## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.5 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'readr' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
graduation pop_tot income_cat wage age coveq_pop_p
| Statistic | N | Mean | St. Dev. | Min | Max |
| pop_tot | 199 | 114,043,997.000 | 267,455,098.000 | 40,654 | 1,247,000,000 |
| age | 219 | 3.813 | 4.885 | 0 | 38 |
| coveq_pop_p | 199 | 0.693 | 2.013 | 0 | 17 |
| Statistic | N | Mean | St. Dev. | Min | Max |
| pop_tot | 199 | 114,043,997.000 | 267,455,098.000 | 40,654 | 1,247,000,000 |
| age | 219 | 3.813 | 4.885 | 0 | 38 |
| coveq_pop_p | 199 | 0.693 | 2.013 | 0 | 17 |
| graduation_No | 219 | 0.575 | 0.495 | 0 | 1 |
| graduation_Yes | 219 | 0.425 | 0.495 | 0 | 1 |
| graduation_NA | 306 | 0.284 | 0.452 | 0 | 1 |
| income_cat_High income | 219 | 0.032 | 0.176 | 0 | 1 |
| income_cat_Low income | 219 | 0.374 | 0.485 | 0 | 1 |
| income_cat_Lower middle income | 219 | 0.429 | 0.496 | 0 | 1 |
| income_cat_Upper middle income | 219 | 0.164 | 0.371 | 0 | 1 |
| income_cat_NA | 306 | 0.284 | 0.452 | 0 | 1 |
| wage_No | 219 | 0.653 | 0.477 | 0 | 1 |
| wage_Yes | 219 | 0.347 | 0.477 | 0 | 1 |
| wage_NA | 306 | 0.284 | 0.452 | 0 | 1 |
Essa modelagem é básica, e não segue um padrão econométrico válido, serve apenas para intuir sobre a aplicação do modelo de MQO.
\(y_i= \beta_0 +\beta_1*AGE_i+\beta_2*G_N+\beta_3*I_l+\beta_4*Pop_{tot}\)
Call: lm(formula = coveq_pop_p ~ age + graduation_No + renda_baixa + pop_tot, data = dados_02)
Coefficients: (Intercept) age graduation_No renda_baixa pop_tot
2.883e-01 2.781e-03 6.745e-01 2.041e-01 -4.391e-10
| Dependent variable: | |
| coveq_pop_p | |
| age | 0.003 |
| (0.028) | |
| graduation_No | 0.675** |
| (0.287) | |
| renda_baixa | 0.204 |
| (0.301) | |
| pop_tot | -0.000 |
| (0.000) | |
| Constant | 0.288 |
| (0.290) | |
| Observations | 199 |
| R2 | 0.033 |
| Adjusted R2 | 0.013 |
| Residual Std. Error | 2.000 (df = 194) |
| F Statistic | 1.661 (df = 4; 194) |
| Note: | p<0.1; p<0.05; p<0.01 |
Modelo pouco ajustado aos dados, com erros grandes em relação a modelagem.