page 1

# A tibble: 31 x 13
   Tanggal             Nama_provinsi POSITIF Dirawat Sembuh Meninggal
   <dttm>              <chr>           <dbl>   <dbl>  <dbl>     <dbl>
 1 2020-05-01 00:00:00 DKI Jakarta      4283    2151    427       393
 2 2020-05-02 00:00:00 DKI Jakarta      4355    2089    562       400
 3 2020-05-03 00:00:00 DKI Jakarta      4417    2062    622       410
 4 2020-05-04 00:00:00 DKI Jakarta      4472    2080    650       412
 5 2020-05-05 00:00:00 DKI Jakarta      4641    2146    711       414
 6 2020-05-06 00:00:00 DKI Jakarta      4709    2195    713       420
 7 2020-05-07 00:00:00 DKI Jakarta      4775    2196    718       430
 8 2020-05-08 00:00:00 DKI Jakarta      4901    2281    763       431
 9 2020-05-09 00:00:00 DKI Jakarta      4958    2312    767       437
10 2020-05-10 00:00:00 DKI Jakarta      5140    2360    803       444
# ... with 21 more rows, and 7 more variables: `Self Isolation` <dbl>,
#   retail_and_recreation_percent_change_from_baseline <dbl>,
#   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
#   parks_percent_change_from_baseline <dbl>,
#   transit_stations_percent_change_from_baseline <dbl>,
#   workplaces_percent_change_from_baseline <dbl>,
#   residential_percent_change_from_baseline <dbl>
# A tibble: 31 x 9
   Tanggal             Nama_provinsi Sembuh retail_and_recreat~ grocery_and_pha~
   <dttm>              <chr>          <dbl>               <dbl>            <dbl>
 1 2020-05-01 00:00:00 DKI Jakarta      427                 -61              -28
 2 2020-05-02 00:00:00 DKI Jakarta      562                 -62              -29
 3 2020-05-03 00:00:00 DKI Jakarta      622                 -64              -34
 4 2020-05-04 00:00:00 DKI Jakarta      650                 -56              -31
 5 2020-05-05 00:00:00 DKI Jakarta      711                 -57              -29
 6 2020-05-06 00:00:00 DKI Jakarta      713                 -57              -31
 7 2020-05-07 00:00:00 DKI Jakarta      718                 -61              -29
 8 2020-05-08 00:00:00 DKI Jakarta      763                 -56              -24
 9 2020-05-09 00:00:00 DKI Jakarta      767                 -60              -25
10 2020-05-10 00:00:00 DKI Jakarta      803                 -63              -31
# ... with 21 more rows, and 4 more variables:
#   parks_percent_change_from_baseline <dbl>,
#   transit_stations_percent_change_from_baseline <dbl>,
#   workplaces_percent_change_from_baseline <dbl>,
#   residential_percent_change_from_baseline <dbl>

page 2

Row

Histogram Data Sembuh Covid

geom_smooth Linear Regression

Row

geom_smooth with Loess Smoothed Fit

Constraining Slope with stat_smooth

page 3

Row

stat_density Example

Add Conditional Density Curves to Plot

Row

geom_density and facet_wrap Together

Density and Scatterplot Overlay Using geom_density

page 4

Row

stat_density Example

Add Conditional Density Curves to Plot

Row

geom_density and facet_wrap Together

Density and Scatterplot Overlay Using geom_density