library(tidyverse)
library(effectsize)
library(readxl)
library(janitor)
library(broom)
library(emmeans)
library(car)
datos <- read_excel("experimento_ratones.xlsx")
datos
\[H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2\]
datos %>%
ggplot(aes(x = Treatment, y = GST)) +
geom_boxplot()
modelo1 <- aov(GST ~ Treatment, data = datos)
modelo1 %>% tidy()
modelo1 %>%
emmeans(specs = "Treatment") %>%
as.data.frame()
modelo1 %>%
eta_squared()
par(mfrow = c(2, 2))
plot(modelo1)
modelo1 %>%
residuals() %>%
shapiro.test()
##
## Shapiro-Wilk normality test
##
## data: .
## W = 0.92386, p-value = 0.1946
datos %>%
bartlett.test(data = ., GST ~ Treatment)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Treatment
## Bartlett's K-squared = 0.00092761, df = 1, p-value = 0.9757
\[ H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \\ \]
\[ H_0: \beta_1 = \beta_2 \\ H_A: \beta_1 \neq \beta_2 \]
datos %>%
ggplot(aes(x = Treatment, y = GST)) +
facet_wrap(~Block) +
geom_boxplot()
modelo2 <- aov(GST ~ Treatment + Block, data = datos)
modelo2 %>% tidy()
modelo2 %>%
emmeans(specs = "Treatment") %>%
as.data.frame()
modelo2 %>%
eta_squared()
par(mfrow = c(2, 2))
plot(modelo2)
modelo2 %>%
residuals() %>%
shapiro.test()
##
## Shapiro-Wilk normality test
##
## data: .
## W = 0.84408, p-value = 0.01116
datos %>%
leveneTest(data = ., GST ~ Treatment)
datos %>%
leveneTest(data = ., GST ~ Block)
\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \\ H_1: \mu_i \neq \mu_j\]
\[H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_1\]
datos %>%
ggplot(aes(x = Strain, y = GST, color = Treatment, fill = Treatment)) +
geom_boxplot(alpha = 0.5)
modelo3 <- aov(GST ~ Treatment + Strain, data = datos)
modelo3 %>% tidy()
modelo3 %>%
emmeans(specs = "Treatment") %>%
as.data.frame()
modelo3 %>%
emmeans(specs = "Strain") %>%
as.data.frame()
modelo3 %>%
eta_squared()
par(mfrow = c(2, 2))
plot(modelo3)
modelo3 %>%
residuals() %>%
shapiro.test()
##
## Shapiro-Wilk normality test
##
## data: .
## W = 0.98395, p-value = 0.9872
datos %>%
bartlett.test(data = ., GST ~ Treatment)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Treatment
## Bartlett's K-squared = 0.00092761, df = 1, p-value = 0.9757
datos %>%
bartlett.test(data = ., GST ~ Strain)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Strain
## Bartlett's K-squared = 1.4085, df = 3, p-value = 0.7035
\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \\ H_1: \mu_i \neq \mu_j\]
\[H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_1\]
\[H_0: (\alpha\tau)_{11} = \cdots = (\alpha\beta)_{42} \\ H_1: (\alpha\tau)_{ij} \neq (\alpha\tau)_{ij}\]
datos %>%
group_by(Strain, Treatment) %>%
summarise(promedio = mean(GST)) %>%
ggplot(aes(x = Strain, y = promedio, color = Treatment, fill = Treatment)) +
geom_point() +
geom_line(aes(group = Treatment))
modelo4 <- aov(GST ~ Treatment * Strain, data = datos)
modelo4 %>% tidy()
modelo4 %>%
emmeans(specs = "Treatment") %>%
as.data.frame()
modelo4 %>%
emmeans(specs = "Strain") %>%
as.data.frame()
modelo4 %>%
emmeans(specs = pairwise ~ Treatment | Strain) %>%
as.data.frame()
modelo4 %>%
eta_squared()
par(mfrow = c(2, 2))
plot(modelo4)
modelo4 %>%
residuals() %>%
shapiro.test()
