Según Gotelli & Ellison (2013)
ss="https://docs.google.com/spreadsheets/d/1CMPY0Bjm6Kc3XUq0mZtgIoyXAacdWVkv2KONh0T-inU/edit?usp=sharing"
hoja="Hoja1"
rango="A1:E18"
latsp <- data.frame(read_sheet(ss=ss,
sheet=hoja,
range=rango,
col_names = TRUE,
na= "NA")
)
latsp$group <- factor(latsp$group)
modelo
respuesta -> species
predictora -> latitude
head(latsp)
summary(latsp)
town state latitude species group
Length:17 Length:17 Min. :37.20 Min. : 94 a:9
Class :character Class :character 1st Qu.:38.32 1st Qu.:108 b:8
Mode :character Mode :character Median :38.60 Median :118
Mean :38.64 Mean :120
3rd Qu.:39.13 3rd Qu.:128
Max. :39.73 Max. :157
# ggplot
ggplot(data= latsp, aes(x=latitude, y= species)) +
geom_point(size=2)
reg1 <- lm(data=latsp, species ~ latitude)
summary(reg1)
Call:
lm(formula = species ~ latitude, data = latsp)
Residuals:
Min 1Q Median 3Q Max
-26.635 -11.198 -1.993 14.569 28.162
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 585.145 230.024 2.544 0.0225 *
latitude -12.039 5.953 -2.022 0.0613 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 16.37 on 15 degrees of freedom
Multiple R-squared: 0.2143, Adjusted R-squared: 0.1619
F-statistic: 4.09 on 1 and 15 DF, p-value: 0.06134
ggplot(data= latsp, aes(x=latitude, y= species, col=)) +
geom_point(size=2) +
geom_smooth(method="lm")
plot(reg1, which=c(1))
#
hist(reg1$residuals)
shapiro.test(reg1$residuals)
Shapiro-Wilk normality test
data: reg1$residuals
W = 0.97504, p-value = 0.899
head(latsp)
modelo
respuesta -> species
predictora -> group
summary(latsp)
town state latitude species group
Length:17 Length:17 Min. :37.20 Min. : 94 a:9
Class :character Class :character 1st Qu.:38.32 1st Qu.:108 b:8
Mode :character Mode :character Median :38.60 Median :118
Mean :38.64 Mean :120
3rd Qu.:39.13 3rd Qu.:128
Max. :39.73 Max. :157
# ggplot
ggplot(data= latsp, aes(x=group, y= species)) +
geom_boxplot() +
geom_point(size=2, col=6,
position = position_jitter(width=0.1, height=0)) +
geom_hline(yintercept = mean(latsp$species), lty="dashed", lwd=1)
aov1 <- aov(data=latsp, species ~ group)
summary(aov1)
Df Sum Sq Mean Sq F value Pr(>F)
group 1 3015 3014.9 21.5 0.000322 ***
Residuals 15 2103 140.2
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
y= latsp$species
binwidth=4
ggplot(data=latsp, aes(x=y)) + geom_histogram(aes(y=..density..), binwidth=binwidth,colour="black", fill="white") + geom_density(alpha=.2, fill="#FF6666")
shapiro.test(latsp$species)
Shapiro-Wilk normality test
data: latsp$species
W = 0.95152, p-value = 0.4809
shapiro.test(reg1$residuals)
Shapiro-Wilk normality test
data: reg1$residuals
W = 0.97504, p-value = 0.899
leveneTest(aov1)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.2805 0.2756
15
===============================================
### Análisis de Frecuencias (tablas de contingencia)
#### Import Data
ss="https://docs.google.com/spreadsheets/d/1sd5Bkkhs2CBl-5mpRUNPv0WfqZr3KQwjbgScY27Tf-s/edit?usp=sharing"
hoja="Sheet3"
rango="A2:C5"
dogs <- read_sheet(ss=ss,
sheet=hoja,
range=rango,
col_names = TRUE,
na= "NA"
)
Reading from "TresDise昼㸱os_Clase"
Range "'Sheet3'!A2:C5"
dogs$total <- dogs$imig+dogs$local
dogs$Pr.imig <- dogs$imig/dogs$total
obs <- cbind(dogs$imig, dogs$local)
modelo
respuesta -> origen
predictora -> edad
dogs
# ggplot
pr.gen <- sum(dogs$imig)/sum(dogs$total)
ggplot(data= dogs,
aes(x=edad, y= Pr.imig, fill=edad)) +
geom_col() +
geom_hline(yintercept = pr.gen, lty="dashed", lwd=1) +
ylim(0,0.8)
chi2 <- chisq.test(obs)
Chi-squared approximation may be incorrect
chi2
Pearson's Chi-squared test
data: obs
X-squared = 88.043, df = 2, p-value < 2.2e-16
chi2$stdres
[,1] [,2]
[1,] 9.1864627 -9.1864627
[2,] 0.8376399 -0.8376399
[3,] -8.3937442 8.3937442
chi2$expected
[,1] [,2]
[1,] 3.973585 35.02642
[2,] 1.935849 17.06415
[3,] 21.090566 185.90943
dogs[, c(2,3)]
============================================================== ### Regresión logística #### Import Data
ss="https://docs.google.com/spreadsheets/d/1CMPY0Bjm6Kc3XUq0mZtgIoyXAacdWVkv2KONh0T-inU/edit?usp=sharing"
hoja="Hoja3"
rango="A1:D32"
fever <- data.frame(read_sheet(ss=ss,
sheet=hoja,
range=rango,
col_names = TRUE,
na= "NA")
)
Reading from "Regres_datos"
Range "'Hoja3'!A1:D32"
modelo respuesta -> fever predictora -> Pulse
summary(fever)
Species Temp Pulse fever
Length:31 Min. :17.20 Min. : 44.30 Min. :0.0000
Class :character 1st Qu.:20.80 1st Qu.: 59.45 1st Qu.:0.0000
Mode :character Median :24.00 Median : 76.20 Median :0.0000
Mean :23.76 Mean : 72.89 Mean :0.3871
3rd Qu.:26.35 3rd Qu.: 85.25 3rd Qu.:1.0000
Max. :30.40 Max. :101.70 Max. :1.0000
# ggplot
ggplot(data= fever,
aes(x=Pulse, y= fever)) +
geom_point(size=2, col=6,
position = position_jitter(width=0.1, height=0.02)) +
geom_hline(yintercept = 0.5, lty="dashed", lwd=0.6)
reglog <- glm(data=fever,
fever ~ Pulse,
family= binomial)
summary(reglog)
Call:
glm(formula = fever ~ Pulse, family = binomial, data = fever)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.38513 -0.16483 -0.00855 0.14584 1.62815
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -27.4351 13.0573 -2.101 0.0356 *
Pulse 0.3472 0.1657 2.095 0.0362 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 41.381 on 30 degrees of freedom
Residual deviance: 14.002 on 29 degrees of freedom
AIC: 18.002
Number of Fisher Scoring iterations: 8
ggplot(data= fever,
aes(x=Pulse, y= fever)) +
geom_point(size=2, col=6,
position = position_jitter(width=0.1, height=0.02)) +
geom_hline(yintercept = 0.5, lty="dashed", lwd=0.6) +
geom_smooth(method="glm",method.args=list(family=binomial))
===============================================