,url)
names(d)<-tolower(names(d))
subset(d,select=-c(ansicode:awater_sqmi)) %>%
rename(state.abb=usps,region=geoid,lat=intptlat,lon=intptlong) -> d
d$region<-as.numeric(d$region)
data(county.regions)
df <- data.frame(county.regions)
subset(df,select=-c(county.fips.character,state.fips.character)) %>%
merge(d,.,by=c("region","state.abb"),all=FALSE) -> df
# cleanup
rm(d,county.regions)
df[,c("lon","lat")] %>%
screener %>%
merge(df,.,by=c("lon","lat"),all=TRUE) %>%
rename(state=state.name) %>%
as.data.frame -> t -> pollutant
rm(df) # cleanup
We now have a pollutant data frame that can contain all 50 states counties, and are ready to checkout AK and HI…
m1<-ggplot(subset(t,state %in% c("alaska","hawaii")),aes(x=Ozone)) +
geom_histogram(binwidth=0.001,color="grey50",fill="blue") +
xlim(c(0,0.07)) + facet_grid(state ~ yr) +
labs(title="2008 ~ 2015 Ozone Pollutant Level Distribution",x="pollutant level (ppm)", y="Count") +
theme_bw()
m1
m2<-ggplot(subset(t,state %in% c("alaska","hawaii")),aes(x=PM2p5)) +
geom_histogram(binwidth=1,color="grey50",fill="blue") +
xlim(c(0,20)) + facet_grid(state ~ yr) +
labs(title="2008 ~ 2015 PM2.5 Pollutant Level Distribution",x="pollutant level (ppm)",y="Count") +
theme_bw()
m2
m3<-ggplot(subset(t,state %in% c("alaska","hawaii")),aes(x=radius)) +
geom_histogram(binwidth=30,color="grey50",fill="blue") +
xlim(c(0,3000)) + facet_grid(state ~ yr) +
labs(title="2008 ~ 2015 Radius (Miles) reporting Pollutants",x="Radius (Miles)",y="Count") +
theme_bw()
m3
We observe HI has no data reported, and radius values in excess of 2000 miles indicate most likely CA levels are reported. We also note AK has some reports below 500 miles which we retain for now in 2011 and 2012…
m4<-ggplot(subset(t,state %in% c("alaska","hawaii") & radius <500),aes(x=radius)) +
geom_histogram(binwidth=20,color="grey50",fill="blue") +
facet_wrap(state ~ yr) +
labs(title="Radius (Miles) reporting Pollutants by Year",x="Radius (Miles)",y="Count") + theme_bw()
m4
To investigate an alternate screening method, we will now use a radar chart approach to capture min and max radii corresponding to the 5 nearest neighbors reporting the pollutants. We treat Ozone and PM2.5 as type variables.
t$yr <- as.factor(t$yr)
t$state.abb <- as.factor(t$state.abb)
t %>%
select(state.abb, yr, radius, Ozone) %>%
rename(level = Ozone) %>%
group_by(yr, state.abb) %>%
summarise_each_(c("n_distinct", "mean", "min", "max"), c("radius", "level")) %>%
mutate(type = "Ozone") -> temp
t %>%
select(state.abb, yr, radius, PM2p5) %>%
rename(level = PM2p5) %>%
group_by(yr, state.abb) %>%
summarise_each_(c("n_distinct", "mean", "min", "max"), c("radius", "level")) %>%
mutate(type = "PM2p5") %>%
rbind(.,temp) %>% as.data.frame -> t
t$type <- as.factor(t$type)
t %>%
gather("radius.funs", "radius", c(3, 5, 7, 9)) %>%
gather("level.funs", "level", 3:6) %>%
as.data.frame-> t
levels(t$radius.funs) <- levels(t$level.funs) <- c("n", "mean", "min", "max")
subset(t,select = -c(level.funs:level)) %>%
rename(funs = radius.funs, value = radius) %>%
mutate(metric="radius") -> temp
subset(t,select = -c(radius.funs:radius)) %>%
rename(funs = level.funs, value = level) %>%
mutate(metric="level") %>%
rbind(.,temp) %>%
as.data.frame %>%
unique -> t
t$metric <- as.factor(t$metric)
rm(temp) # cleanup
We observe there is absolutely no data reported from Hawaii and most data from Alaska is extremely distant, at about 800 miles… We now chart this information side by side in ggplots.
