library(tidyverse)
library(janitor)
library(openintro)
tab2_1 <- read_csv2("../data/tab2_1.csv")
cd_brasil <- read_csv2("../data/cd_brasil.csv")

Problema 1

Para cada uma das variáveis abaixo, indique a escala usualmente adotada para resumir os dados em tabelas de frequências.

(a) Salários dos empregados de uma indústria.

Razão.

(b) Opinião de consumidores sobre determinado produto.

Ordinal.

(c) Número de respostas certas de alunos num teste com dez itens.

Razão.

(d) Temperatura diária da cidade de Manaus.

Intervalar.

(e) Porcentagem da receita de municípios aplicada em educação.

Razão.

(f) Opinião dos empregados da Companhia MB sobre a realização ou não de cursos obrigatórios de treinamento.

Nominal.

(g) QI de um indivíduo.

Intervalar. 1

Problema 2

Usando os dados da Tabela 2.1, construa a distribuição de frequências das variáveis:

(a) Estado civil.

tab2_1 %>% 
  tabyl(estado_civil) %>%
  mutate(frequencia = n,
         proporcao = round(n / sum(n), 4),
         porcentagem = round(n / sum(n) * 100, 2)) %>%
  select(-n, -percent) %>% 
  adorn_totals("row") %>% 
  knitr::kable()
estado_civil frequencia proporcao porcentagem
casado 20 0.5556 55.56
solteiro 16 0.4444 44.44
Total 36 1.0000 100.00

(b) Região de procedência.

tab2_1 %>% 
  tabyl(reg_procedencia) %>%
  mutate(frequencia = n,
         proporcao = round(n / sum(n), 4),
         porcentagem = round(n / sum(n) * 100, 2)) %>%
  select(-n, -percent) %>% 
  adorn_totals("row") %>% 
  knitr::kable()
reg_procedencia frequencia proporcao porcentagem
capital 11 0.3056 30.56
interior 12 0.3333 33.33
outra 13 0.3611 36.11
Total 36 1.0000 100.00

(c) Número de filhos dos empregados casados.

tab2_1 %>% 
  filter(estado_civil == "casado") %>%
  tabyl(n_filhos) %>%
  mutate(frequencia = n,
         proporcao = round(n / sum(n), 4),
         porcentagem = round(n / sum(n) * 100, 2)) %>%
  rename(numero_de_filhos = n_filhos) %>% 
  select(-n, -percent) %>% 
  adorn_totals("row") %>% 
  knitr::kable()
numero_de_filhos frequencia proporcao porcentagem
0 4 0.20 20
1 5 0.25 25
2 7 0.35 35
3 3 0.15 15
5 1 0.05 5
Total 20 1.00 100

(d) Idade.

tab2_1 %>%
  mutate(idade = cut(
    idade_anos,
    breaks = c(0, 25, 30, 35, 40, 45, 50),
    labels = c("20 |-- 25", "25 |-- 30", "30 |-- 35", "35 |-- 40", "40 |-- 45", "45 |-- 50"),
    right = FALSE
  )) %>% 
  tabyl(idade) %>%
  mutate(frequencia = n,
         proporcao = n /sum(n),
         porcentagem = n / sum(n) * 100) %>%
  select(-n, -percent) %>% 
  adorn_totals("row") %>% 
  adorn_rounding(rounding = "half up", digits = 4) %>% 
  knitr::kable()
idade frequencia proporcao porcentagem
20 |– 25 2 0.0556 5.5556
25 |– 30 6 0.1667 16.6667
30 |– 35 10 0.2778 27.7778
35 |– 40 8 0.2222 22.2222
40 |– 45 8 0.2222 22.2222
45 |– 50 2 0.0556 5.5556
Total 36 1.0000 100.0000

Problema 3

Para o Conjunto de Dados 1 (CD-Brasil), construa a distribuição de frequências para as variáveis:

