| itle: “Tugas Penduga Kekar Parameter Data Bangkitan” |
| uthor: “Afris Setiya Intan Amanda” |
| ate: “5/27/2022” |
| utput: html_document |
Dataset yang digunakan merupakan data sekunder hasil pembangkitan dengan sebaran normal yang nilai parameter rataan sebesar 2 dan simpangan baku sebesar 5.
#package yang digunakan
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
library(data.table)
## Warning: package 'data.table' was built under R version 4.1.2
library(psych)
## Warning: package 'psych' was built under R version 4.1.3
library(lmomco)
## Warning: package 'lmomco' was built under R version 4.1.3
##
## Attaching package: 'lmomco'
## The following object is masked from 'package:psych':
##
## harmonic.mean
library(dplR)
## Warning: package 'dplR' was built under R version 4.1.3
#data100
dt29.1 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 1)
View(dt29.1)
#data100 pencilan kanan
dt29.2 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 2)
View(dt29.2)
#data100 pencilan kiri
dt29.3 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 3)
View(dt29.3)
#data100 pencilan kanan kiri
dt29.4 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 4)
View(dt29.4)
#data10
dt29.5 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 5)
View(dt29.5)
#data10 pencilan kanan
dt29.6 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 6)
View(dt29.6)
#data10 pencilan kiri
dt29.7 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 7)
View(dt29.7)
#data10 pencilan kanan-kiri
dt29.8 <- read_excel("C:/Users/hp/Documents/MY DEPARTEMEN/#4/AED/DATA/29.xlsx", sheet = 8)
View(dt29.8)
Pendeteksian pencilan dengan menggunakan dua cara. Pertama, suatu amatan akan disebut pencilan juka berada di luar selang (x bar - 3s, x bar + 3s). Kedua, amatan yang bernilai lebih kecil daripada Batas Bawah atau lebih besar daripada Batas Atas diidentifikasi sebagai pencilan. • Batas Bawah = Q1 – 1.5 * IQR • Batas Atas = Q3 + 1.5 * IQR
###Pendeteksiaan Pencilan pada Peubah Tunggal dt100
#Cara 1
y1 <- dt29.1$dt100
m <- mean(y1)
s <- sd(y1)
pencilan <- (y1 > m+3*s) | (y1 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 0
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## integer(0)
#nilai pencilan
y1[which(pencilan)]
## numeric(0)
#Cara 2
value.outliery1 <- boxplot.stats(y1)$out
which(y1 == value.outliery1)
## integer(0)
value.outliery1
## numeric(0)
#boxplot
boxplot(dt29.1$dt100, ylab = "y1")
Dengan pendeteksiaan pencilan pada data peubah tunggal dt100, dapat dilihat bahwa tidak ada pencilan.Selain itu, dapat dilihat juga pada boxplot bahwa data peubah tunggal dt100 cukup simetris.