data.frame(subset(t, type == "Ozone" & !funs=="n")) %>%
rename(id=state.abb) %>% as.data.frame -> df
gg1 <- ggplot(df, aes(x=id, y=value)) + geom_point(aes(shape = funs, color = yr)) +
labs(title = "US 50 States Ozone Level and Radius Statistics by State and Year") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
facet_wrap( ~ metric,nrow=4,scales="free_y")
gg1
data.frame(subset(t, type == "PM2p5" & !funs=="n")) %>%
rename(id=state.abb) %>% as.data.frame -> df
gg2 <- ggplot(df, aes(x=id, y=value)) + geom_point(aes(shape = funs, color = yr)) +
labs(title = "US 50 States PM2.5 Level and Radius Statistics by State and Year") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
facet_wrap( ~ metric,nrow=4,scales="free_y")
gg2
data.frame(subset(t, type == "Ozone" & !funs=="n" & !(state.abb %in% c("AK", "HI")))) %>%
rename(id=state.abb) %>% as.data.frame -> df
gg3 <- ggplot(df, aes(x=id, y=value)) + geom_point(aes(shape = funs, color = yr)) +
labs(title = "US Lower 48 Ozone Level and Radius Statistics by State and Year") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))+
facet_wrap( ~ metric,nrow=4,scales="free_y")
gg3
We observe Radius reporting minimum is usually below 50 miles, with notable exceptions…
data.frame(subset(t, type == "PM2p5" & !funs=="n" & !(state.abb %in% c("AK", "HI")))) %>%
rename(id=state.abb) %>% as.data.frame -> df
gg4 <- ggplot(df, aes(x=id, y=value)) + geom_point(aes(shape = funs, color = yr)) +
labs(title = "US Lower 48 PM2.5 Level and Radius Statistics by State and Year") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))+
facet_wrap( ~ metric, nrow=4,scales="free_y")
gg4
rm(df) # cleanup
To generate the radar charts, we will use again the ggplot function, and perform charts on the normalized data. We produce faceted charts by Year and superimpose on the chart Ozone and PM2.5
# Define a new coordinate system
coord_radar <- function(...) {
structure(coord_polar(...), class = c("radar", "polar", "coord"))
}
is.linear.radar <- function(coord) TRUE
subset(t,funs!="n" & metric=="radius") %>%
unique %>% rename(id=state.abb) -> y
y$value <-normalize(y$value)
rownames(y)<-NULL
ggplot(y,aes(x=id,y=value)) +
geom_path(aes(group=type, color=funs)) +
coord_radar()+facet_wrap(type ~ yr,nrow=4) +
labs(title = "Annual Ozone and PM2.5 Radius Statistics for All 50 US States",x="",y="Normalized value") +
theme(strip.text.x = element_text(size = rel(0.8)), axis.text.x = element_text(size = rel(0.8)))
We observe that both AK and HI exhibit very large radii, so let’s exclude these…
subset(t,funs!="n" & metric=="radius" & !state.abb %in% c("AK","HI")) %>%
unique %>% rename(id=state.abb)-> y
y$value <-normalize(y$value)
rownames(y)<-NULL
ggplot(y,aes(x=id,y=value)) +
geom_path(aes(group=type, color=funs)) +
coord_radar()+facet_wrap(type ~ yr,nrow=4) +
labs(title = "Annual Ozone and PM2.5 Radius Statistics for Lower 48 US States",x="",y="Normalized value") +
theme(strip.text.x = element_text(size = rel(0.8)), axis.text.x = element_text(size = rel(0.8)))
rm(y,t) # cleanup
To perform this last step, we limit our observation to a radius less than 250 miles. This will provide visual support for the progress achieved between 2008 and 2015. Recognizing that such radius is quite large, we also map the current progress in collecting denser information. Levels of Ozone and PM2.5 and Radii evolutions are captured in a series of 8 annual charts, one for each variable, and animated with the chroroplethr player implemented with an html file.
subset(pollutant,radius<250) %>% gather("type","value",9:10) -> t
# the animated story...
choropleths<-list()
setwd(figdir) # point to ./figures sub directory
for (j in 2008:2015) {
i<-j-2007
df<-subset(t,type=="Ozone" & yr==as.character(j),select=c(region,value))
choropleths[[i]]=county_choropleth(df, title = paste(as.character(j),"Ozone level (ppm) Reporting Radius < 250 Miles"), legend = "ppm level", num_colors = 1, state_zoom = NULL, county_zoom = NULL)
choropleths[[i]]$scales$scales[[1]]$limits<-c(0,0.07)
}
for (j in 2008:2015) {
i<-j-1999
df<-subset(t,type=="PM2p5" & yr==as.character(j),select=c(region,value))
choropleths[[i]]=county_choropleth(df, title = paste(as.character(j),"PM2.5 level (ppm) Reporting Radius < 250 Miles"), legend = "ppm level", num_colors = 1, state_zoom = NULL, county_zoom = NULL)
choropleths[[i]]$scales$scales[[1]]$limits<-c(0,21)
}
for (j in 2008:2015) {
i<-j-1991
df<-subset(t,type=="Ozone" & yr==as.character(j),select=c(region,radius))
df %>% rename(value=radius) -> df
choropleths[[i]]=county_choropleth(df, title = paste(as.character(j),"Pollutant Reporting Radius (Miles)"), legend = "Miles", num_colors = 1, state_zoom = NULL, county_zoom = NULL)
choropleths[[i]]$scales$scales[[1]]$limits<-c(0,250)
}
choroplethr_animate(choropleths)
## [1] "All files will be written to the current working directory: P:/Developing Data Products/Pollution/Pollution_files/figure-html . To change this use setwd()"
## [1] "Now writing individual choropleth files there as 'choropleth_1.png', 'choropleth_2.png', etc."
## [1] "Now writing code to animate all images in 'animated_choropleth.html'. Please open that file with a browser."
for (j in 1:9)
{ from.filename<-paste0("choropleth_",j,".png")
to.filename<-paste0("choropleth_",formatC(j,width=2,flag="0"),".png")
file.rename(from=from.filename,to=to.filename)
file.remove(from.filename)
}
setwd(userdir) # return to working directory
rm(t,df,from.filename,to.filename) # cleanup
The choroplethr animation is provided with its own player. All figures have been written to the ./figure-html sub directory and can be viewed individually as well. Alternatively, we can render as an animated gif directly provided we convert the png files into an animated gif with the ImageMagick converter and execute a shell command.
setwd(figdir)
filestocopy<-as.vector(list.files(pattern="choropleth_"))
anidir<-paste(userdir,strsplit(anidir,"/")[[1]][length(strsplit(anidir,"/")[[1]])],sep="/")
file.copy(from=filestocopy, to=anidir, copy.mode=TRUE)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
setwd(anidir)
# now convert in anidir these sequentially numbered files to one gif using ImageMagick
shell("convert -delay 100 -loop 0 -depth 4 -background white -quality 70 *.png choroplethr.gif")
# now remove all the *png files
file.remove(list.files(pattern=".png"))
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
setwd(userdir)
This analysis shows definite trends and explores techniques to screen data content. ggmap and choroplethr visualization are complementing more common histograms, point charts and less frequently used, but powerful radar charts. Both external players and animated gif allow for versatile animation display in an HTML environment. The next target will be to port this type of visualization to a shiny app and extend to other pollutants as selected dynamically in the application from the US EPA records.
The following sources are referenced as they provided significant help and information to develop this analysis: