Superindice - Potencia

\[ E=mc^2 \]


\[ a^2 + b^2 = c^2 \]


Subíndice

\[ H2_O \]


\[ NH_3 \]


Fraccciones

\[ \frac{5}{4} \]

\[ \frac{3}{4} + \frac{1}{4} \]

\[ \frac{6}{5} - \frac{3}{2} \]

\[ \frac{4}{6} \times \frac{4}{9} \]

\[ \frac{1}{4} \div \frac{4}{5} \]

Matrices

\[ \begin{matrix} 8 & 7 & 9 \\ 10 & 11 & 9 \\ 15 & 17 & 20 \end{matrix} \]

\[ \begin{bmatrix} 6 & 7 & 10 \\ 10 & 8 & 11 \\ 14 & 10 & 5 \end{bmatrix} \]

\[ \begin{vmatrix} 10 & 15 & 12 \\ 18 & 19 & 10 \\ 17 & 10 & 12 \end{vmatrix} \]

Aumento - Descuentos

\[ \text { D.U. } \left.=\left[D_{1}+D_{2}-\frac{D_{1} \cdot D_{2}}{100}\right] \%\right] \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIHkgY29tYW5kb3MgTGFUZVgiDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyMDIyLzA1LzI0Ig0Kc3VidGl0bGU6IEVjdWFjaW9uZXMgLSBGw7NybXVsYXMNCmluc3RpdHV0ZTogSUVFRSAtIFVTSUwNCmVtYWlsOiBhcmVuem9jYWNlcmVzcm9zc2lAZ21haWwuY29tDQpwaG9uZTogJzUxOTE3MzM3Njg0Jw0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIEHDsWFkaXIgY29tZW50YXJpb3MgYSBudWVzdHJvIGRvY3VtZW50byBNYXJrZG93biAtIEhUTUwgVGFncyAtLT4NCg0KIyMgU3VwZXJpbmRpY2UgLSBQb3RlbmNpYQ0KDQokJA0KRT1tY14yDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KJCQNCmFeMiArIGJeMiA9IGNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIFN1YsOtbmRpY2UNCg0KJCQNCkgyX08NCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KTkhfMw0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIEZyYWNjY2lvbmVzDQoNCiQkDQpcZnJhY3s1fXs0fQ0KJCQNCg0KJCQNClxmcmFjezN9ezR9ICsgXGZyYWN7MX17NH0NCiQkDQoNCiQkDQpcZnJhY3s2fXs1fSAtIFxmcmFjezN9ezJ9DQokJA0KDQokJA0KXGZyYWN7NH17Nn0gXHRpbWVzIFxmcmFjezR9ezl9DQokJA0KDQokJA0KXGZyYWN7MX17NH0gXGRpdiBcZnJhY3s0fXs1fQ0KJCQNCg0KIyMgTWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQo4ICYgNyAmIDkgXFwNCjEwICYgMTEgJiA5IFxcDQoxNSAmIDE3ICYgMjANClxlbmR7bWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntibWF0cml4fQ0KNiAmIDcgJiAxMCBcXA0KMTAgJiA4ICYgMTEgXFwNCjE0ICYgMTAgJiA1DQpcZW5ke2JtYXRyaXh9DQokJA0KDQokJA0KXGJlZ2lue3ZtYXRyaXh9DQoxMCAmIDE1ICYgMTIgXFwNCjE4ICYgMTkgJiAxMCBcXA0KMTcgJiAxMCAmIDEyDQpcZW5ke3ZtYXRyaXh9DQokJA0KDQojIyBBdW1lbnRvIC0gRGVzY3VlbnRvcw0KDQokJA0KXHRleHQgeyBELlUuIH0gXGxlZnQuPVxsZWZ0W0RfezF9K0RfezJ9LVxmcmFje0RfezF9IFxjZG90IERfezJ9fXsxMDB9XHJpZ2h0XSBcJVxyaWdodF0NCiQkDQo=