#Cara 1
y2 <- dt29.2$dt100r
m <- mean(y2)
s <- sd(y2)
pencilan <- (y2 > m+3*s) | (y2 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 4
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## [1] 102 103 104 105
#nilai pencilan
y2[which(pencilan)]
## [1] 88 103 134 147
#Cara 2
value.outliery2 <- boxplot.stats(y2)$out
which(y2 == value.outliery2)
## [1] 101 102 103 104 105
value.outliery2
## [1] 79 88 103 134 147
#boxplot
boxplot(dt29.2$dt100r, ylab = "y2")
#Cara 1
y3 <- dt29.3$dt100l
m <- mean(y3)
s <- sd(y3)
pencilan <- (y3 > m+3*s) | (y3 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 4
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## [1] 2 3 4 5
#nilai pencilan
y3[which(pencilan)]
## [1] -72 -95 -117 -138
#Cara 2
value.outliery3 <- boxplot.stats(y3)$out
which(y3 == value.outliery3)
## [1] 1 2 3 4 5
value.outliery3
## [1] -53 -72 -95 -117 -138
#boxplot
boxplot(dt29.3$dt100l, ylab = "y3")
#Cara 1
y4 <- dt29.4$dt100rl
m <- mean(y4)
s <- sd(y4)
pencilan <- (y4 > m+3*s) | (y4 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 5
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## [1] 4 5 108 109 110
#nilai pencilan
y4[which(pencilan)]
## [1] -117 -138 103 134 147
#Cara 2
value.outliery4 <- boxplot.stats(y4)$out
which(y4 == value.outliery4)
## [1] 1 2 3 4 5 106 107 108 109 110
value.outliery4
## [1] -53 -72 -95 -117 -138 79 88 103 134 147
#boxplot
boxplot(dt29.4$dt100rl, ylab = "y4")
#Cara 1
x1 <- dt29.5$dt10
m <- mean(x1)
s <- sd(x1)
pencilan <- (x1 > m+3*s) | (x1 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 0
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## integer(0)
#nilai pencilan
x1[which(pencilan)]
## numeric(0)
#Cara 2
value.outlierx1 <- boxplot.stats(x1)$out
which(x1 == value.outlierx1)
## integer(0)
value.outlierx1
## numeric(0)
#boxplot
boxplot(dt29.5$dt10, ylab = "x1")
#Cara 1
x2 <- dt29.6$dt10r
m <- mean(x2)
s <- sd(x2)
pencilan <- (x2 > m+3*s) | (x2 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 0
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## integer(0)
#nilai pencilan
x2[which(pencilan)]
## numeric(0)
#Cara 2
value.outlierx2 <- boxplot.stats(x2)$out
which(x2 == value.outlierx2)
## [1] 11 12
value.outlierx2
## [1] 54 67
#boxplot
boxplot(dt29.6$dt10r, ylab = "x2")
#Cara 1
x3 <- dt29.7$dt10l
m <- mean(x3)
s <- sd(x3)
pencilan <- (x3 > m+3*s) | (x3 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 0
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## integer(0)
#nilai pencilan
x3[which(pencilan)]
## numeric(0)
#Cara 2
value.outlierx3 <- boxplot.stats(x3)$out
which(x3 == value.outlierx3)
## [1] 1 2
value.outlierx3
## [1] -23 -44
#boxplot
boxplot(dt29.7$dt10l, ylab = "x3")
#Cara 1
x4 <- dt29.8$dt10rl
m <- mean(x4)
s <- sd(x4)
pencilan <- (x4 > m+3*s) | (x4 < m-3*s)
#menghitung banyaknya amatan pencilan
sum(pencilan)
## [1] 0
#mengidentifikasi nomor amatan yang menjadi pencilan
which(pencilan)
## integer(0)
#nilai pencilan
x4[which(pencilan)]
## numeric(0)
#Cara 2
value.outlierx4 <- boxplot.stats(x4)$out