(a) População urbana

cd_brasil %>%
  mutate(numero_habitantes = cut(
    pop_urbana,
    breaks = c(0, 500000, 1000000, 5000000, 10000000, Inf),
    labels = c("Menos de 500.000", "500.001 a 1.000.000", "1.000.001 a 5.000.000", 
               "5.000.001 a 10.000.000", "Mais de 10.000.000")
  )) %>% 
  tabyl(numero_habitantes) %>%
  mutate(frequencia = n,
         proporcao = round(valid_percent, 4),
         porcentagem = round(valid_percent * 100, 2)) %>%
  select(-n, -valid_percent, -percent) %>%
  drop_na() %>% 
  adorn_totals("row") %>% 
  knitr::kable()
numero_habitantes frequencia proporcao porcentagem
Menos de 500.000 3 0.1111 11.11
500.001 a 1.000.000 2 0.0741 7.41
1.000.001 a 5.000.000 15 0.5556 55.56
5.000.001 a 10.000.000 4 0.1481 14.81
Mais de 10.000.000 3 0.1111 11.11
Total 27 1.0000 100.00

(b) Densidade populacional

cd_brasil %>%
  filter(densidade != "") %>% 
  mutate(densidade = as.numeric(as.character(str_replace(densidade, ",", ".")))) %>% 
  mutate(densidade_populacional = cut(
    densidade,
    breaks = c(0, 10, 30, 50, 100, Inf),
    labels = c("Menos de 10", "10 |-- 30", "30 |-- 50", "50 |-- 100", "Mais de 100")
  )) %>% 
  tabyl(densidade_populacional) %>%
  mutate(frequencia = n,
         proporcao = n / sum(n),
         porcentagem = n / sum(n) * 100) %>%
  select(-n, -percent) %>%
  drop_na() %>% 
  adorn_totals("row") %>%   
  adorn_rounding(rounding = "half up", digits = 4) %>% 
  knitr::kable()
densidade_populacional frequencia proporcao porcentagem
Menos de 10 9 0.3333 33.3333
10 |– 30 4 0.1481 14.8148
30 |– 50 4 0.1481 14.8148
50 |– 100 6 0.2222 22.2222
Mais de 100 4 0.1481 14.8148
Total 27 1.0000 100.0000

Problema 4

Contou-se o número de erros de impressão da primeira página de um jornal durante 50 dias, obtendo-se os resultados abaixo:

8     11     8     12     14     13     11     14    14    15
6     10     14    19     6      12     7      5     8     8
10    16     10    12     12     8      11     6     7     12
7     10     14    5      12     7      9      12    11    9
14    8      14    8      12     10     12     22    7     15

(a) Represente os dados graficamente.

erros <- c(8, 11, 8, 12, 14, 13, 11, 14, 14, 15,
           6, 10, 14, 19, 6, 12, 7, 5, 8, 8,
           10, 16, 10, 12, 12, 8, 11, 6, 7, 12,
           7, 10, 14, 5, 12, 7, 9, 12, 11, 9,
           14, 8, 14, 8, 12, 10, 12, 22, 7, 15)

df_erros <- as.data.frame(erros)

df_erros %>% 
  ggplot(aes(x = erros)) +
  geom_bar() +
  labs(title = "Figura 2.1: Gráfico de Barras",
       x = "Número de erros de impressão",
       y = "Frequência absoluta") +
  scale_y_continuous(expand = c(0,0), breaks = c(2,4,6,8,10), limits = c(0,10)) +
  scale_x_continuous(expand = c(.0081,0), breaks = c(5:22)) +
  scale_fill_brewer(palette = "Set2") +
  theme_classic()

(b) Faça um histograma e um ramo-e-folhas.

Notas e referências


  1. A principal diferença entre a escala razão e a intervalar, é que a razão aceita o zero absoluto, ou seja, a ausência do fenômeno observado↩︎

