dta <- read.csv("ncku_prof_V6.csv", h=T, stringsAsFactors = TRUE)
Assessment 1
a1dta <- dta %>%
filter(H.id > 12) %>%
select(H.id, Gender, College, Rank, Degree, Grads)
tail(a1dta)
## H.id Gender College Rank Degree Grads
## 187 14 F MNG 2 D 17
## 188 13 M MNG 1 O 89
## 189 15 M MNG 2 D 27
## 190 17 M MNG 1 D 26
## 191 27 M MNG 1 D 23
## 192 14 M MNG 2 D 9
newdta <- dta %>%
mutate(academicy = 2022 - FPY,
Grads_m = Grads / academicy) %>%
select(H.id, Gender, Degree, Rank, Grads, academicy, Grads_m)
head(newdta)
## H.id Gender Degree Rank Grads academicy Grads_m
## 1 9 M D 3 3 9 0.3333333
## 2 11 M D 2 10 14 0.7142857
## 3 10 M D 1 0 11 0.0000000
## 4 65 M O 1 92 25 3.6800000
## 5 10 F O 2 25 11 2.2727273
## 6 22 M D 2 41 20 2.0500000
a3dta <- dta %>%
group_by(College, Gender, Rank, Degree) %>%
summarize(m_H.id = mean(H.id, na.rm = TRUE),
sd_H.id = sd(H.id),
var_H.id = var(H.id),
min_H.id = min(H.id),
max_H.id = max(H.id),
count = n()) %>%
arrange(desc(m_H.id))
## `summarise()` has grouped output by 'College', 'Gender', 'Rank'. You can
## override using the `.groups` argument.
2.1 Max: ENG F 1 D, Min: LIB M 3 D
2.2 Not appropriate, there are more paper from male professor than female professor in Engineer
2.3 Most paper from Liberal are trash, the H.id are low.
dta %>%
select(College, Gender, Rank, Degree) %>%
tbl_summary(by = College)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning in normalizePath(path.expand(path), winslash, mustWork): path[1]="C:/
## Users/???/Documents": 檔案名稱、目錄名稱或磁碟區標籤語法錯誤。
| Characteristic | ENG, N = 1841 | LIB, N = 631 | MNG, N = 841 | SCI, N = 721 | SSC, N = 571 |
|---|---|---|---|---|---|
| Gender | |||||
| F | 17 (9.2%) | 34 (54%) | 24 (29%) | 14 (19%) | 22 (39%) |
| M | 167 (91%) | 29 (46%) | 60 (71%) | 58 (81%) | 35 (61%) |
| Rank | |||||
| 1 | 111 (60%) | 29 (46%) | 36 (43%) | 36 (50%) | 28 (49%) |
| 2 | 44 (24%) | 29 (46%) | 27 (32%) | 27 (38%) | 22 (39%) |
| 3 | 29 (16%) | 5 (7.9%) | 21 (25%) | 9 (12%) | 7 (12%) |
| Degree | |||||
| D | 63 (34%) | 21 (33%) | 25 (30%) | 16 (22%) | 13 (23%) |
| O | 121 (66%) | 42 (67%) | 59 (70%) | 56 (78%) | 44 (77%) |
| 1 n (%) | |||||
All Colleges has more oversea degree professor than domestic degree professor
Liberal school is the only college that has more female professor than male professor
Engineer school has the most professors out of all colleges