which(x4 == value.outlierx4)
## Warning in x4 == value.outlierx4: longer object length is not a multiple of
## shorter object length
## [1] 1 2
value.outlierx4
## [1] -23 -44 54 67
#boxplot
boxplot(dt29.8$dt10rl, ylab = "x4")
par(mfrow=c(2,4))
boxplot(dt29.1$dt100, ylab = "dt100")
boxplot(dt29.2$dt100r, ylab = "dt100r")
boxplot(dt29.3$dt100l, ylab = "dt100l")
boxplot(dt29.4$dt100rl, ylab = "dt100rl")
boxplot(dt29.5$dt10, ylab = "dt10")
boxplot(dt29.6$dt10r, ylab = "dt10r")
boxplot(dt29.7$dt10l, ylab = "dt10l")
boxplot(dt29.8$dt10rl, ylab = "dt10rl")
Penduga Kekar bagi Rataan menggunakan 3 metode yaitu: 1. Trimmed Mean 2. Winsorized Mean 3. Pembobot Tukey
#Trimmed Mean
mean(dt29.1$dt100,na.rm=TRUE)
## [1] 1.317255
mean(dt29.1$dt100, trim=0.05)
## [1] 1.300728
mean(dt29.1$dt100, trim=0.1)
## [1] 1.320186
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.1$dt100) #nilai peluang 5% dan 95%
wm05
## [1] 1.272903
wm10 <- winsorMEAN(dt29.1$dt100, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 1.279984
#menggunakan package psych
winsor.mean(dt29.1$dt100, trim=0.1)
## [1] 1.279984
winsor.mean(dt29.1$dt100, trim=0.05)
## [1] 1.272903
#Tukey
tbrm(dt29.1$dt100)
## [1] 1.289418
#Trimmed Mean
mean(dt29.2$dt100r)
## [1] 6.502148
mean(dt29.2$dt100r, trim=0.05)
## [1] 1.783629
mean(dt29.2$dt100r, trim=0.1)
## [1] 1.697381
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.2$dt100r) #nilai peluang 5% dan 95%
wm05
## [1] 1.952331
wm10 <- winsorMEAN(dt29.2$dt100r, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 1.65733
#menggunakan package psych
winsor.mean(dt29.2$dt100r, trim=0.1)
## [1] 1.65733
winsor.mean(dt29.2$dt100r, trim=0.05)
## [1] 1.952331
#Tukey
tbrm(dt29.2$dt100r)
## [1] 1.326342
#Trimmed Mean
mean(dt29.3$dt100l)
## [1] -3.269281
mean(dt29.3$dt100l, trim=0.05)
## [1] 0.8352237
mean(dt29.3$dt100l, trim=0.1)
## [1] 0.9223875
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.3$dt100l) #nilai peluang 5% dan 95%
wm05
## [1] 0.7167054
wm10 <- winsorMEAN(dt29.3$dt100l, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 0.8782828
#menggunakan package psych
winsor.mean(dt29.3$dt100l, trim=0.1)
## [1] 0.8782828
winsor.mean(dt29.3$dt100l, trim=0.05)
## [1] 0.7167054
#Tukey
tbrm(dt29.3$dt100l)
## [1] 1.280994
#Trimmed Mean
mean(dt29.4$dt100rl)
## [1] 1.888414
mean(dt29.4$dt100rl, trim=0.05)
## [1] 1.317255
mean(dt29.4$dt100rl, trim=0.1)
## [1] 1.307026
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.4$dt100rl) #nilai peluang 5% dan 95%
wm05
## [1] 1.385302
wm10 <- winsorMEAN(dt29.4$dt100rl, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 1.283339
#menggunakan package psych
winsor.mean(dt29.4$dt100rl, trim=0.1)
## [1] 1.283339
winsor.mean(dt29.4$dt100rl, trim=0.05)
## [1] 1.385302
#Tukey
tbrm(dt29.4$dt100rl)
## [1] 1.293911
#Trimmed Mean
mean(dt29.5$dt10)
## [1] 2.661014
mean(dt29.5$dt10, trim=0.05)
## [1] 2.661014
mean(dt29.5$dt10, trim=0.1)
## [1] 2.351485
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.5$dt10) #nilai peluang 5% dan 95%
wm05