LS0tDQp0aXRsZTogJ0NhcMOtdHVsbyAyOiBSZXN1bW8gZGUgZGFkb3MnDQphdXRob3I6ICJSZXNvbHXDp8OjbyBkb3MgZXhlcmPDrWNpb3MgZGEgOcKqIGVkacOnw6NvIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0Og0KICBvcGVuaW50cm86OmxhYl9yZXBvcnQ6DQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQpzdWJ0aXRsZTogRXN0YXTDrXN0aWNhIELDoXNpY2EsIE1vcmV0dGluICYgQnVzc2FiDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGphbml0b3IpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmBgYA0KDQpgYGB7cn0NCnRhYjJfMSA8LSByZWFkX2NzdjIoIi4uL2RhdGEvdGFiMl8xLmNzdiIpDQpjZF9icmFzaWwgPC0gcmVhZF9jc3YyKCIuLi9kYXRhL2NkX2JyYXNpbC5jc3YiKQ0KYGBgDQoNCiMjIFByb2JsZW1hIDENCg0KUGFyYSBjYWRhIHVtYSBkYXMgdmFyacOhdmVpcyBhYmFpeG8sIGluZGlxdWUgYSAqKmVzY2FsYSoqIHVzdWFsbWVudGUgYWRvdGFkYSBwYXJhIHJlc3VtaXIgb3MgZGFkb3MgZW0gdGFiZWxhcyBkZSBmcmVxdcOqbmNpYXMuDQoNCioqKGEpKiogU2Fsw6FyaW9zIGRvcyBlbXByZWdhZG9zIGRlIHVtYSBpbmTDunN0cmlhLg0KDQpSYXrDo28uDQoNCioqKGIpKiogT3BpbmnDo28gZGUgY29uc3VtaWRvcmVzIHNvYnJlIGRldGVybWluYWRvIHByb2R1dG8uDQoNCk9yZGluYWwuDQoNCioqKGMpKiogTsO6bWVybyBkZSByZXNwb3N0YXMgY2VydGFzIGRlIGFsdW5vcyBudW0gdGVzdGUgY29tIGRleiBpdGVucy4NCg0KUmF6w6NvLg0KDQoqKihkKSoqIFRlbXBlcmF0dXJhIGRpw6FyaWEgZGEgY2lkYWRlIGRlIE1hbmF1cy4NCg0KSW50ZXJ2YWxhci4NCg0KKiooZSkqKiBQb3JjZW50YWdlbSBkYSByZWNlaXRhIGRlIG11bmljw61waW9zIGFwbGljYWRhIGVtIGVkdWNhw6fDo28uDQoNClJhesOjby4NCg0KKiooZikqKiBPcGluacOjbyBkb3MgZW1wcmVnYWRvcyBkYSBDb21wYW5oaWEgTUIgc29icmUgYSByZWFsaXphw6fDo28gb3UgbsOjbyBkZSBjdXJzb3Mgb2JyaWdhdMOzcmlvcyBkZSB0cmVpbmFtZW50by4NCg0KTm9taW5hbC4NCg0KKiooZykqKiBRSSBkZSB1bSBpbmRpdsOtZHVvLg0KDQpJbnRlcnZhbGFyLiBeW0EgcHJpbmNpcGFsIGRpZmVyZW7Dp2EgZW50cmUgYSBlc2NhbGEgKipyYXrDo28qKiBlIGEgKippbnRlcnZhbGFyKiosIMOpIHF1ZSBhICoqcmF6w6NvKiogYWNlaXRhIG8gKip6ZXJvIGFic29sdXRvKiosIG91IHNlamEsIGEgKiphdXPDqm5jaWEgZG8gZmVuw7RtZW5vKiogb2JzZXJ2YWRvXQ0KDQojIyBQcm9ibGVtYSAyDQoNClVzYW5kbyBvcyBkYWRvcyBkYSAqKlRhYmVsYSAyLjEqKiwgY29uc3RydWEgYSAqKmRpc3RyaWJ1acOnw6NvIGRlIGZyZXF1w6puY2lhcyoqIGRhcyB2YXJpw6F2ZWlzOg0KDQoqKihhKSoqIEVzdGFkbyBjaXZpbC4NCg0KYGBge3J9DQp0YWIyXzEgJT4lIA0KICB0YWJ5bChlc3RhZG9fY2l2aWwpICU+JQ0KICBtdXRhdGUoZnJlcXVlbmNpYSA9IG4sDQogICAgICAgICBwcm9wb3JjYW8gPSByb3VuZChuIC8gc3VtKG4pLCA0KSwNCiAgICAgICAgIHBvcmNlbnRhZ2VtID0gcm91bmQobiAvIHN1bShuKSAqIDEwMCwgMikpICU+JQ0KICBzZWxlY3QoLW4sIC1wZXJjZW50KSAlPiUgDQogIGFkb3JuX3RvdGFscygicm93IikgJT4lIA0KICBrbml0cjo6a2FibGUoKQ0KYGBgDQoNCioqKGIpKiogUmVnacOjbyBkZSBwcm9jZWTDqm5jaWEuDQoNCmBgYHtyfQ0KdGFiMl8xICU+JSANCiAgdGFieWwocmVnX3Byb2NlZGVuY2lhKSAlPiUNCiAgbXV0YXRlKGZyZXF1ZW5jaWEgPSBuLA0KICAgICAgICAgcHJvcG9yY2FvID0gcm91bmQobiAvIHN1bShuKSwgNCksDQogICAgICAgICBwb3JjZW50YWdlbSA9IHJvdW5kKG4gLyBzdW0obikgKiAxMDAsIDIpKSAlPiUNCiAgc2VsZWN0KC1uLCAtcGVyY2VudCkgJT4lIA0KICBhZG9ybl90b3RhbHMoInJvdyIpICU+JSANCiAga25pdHI6OmthYmxlKCkNCmBgYA0KDQoqKihjKSoqIE7Dum1lcm8gZGUgZmlsaG9zIGRvcyBlbXByZWdhZG9zIGNhc2Fkb3MuDQoNCmBgYHtyfQ0KdGFiMl8xICU+JSANCiAgZmlsdGVyKGVzdGFkb19jaXZpbCA9PSAiY2FzYWRvIikgJT4lDQogIHRhYnlsKG5fZmlsaG9zKSAlPiUNCiAgbXV0YXRlKGZyZXF1ZW5jaWEgPSBuLA0KICAgICAgICAgcHJvcG9yY2FvID0gcm91bmQobiAvIHN1bShuKSwgNCksDQogICAgICAgICBwb3JjZW50YWdlbSA9IHJvdW5kKG4gLyBzdW0obikgKiAxMDAsIDIpKSAlPiUNCiAgcmVuYW1lKG51bWVyb19kZV9maWxob3MgPSBuX2ZpbGhvcykgJT4lIA0KICBzZWxlY3QoLW4sIC1wZXJjZW50KSAlPiUgDQogIGFkb3JuX3RvdGFscygicm93IikgJT4lIA0KICBrbml0cjo6a2FibGUoKQ0KYGBgDQoNCioqKGQpKiogSWRhZGUuDQoNCmBgYHtyfQ0KdGFiMl8xICU+JQ0KICBtdXRhdGUoaWRhZGUgPSBjdXQoDQogICAgaWRhZGVfYW5vcywNCiAgICBicmVha3MgPSBjKDAsIDI1LCAzMCwgMzUsIDQwLCA0NSwgNTApLA0KICAgIGxhYmVscyA9IGMoIjIwIHwtLSAyNSIsICIyNSB8LS0gMzAiLCAiMzAgfC0tIDM1IiwgIjM1IHwtLSA0MCIsICI0MCB8LS0gNDUiLCAiNDUgfC0tIDUwIiksDQogICAgcmlnaHQgPSBGQUxTRQ0KICApKSAlPiUgDQogIHRhYnlsKGlkYWRlKSAlPiUNCiAgbXV0YXRlKGZyZXF1ZW5jaWEgPSBuLA0KICAgICAgICAgcHJvcG9yY2FvID0gbiAvc3VtKG4pLA0KICAgICAgICAgcG9yY2VudGFnZW0gPSBuIC8gc3VtKG4pICogMTAwKSAlPiUNCiAgc2VsZWN0KC1uLCAtcGVyY2VudCkgJT4lIA0KICBhZG9ybl90b3RhbHMoInJvdyIpICU+JSANCiAgYWRvcm5fcm91bmRpbmcocm91bmRpbmcgPSAiaGFsZiB1cCIsIGRpZ2l0cyA9IDQpICU+JSANCiAga25pdHI6OmthYmxlKCkNCmBgYA0KDQojIyBQcm9ibGVtYSAzDQoNClBhcmEgbyBDb25qdW50byBkZSBEYWRvcyAxICgqKkNELUJyYXNpbCoqKSwgY29uc3RydWEgYSAqKmRpc3RyaWJ1acOnw6NvIGRlIGZyZXF1w6puY2lhcyoqIHBhcmEgYXMgdmFyacOhdmVpczoNCg0KKiooYSkqKiBQb3B1bGHDp8OjbyB1cmJhbmENCg0KYGBge3J9DQpjZF9icmFzaWwgJT4lDQogIG11dGF0ZShudW1lcm9faGFiaXRhbnRlcyA9IGN1dCgNCiAgICBwb3BfdXJiYW5hLA0KICAgIGJyZWFrcyA9IGMoMCwgNTAwMDAwLCAxMDAwMDAwLCA1MDAwMDAwLCAxMDAwMDAwMCwgSW5mKSwNCiAgICBsYWJlbHMgPSBjKCJNZW5vcyBkZSA1MDAuMDAwIiwgIjUwMC4wMDEgYSAxLjAwMC4wMDAiLCAiMS4wMDAuMDAxIGEgNS4wMDAuMDAwIiwgDQogICAgICAgICAgICAgICAiNS4wMDAuMDAxIGEgMTAuMDAwLjAwMCIsICJNYWlzIGRlIDEwLjAwMC4wMDAiKQ0KICApKSAlPiUgDQogIHRhYnlsKG51bWVyb19oYWJpdGFudGVzKSAlPiUNCiAgbXV0YXRlKGZyZXF1ZW5jaWEgPSBuLA0KICAgICAgICAgcHJvcG9yY2FvID0gcm91bmQodmFsaWRfcGVyY2VudCwgNCksDQogICAgICAgICBwb3JjZW50YWdlbSA9IHJvdW5kKHZhbGlkX3BlcmNlbnQgKiAxMDAsIDIpKSAlPiUNCiAgc2VsZWN0KC1uLCAtdmFsaWRfcGVyY2VudCwgLXBlcmNlbnQpICU+JQ0KICBkcm9wX25hKCkgJT4lIA0KICBhZG9ybl90b3RhbHMoInJvdyIpICU+JSANCiAga25pdHI6OmthYmxlKCkNCmBgYA0KDQoqKihiKSoqIERlbnNpZGFkZSBwb3B1bGFjaW9uYWwNCg0KYGBge3J9DQpjZF9icmFzaWwgJT4lDQogIGZpbHRlcihkZW5zaWRhZGUgIT0gIiIpICU+JSANCiAgbXV0YXRlKGRlbnNpZGFkZSA9IGFzLm51bWVyaWMoYXMuY2hhcmFjdGVyKHN0cl9yZXBsYWNlKGRlbnNpZGFkZSwgIiwiLCAiLiIpKSkpICU+JSANCiAgbXV0YXRlKGRlbnNpZGFkZV9wb3B1bGFjaW9uYWwgPSBjdXQoDQogICAgZGVuc2lkYWRlLA0KICAgIGJyZWFrcyA9IGMoMCwgMTAsIDMwLCA1MCwgMTAwLCBJbmYpLA0KICAgIGxhYmVscyA9IGMoIk1lbm9zIGRlIDEwIiwgIjEwIHwtLSAzMCIsICIzMCB8LS0gNTAiLCAiNTAgfC0tIDEwMCIsICJNYWlzIGRlIDEwMCIpDQogICkpICU+JSANCiAgdGFieWwoZGVuc2lkYWRlX3BvcHVsYWNpb25hbCkgJT4lDQogIG11dGF0ZShmcmVxdWVuY2lhID0gbiwNCiAgICAgICAgIHByb3BvcmNhbyA9IG4gLyBzdW0obiksDQogICAgICAgICBwb3JjZW50YWdlbSA9IG4gLyBzdW0obikgKiAxMDApICU+JQ0KICBzZWxlY3QoLW4sIC1wZXJjZW50KSAlPiUNCiAgZHJvcF9uYSgpICU+JSANCiAgYWRvcm5fdG90YWxzKCJyb3ciKSAlPiUgICANCiAgYWRvcm5fcm91bmRpbmcocm91bmRpbmcgPSAiaGFsZiB1cCIsIGRpZ2l0cyA9IDQpICU+JSANCiAga25pdHI6OmthYmxlKCkNCmBgYA0KDQojIyBQcm9ibGVtYSA0DQoNCkNvbnRvdS1zZSBvICoqbsO6bWVybyBkZSBlcnJvcyBkZSBpbXByZXNzw6NvKiogZGEgcHJpbWVpcmEgcMOhZ2luYSBkZSB1bSBqb3JuYWwgZHVyYW50ZSA1MCBkaWFzLCBvYnRlbmRvLXNlIG9zIHJlc3VsdGFkb3MgYWJhaXhvOg0KDQpgYGANCjggICAgIDExICAgICA4ICAgICAxMiAgICAgMTQgICAgIDEzICAgICAxMSAgICAgMTQgICAgMTQgICAgMTUNCjYgICAgIDEwICAgICAxNCAgICAxOSAgICAgNiAgICAgIDEyICAgICA3ICAgICAgNSAgICAgOCAgICAgOA0KMTAgICAgMTYgICAgIDEwICAgIDEyICAgICAxMiAgICAgOCAgICAgIDExICAgICA2ICAgICA3ICAgICAxMg0KNyAgICAgMTAgICAgIDE0ICAgIDUgICAgICAxMiAgICAgNyAgICAgIDkgICAgICAxMiAgICAxMSAgICA5DQoxNCAgICA4ICAgICAgMTQgICAgOCAgICAgIDEyICAgICAxMCAgICAgMTIgICAgIDIyICAgIDcgICAgIDE1DQpgYGANCg0KKiooYSkqKiBSZXByZXNlbnRlIG9zIGRhZG9zIGdyYWZpY2FtZW50ZS4NCg0KYGBge3J9DQplcnJvcyA8LSBjKDgsIDExLCA4LCAxMiwgMTQsIDEzLCAxMSwgMTQsIDE0LCAxNSwNCiAgICAgICAgICAgNiwgMTAsIDE0LCAxOSwgNiwgMTIsIDcsIDUsIDgsIDgsDQogICAgICAgICAgIDEwLCAxNiwgMTAsIDEyLCAxMiwgOCwgMTEsIDYsIDcsIDEyLA0KICAgICAgICAgICA3LCAxMCwgMTQsIDUsIDEyLCA3LCA5LCAxMiwgMTEsIDksDQogICAgICAgICAgIDE0LCA4LCAxNCwgOCwgMTIsIDEwLCAxMiwgMjIsIDcsIDE1KQ0KDQpkZl9lcnJvcyA8LSBhcy5kYXRhLmZyYW1lKGVycm9zKQ0KDQpkZl9lcnJvcyAlPiUgDQogIGdncGxvdChhZXMoeCA9IGVycm9zKSkgKw0KICBnZW9tX2JhcigpICsNCiAgbGFicyh0aXRsZSA9ICJGaWd1cmEgMi4xOiBHcsOhZmljbyBkZSBCYXJyYXMiLA0KICAgICAgIHggPSAiTsO6bWVybyBkZSBlcnJvcyBkZSBpbXByZXNzw6NvIiwNCiAgICAgICB5ID0gIkZyZXF1w6puY2lhIGFic29sdXRhIikgKw0KICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gYygwLDApLCBicmVha3MgPSBjKDIsNCw2LDgsMTApLCBsaW1pdHMgPSBjKDAsMTApKSArDQogIHNjYWxlX3hfY29udGludW91cyhleHBhbmQgPSBjKC4wMDgxLDApLCBicmVha3MgPSBjKDU6MjIpKSArDQogIHNjYWxlX2ZpbGxfYnJld2VyKHBhbGV0dGUgPSAiU2V0MiIpICsNCiAgdGhlbWVfY2xhc3NpYygpDQpgYGANCg0KKiooYikqKiBGYcOnYSB1bSAqKmhpc3RvZ3JhbWEqKiBlIHVtICoqcmFtby1lLWZvbGhhcyoqLg0KDQpgYGB7cn0NCg0KYGBgDQoNCiMjIE5vdGFzIGUgcmVmZXLDqm5jaWFzDQo=