Dosen Pengampu : Prof. Dr. Suhartono, M.Kom
Mata Kuliah : Linear Algebra
Prodi : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang”
Pemrogramam linier atau Linear Programming (LP) adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas diantara beberapa aktivitas yang bersaing, dengan cara yang terbaik yang mungkin dilakukan. Persoalan pengalokasian ini dapat timbul dari berbagai macam arah, diantaranya seperti sumber daya, persediaan, pendistribusian. Program linier ini menggunakan model matematis untuk menjelaskan persoalan yang dihadapinya. Sifat “linier” disini memberi arti bahwa seluruh fungsi matematis dalam model ini merupakan fungsi yang linier, sedangkan program berarti perencanaan. Dengan demikian, pemrograman linier (LP) adalah perencanaan aktivitas-aktivitas untuk memperoleh suatu hasil yang optimum, yaitu suatu hasil yang mencapai tujuan terbaik dintara seluruh alternatif yang fisibel (Dimyati,1999). Atau dalam bahasa lain juga dapat diartikan sebagai suatu cara untuk menyelesaikan masalah dengan menggunakan persamaan atau pertidaksamaan linear yang mempunyai banyak penyelesaian, dengan memperhatikan syarat-syarat agar diperoleh hasil yang maksimum/minimum (penyelesaian optimum).
Contoh
PT. HARAPAN TEKSTIL memiliki sebuah pabrik yang akan memproduksi 2 jenis produk, yaitu kain sutera dan kain wol. Untuk memproduksi kedua produk diperlukan bahan baku benang sutera, bahan baku benang wol dan tenaga kerja. Maksimum penyediaan benang sutera adalah 60 kg per hari, benang wol 30 kg per hari dan tenaga kerja 40 jam per hari. Kebutuhan setiap unit produk akan bahan baku dan jam tenaga kerja dapat dilihat dalam tabel berikut:
Kedua jenis produk memberikan keuntungan sebesar Rp.40.000.000,- untuk kain sutera dan Rp.30.000.000,- untuk kain wol. Masalahnya adalah bagaimana menentukan jumlah unit setiap jenis produk yang akan diproduksi setiap hari agar keuntungan yang diperoleh bisa maksimal.
Menentukan variabelnya terlebih dahulu
X1=kain sutera
X2=kain wol
Fungsi Tujuan
Zmax= 40X1 + 30X2
library (lpSolve)
# Memasukkan koefisien dari fungsi tujuan pada f.obj
f.obj <- c(40, 30)
Fungsi Kendala/Batasan
2X1 + 3X2 ≤ 60 (benang sutera)
2X2 ≤ 30 (benang wol)
2X1 + X2 ≤ 40 (tenaga kerja)
# Memasukkan koefiesian fungsi kendala dalam bentuk matriks
# Dengan nrow menunjukkan banyaknya kendala yaitu 3 dan angka yang
# diinput disusun perbaris sehingga byrow = TRUE
f.con <- matrix(c(2, 3,
0, 2,
2, 1), nrow = 3, byrow = TRUE)
# Memasukkan tanda pertidaksamaan pada setiap kendala
f.dir <- c("<=",
"<=",
"<=")
# Memasukkan koefisien ruas kanan
f.rhs <- c(60,
30,
40)
Mendapatkan Solusi Optimal
# Keuntungan Maksimum
lp("max", f.obj, f.con, f.dir, f.rhs)
## Success: the objective function is 900
# Nilai Variabel agar mencapai keuntungan maksimum
lp("max", f.obj, f.con, f.dir, f.rhs)$solution
## [1] 15 10
# Koefisien sensitivitas
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$sens.coef.from
## [1] 20 20
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$sens.coef.to
## [1] 60 60
# Bayangan/harga ganda dari kendala dan variabel keputusan
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals
## [1] 5 0 15 0 0
# Batas bawah batasan harga bayangan/ganda dan masing masing variabel keputusan
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals.from
## [1] 4e+01 -1e+30 3e+01 -1e+30 -1e+30
# Batas atas batasan harga bayangan/ganda dan masing masing variabel keputusan
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals.to
## [1] 7e+01 1e+30 6e+01 1e+30 1e+30
Nilai z maksimum yang dapat diperoleh saat memenuhi kendala yang diberikan adalah 900 ( keuntungan sebesar Rp 900 juta), di mana X1=15 X2=10. Koefisien sensitivitas berubah dari 20 dan 20 menjadi 60 dan 60. Bayangan/harga ganda dari kendala adalah 5, 0 dan 15, sedangkan untuk variabel keputusan masing-masing adalah 0 dan 0. Batas bawah harga bayangan adalah 4e+01, -1e+30, dan 3e+01, sedangkan untuk variabel keputusan berturut-turut adalah -1e+30 dan -1e+30. Terakhir, batas atas harga bayangan adalah 17e+01, 1e+30, dan 6e+01, sedangkan untuk variabel keputusan masing-masing adalah 1e+30 dan 1e+30.