## [1] 2.47161
wm10 <- winsorMEAN(dt29.5$dt10, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 2.282206
#menggunakan package psych
winsor.mean(dt29.5$dt10, trim=0.1)
## [1] 2.282206
winsor.mean(dt29.5$dt10, trim=0.05)
## [1] 2.47161
#Tukey
tbrm(dt29.5$dt10)
## [1] 2.670408
#Trimmed Mean
mean(dt29.6$dt10r)
## [1] 12.30084
mean(dt29.6$dt10r, trim=0.05)
## [1] 12.30084
mean(dt29.6$dt10r, trim=0.1)
## [1] 8.278828
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.6$dt10r) #nilai peluang 5% dan 95%
wm05
## [1] 11.70849
wm10 <- winsorMEAN(dt29.6$dt10r, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 10.50627
#menggunakan package psych
winsor.mean(dt29.6$dt10r, trim=0.1)
## [1] 10.50627
winsor.mean(dt29.6$dt10r, trim=0.05)
## [1] 11.70849
#Tukey
tbrm(dt29.6$dt10r)
## [1] 2.690778
#Trimmed Mean
mean(dt29.7$dt10l)
## [1] -3.365822
mean(dt29.7$dt10l, trim=0.05)
## [1] -3.365822
mean(dt29.7$dt10l, trim=0.1)
## [1] -0.6366265
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.7$dt10l) #nilai peluang 5% dan 95%
wm05
## [1] -2.599708
wm10 <- winsorMEAN(dt29.7$dt10l, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] -1.639401
#menggunakan package psych
winsor.mean(dt29.7$dt10l, trim=0.1)
## [1] -1.639401
winsor.mean(dt29.7$dt10l, trim=0.05)
## [1] -2.599708
#Tukey
tbrm(dt29.7$dt10l)
## [1] 2.19905
#Trimmed Mean
mean(dt29.8$dt10rl)
## [1] 5.757867
mean(dt29.8$dt10rl, trim=0.05)
## [1] 5.757867
mean(dt29.8$dt10rl, trim=0.1)
## [1] 4.800845
#Winsorized Mean
winsorMEAN <- function(x,probs=c(0.05,0.95))
{
xq<-quantile(x,probs=probs)
x[x < xq[1]]<-xq[1]
x[x > xq[2]]<-xq[2]
return(mean(x))
}
#nilai proporsi
wm05 <- winsorMEAN(dt29.8$dt10rl) #nilai peluang 5% dan 95%
wm05
## [1] 6.129296
wm10 <- winsorMEAN(dt29.8$dt10rl, probs=c(0.10, 0.90)) #nilai peluang 10% dan 90%
wm10
## [1] 5.334935
#menggunakan package psych
winsor.mean(dt29.8$dt10rl, trim=0.1)
## [1] 5.334935
winsor.mean(dt29.8$dt10rl, trim=0.05)
## [1] 6.129296
#Tukey
tbrm(dt29.8$dt10rl)
## [1] 1.624409
Pendugaan robust bagi ragam dapat ditentukan sebagai kuadrat dari pendugaan robust bagi simpangan baku. Pendugaan robust bagi ragam menggunakan 2 metode yaitu MAD (Median Absolute Deviation) dan Gini’s mean difference.
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.48477
value.mad <- mad(dt29.1$dt100, constant=const)
stdev.y1 <- sd(dt29.1$dt100)
stdev.kekar.y1 <- mad(dt29.1$dt100)
c(value.mad, stdev.y1, stdev.kekar.y1)
## [1] 5.327018 4.706179 5.319231
ragam.y1 <- stdev.y1^2
ragam.kekar.y1 <- (mad(dt29.1$dt100))^2
c(value.mad, ragam.y1, ragam.kekar.y1)
## [1] 5.327018 22.148125 28.294221
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.1$dt100)$gini
## [1] 5.392645
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.484613
value.mad <- mad(dt29.2$dt100r, constant=const)
stdev.y2 <- sd(dt29.2$dt100r)
stdev.kekar.y2 <- mad(dt29.2$dt100r)
c(value.mad, stdev.y2, stdev.kekar.y2)
## [1] 5.619175 24.433190 5.611557
ragam.y2 <- stdev.y2^2
ragam.kekar.y2 <- (mad(dt29.2$dt100r))^2
c(value.mad, ragam.y2, ragam.kekar.y2)
