library(dplyr)
library(ggplot2)
library(readxl)
Data from : https://www.bls.gov/emp/ind-occ-matrix/occupation.xlsx
occupation <- read_excel("occupation new.xlsx", sheet = "Table 1.2")
colnames(occupation) <- occupation[1,]
occupation <- occupation[-1,]
occupation$`Occupation type` <- as.factor(occupation$`Occupation type`)
occupation$`Employment, 2030` <- as.numeric(occupation$`Employment, 2030`)
occupation$`Employment, 2020` <- as.numeric(occupation$`Employment, 2020`)
occupation$`Percent employment change, 2020-30` <- as.numeric(occupation$`Percent employment change, 2020-30`)
occupation$increase_to_2030 <- occupation$`Employment, 2030` - occupation$`Employment, 2020`
occupation %>%
filter(`Occupation type`=="Summary") %>%
arrange(desc(increase_to_2030)) %>%
select(`2020 National Employment Matrix title`, increase_to_2030, `Percent employment change, 2020-30`)
## # A tibble: 258 × 3
## `2020 National Employment Matrix title` increase_to_2030 `Percent emplo…`
## <chr> <dbl> <dbl>
## 1 Total, all occupations 11880. 7.7
## 2 Food preparation and serving related occup… 2268. 19.6
## 3 Healthcare support occupations 1580. 23.1
## 4 Home health and personal care aides; and n… 1252. 25.2
## 5 Transportation and material moving occupat… 1120. 8.8
## 6 Food and beverage serving workers 1120. 18
## 7 Healthcare practitioners and technical occ… 974. 10.8
## 8 Educational instruction and library occupa… 920. 10.1
## 9 Management occupations 907. 9.3
## 10 Personal care and service occupations 841 21.7
## # … with 248 more rows
df<-occupation %>%
filter(`Occupation type`=="Line item") %>%
arrange(desc(increase_to_2030)) %>%
select(`2020 National Employment Matrix title`, increase_to_2030, `Percent employment change, 2020-30`)
df %>%
filter(increase_to_2030>100) %>%
mutate(`2020 National Employment Matrix title`=reorder(`2020 National Employment Matrix title`,increase_to_2030)) %>%
ggplot(aes(`2020 National Employment Matrix title`,increase_to_2030))+
geom_bar(stat="identity", fill="orange", colour="red")+
coord_flip()+
ylim(0,1200)+
geom_text(aes(label=increase_to_2030), hjust=0, size=2)+
ylab("Employment change, 2020-30") +
xlab("Employment") +
ggtitle("Employment change, 2020-30 in thousands",subtitle = "from 2020 to 2030 in the US by job type above 100,000")
df %>%
filter(`Percent employment change, 2020-30`>30 ) %>%
mutate(`2020 National Employment Matrix title`=reorder(`2020 National Employment Matrix title`,`Percent employment change, 2020-30`)) %>%
ggplot(aes(`2020 National Employment Matrix title`,`Percent employment change, 2020-30`))+
geom_bar(stat="identity", fill="red", colour="orange")+
coord_flip()+
ylim(0,80)+
geom_text(aes(label=`Percent employment change, 2020-30`), hjust=0, size=3)+
ylab("Percent employment change, 2020-30") +
xlab("Employment") +
ggtitle("Percent employment change, 2020-30",subtitle = "from 2020 to 2030 in the US by job type above 30% ")