IAT: 0.15, 0.35, and 0.65 are considered small, medium, and large level of bias for individual scores.
Positive means bias towards arts / against Math.
iat = read_csv(here::here(params$arquivo_dados), col_types = "cccdc")
iat = iat %>%
mutate(sex = factor(sex, levels = c("m", "f"), ordered = TRUE))
glimpse(iat)
## Rows: 155
## Columns: 5
## $ session_id <chr> "2436706", "2436967", "2440429", "2440430", "2440431", "24~
## $ referrer <chr> "sdsu", "sdsu", "sdsu", "sdsu", "sdsu", "sdsu", "sdsu", "s~
## $ sex <ord> f, f, f, f, m, f, f, m, f, m, f, f, f, f, f, f, m, m, f, m~
## $ d_art <dbl> 0.90444320, -0.47402625, 0.46840862, -0.02522412, 0.136813~
## $ iat_exclude <chr> "Include", "Include", "Include", "Include", "Include", "In~
iat %>%
ggplot(aes(x = d_art, fill = sex, color = sex)) +
geom_histogram(binwidth = .2, alpha = .4) +
geom_rug() +
facet_grid(sex ~ ., scales = "free_y") +
theme(legend.position = "None")
iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1)
iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1) +
stat_summary(geom = "point", fun.y = "mean", color = "red", size = 5)
## Warning: `fun.y` is deprecated. Use `fun` instead.
iat %>% group_by(sex) %>% summarise(media = mean(d_art), desvio = sd(d_art))
## # A tibble: 2 x 3
## sex media desvio
## <ord> <dbl> <dbl>
## 1 m 0.224 0.485
## 2 f 0.467 0.548
agrupado = iat %>%
group_by(sex) %>%
summarise(media = mean(d_art))
m = agrupado %>% filter(sex == "m") %>% pull(media)
f = agrupado %>% filter(sex == "f") %>% pull(media)
m - f
## [1] -0.2430539
library(boot)
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(sex) %>%
summarise(media = mean(d_art))
m = agrupado %>% filter(sex == "m") %>% pull(media)
f = agrupado %>% filter(sex == "f") %>% pull(media)
m - f
}
booted <- boot(data = iat,
statistic = theta,
R = 3000)
ci = tidy(booted,
conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
glimpse(ci)
## Rows: 1
## Columns: 5
## $ statistic <dbl> -0.2430539
## $ bias <dbl> -0.0001359388
## $ std.error <dbl> 0.09415737
## $ conf.low <dbl> -0.4225635
## $ conf.high <dbl> -0.04898405
ci %>%
ggplot(aes(
x = "",
y = statistic,
ymin = conf.low,
ymax = conf.high
)) +
geom_pointrange() +
geom_point(size = 3) +
labs(x = "Diferença",
y = "IAT homens - mulheres")
p1 = iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1) +
stat_summary(geom = "point", fun.y = "mean", color = "red", size = 5)
## Warning: `fun.y` is deprecated. Use `fun` instead.
p2 = ci %>%
ggplot(aes(
x = "",
y = statistic,
ymin = conf.low,
ymax = conf.high
)) +
geom_pointrange() +
geom_point(size = 3) +
ylim(-1, 1) +
labs(x = "Diferença",
y = "IAT homens - mulheres")
grid.arrange(p1, p2, ncol = 2)
g = iat %>% group_by(sex) %>% summarise(media = mean(d_art))
g
## # A tibble: 2 x 2
## sex media
## <ord> <dbl>
## 1 m 0.224
## 2 f 0.467
m = g %>% filter(sex == "m") %>% pull(media)
f = g %>% filter(sex == "f") %>% pull(media)
m - f
## [1] -0.2430539
theta <- function(d, i) {
g = d %>%
slice(i) %>%
group_by(sex) %>%
summarise(media = mean(d_art), .groups = "drop")
m = g %>% filter(sex == "m") %>% pull(media)
f = g %>% filter(sex == "f") %>% pull(media)
m - f
}
booted <- boot(data = iat, statistic = theta, R = 3000)
ci = tidy(booted, conf.level = .95, conf.method = "bca", conf.int = TRUE)
glimpse(ci)
## Rows: 1
## Columns: 5
## $ statistic <dbl> -0.2430539
## $ bias <dbl> 0.002267533
## $ std.error <dbl> 0.09638142
## $ conf.low <dbl> -0.4437507
## $ conf.high <dbl> -0.06485963
ci %>% ggplot(aes(x = "", y = statistic, ymin = conf.low, ymax = conf.high)) +
geom_pointrange() + labs(x = "Diferença das médias", y = "IAT homens - mulheres")
iat %>% ggplot(aes(x = sex, y = d_art)) + geom_quasirandom(width = .3, alpha = .3) +
stat_summary(fun = "mean", color = "red")
## Warning: Removed 2 rows containing missing values (geom_segment).
ci %>% ggplot(aes(x = "", y = statistic, ymin = conf.low, ymax = conf.high)) +
geom_pointrange() + labs(x = "Diferença", y = "IAT homens - mulheres")
iat %>% group_by(sex) %>% summarise(desvio = sd(d_art), media = mean(d_art), total = n())
## # A tibble: 2 x 4
## sex desvio media total
## <ord> <dbl> <dbl> <int>
## 1 m 0.485 0.224 38
## 2 f 0.548 0.467 117
Como podemos ver na tabela anterior, temos um total de 38 homens e 117 mulheres, ou seja,temos um percentual de aproximadamente 75.48% de mulheres e 24.51% de homens, o que representa algo em torno de pouco mais de 300% de mulheres do que homens na amostra. Em média, a grupo das mulheres que participaram do experimento obtiveram uma associação implícita negativa e moderada com a matemática (média 0.4666898, desvio padrão 0.5475448, N = 117), enquanto que o grupo dos homens tiveram uma associação implícita negativa e fraca com a matemática (média 0.2236359, desvio padrão 0.4850899, N = 38). A associação do grupo dos homens foi menor que das mulheres, obtendo uma diferença das médias de 0.24 com intervalo de confiança de 95% entre [-0.4364193, -0.06969409], o que denota uma associação negativa mais forte entre as mulheres em relação aos homens à matemática, no entanto, não ficou claro a proporção da diferença. Seria necessário mais dados para determinar quão relevante é esta diferença.