## [1] 5.619175 596.980752 31.489570
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.2$dt100r)$gini
## [1] 14.92655
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.484637
value.mad <- mad(dt29.3$dt100l, constant=const)
stdev.y3 <- sd(dt29.3$dt100l)
stdev.kekar.y3 <- mad(dt29.3$dt100l)
c(value.mad, stdev.y3, stdev.kekar.y3)
## [1] 5.608652 22.143527 5.600955
ragam.y3 <- stdev.y3^2
ragam.kekar.y3 <- (mad(dt29.3$dt100l))^2
c(value.mad, ragam.y3, ragam.kekar.y3)
## [1] 5.608652 490.335768 31.370699
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.3$dt100l)$gini
## [1] 13.78795
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.48461
value.mad <- mad(dt29.4$dt100rl, constant=const)
stdev.y4 <- sd(dt29.4$dt100rl)
stdev.kekar.y4 <- mad(dt29.4$dt100rl)
c(value.mad, stdev.y4, stdev.kekar.y4)
## [1] 5.843491 32.606060 5.835581
ragam.y4 <- stdev.y4^2
ragam.kekar.y4 <- (mad(dt29.4$dt100rl))^2
c(value.mad, ragam.y4, ragam.kekar.y4)
## [1] 5.843491 1063.155126 34.054003
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.4$dt100rl)$gini
## [1] 22.55506
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.484918
value.mad <- mad(dt29.5$dt10, constant=const)
stdev.x1 <- sd(dt29.5$dt10)
stdev.kekar.x1 <- mad(dt29.5$dt10)
c(value.mad, stdev.x1, stdev.kekar.x1)
## [1] 3.874571 3.902930 3.868523
ragam.x1 <- stdev.x1^2
ragam.kekar.x1 <- (mad(dt29.5$dt10))^2
c(value.mad, ragam.x1, ragam.kekar.x1)
## [1] 3.874571 15.232861 14.965467
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.5$dt10)$gini
## [1] 4.591692
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.484584
value.mad <- mad(dt29.6$dt10r, constant=const)
stdev.x2 <- sd(dt29.6$dt10r)
stdev.kekar.x2 <- mad(dt29.6$dt10r)
c(value.mad, stdev.x2, stdev.kekar.x2)
## [1] 6.490523 22.956830 6.481849
ragam.x2 <- stdev.x2^2
ragam.kekar.x2 <- (mad(dt29.6$dt10r))^2
c(value.mad, ragam.x2, ragam.kekar.x2)
## [1] 6.490523 527.016024 42.014372
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.6$dt10r)$gini
## [1] 20.85463
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.484783
value.mad <- mad(dt29.7$dt10l, constant=const)
stdev.x3 <- sd(dt29.7$dt10l)
stdev.kekar.x3 <- mad(dt29.7$dt10l)
c(value.mad, stdev.x3, stdev.kekar.x3)
## [1] 5.182821 15.186599 5.175200
ragam.x3 <- stdev.x3^2
ragam.kekar.x3 <- (mad(dt29.7$dt10l))^2
c(value.mad, ragam.x3, ragam.kekar.x3)
## [1] 5.182821 230.632784 26.782691
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.7$dt10l)$gini
## [1] 14.40676
#MAD
# Menentukan nilai constant
m = 10^5; n = 1000; c = numeric(m)
for(i in 1:m) {
u = rnorm(n); s = sd(u); d = mad(u, const=T)
c[i] = s/d
}
const <- mean(c)
const
## [1] 1.4847
value.mad <- mad(dt29.8$dt10rl, constant=const)
stdev.x4 <- sd(dt29.8$dt10rl)
stdev.kekar.x4 <- mad(dt29.8$dt10rl)
c(value.mad, stdev.x4, stdev.kekar.x4)
## [1] 7.275302 27.194122 7.265012
ragam.x4 <- stdev.x4^2
ragam.kekar.x4 <- (mad(dt29.8$dt10rl))^2
c(value.mad, ragam.x4, ragam.kekar.x4)
## [1] 7.275302 739.520249 52.780394
#gini's mean difference
#menggunakan package lmomco
gini.mean.diff(dt29.8$dt10rl)$gini
## [1] 27.43545