##
## Shapiro-Wilk normality test
##
## data: .
## W = 0.91331, p-value = 0.1316
datos %>%
bartlett.test(data = ., GST ~ Treatment)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Treatment
## Bartlett's K-squared = 0.00092761, df = 1, p-value = 0.9757
datos %>%
bartlett.test(data = ., GST ~ Strain)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Strain
## Bartlett's K-squared = 1.4085, df = 3, p-value = 0.7035
datos %>%
leveneTest(data = ., GST ~ Treatment * Strain)
\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \\ H_1: \mu_i \neq \mu_j\]
\[H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_1\]
\[ H_0: \beta_1 = \beta_2 \\ H_A: \beta_1 \neq \beta_2 \]
datos %>%
ggplot(aes(x = Strain, y = GST, color = Treatment, fill = Treatment)) +
facet_wrap(~Block) +
geom_point() +
geom_line(aes(group = Treatment))
modelo5 <- aov(GST ~ Treatment + Strain + Block, data = datos)
modelo5 %>% tidy()
modelo5 %>%
emmeans(specs = "Treatment") %>%
as.data.frame()
modelo5 %>%
emmeans(specs = "Strain") %>%
as.data.frame()
modelo5 %>%
eta_squared()
par(mfrow = c(2, 2))
plot(modelo5)
modelo5 %>%
residuals() %>%
shapiro.test()
##
## Shapiro-Wilk normality test
##
## data: .
## W = 0.96573, p-value = 0.7656
datos %>%
bartlett.test(data = ., GST ~ Treatment)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Treatment
## Bartlett's K-squared = 0.00092761, df = 1, p-value = 0.9757
datos %>%
bartlett.test(data = ., GST ~ Strain)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Strain
## Bartlett's K-squared = 1.4085, df = 3, p-value = 0.7035
datos %>%
bartlett.test(data = ., GST ~ Block)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Block
## Bartlett's K-squared = 0.14923, df = 1, p-value = 0.6993
\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \\ H_1: \mu_i \neq \mu_j\]
\[H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_1\]
\[H_0: (\alpha\tau)_{11} = \cdots = (\alpha\beta)_{42} \\ H_1: (\alpha\tau)_{ij} \neq (\alpha\tau)_{ij}\]
\[ H_0: \beta_1 = \beta_2 \\ H_A: \beta_1 \neq \beta_2 \]
datos %>%
ggplot(aes(x = Strain, y = GST, color = Treatment, fill = Treatment)) +
facet_wrap(~Block) +
geom_point() +
geom_line(aes(group = Treatment))
modelo6 <- aov(GST ~ Treatment * Strain + Block, data = datos)
modelo6 %>% tidy()
modelo6 %>%
emmeans(specs = "Treatment") %>%
as.data.frame()
modelo6 %>%
emmeans(specs = "Strain") %>%
as.data.frame()
modelo6 %>%
emmeans(specs = pairwise ~ Treatment | Strain) %>%
as.data.frame()
modelo6 %>%
eta_squared()
par(mfrow = c(2, 2))
plot(modelo6)
modelo6 %>%
residuals() %>%
shapiro.test()
##
## Shapiro-Wilk normality test
##
## data: .
## W = 0.92236, p-value = 0.1841
datos %>%
bartlett.test(data = ., GST ~ Treatment)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Treatment
## Bartlett's K-squared = 0.00092761, df = 1, p-value = 0.9757
datos %>%
bartlett.test(data = ., GST ~ Strain)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Strain
## Bartlett's K-squared = 1.4085, df = 3, p-value = 0.7035
datos %>%
bartlett.test(data = ., GST ~ Block)
##
## Bartlett test of homogeneity of variances
##
## data: GST by Block
## Bartlett's K-squared = 0.14923, df = 1, p-value = 0.6993
datos %>%
leveneTest(data = ., GST ~ Treatment * Strain)
AIC(modelo1, modelo2, modelo3, modelo4, modelo5, modelo6)
BIC(modelo1, modelo2, modelo3, modelo4, modelo5, modelo6)
anova(modelo1, modelo2, modelo3, modelo4, modelo5, modelo6)
TukeyHSD(modelo6, which = "Treatment:Strain") %>%
tidy()
TukeyHSD(modelo6, which = "Treatment:Strain") %>%
tidy() %>%
ggplot(aes(x = fct_reorder(contrast, estimate), y = estimate,
ymin = conf.low, ymax = conf.high)) +
geom_point() +
geom_errorbar() +
geom_hline(yintercept = 0, lty = 2, color = "red") +
coord_flip()