getwd()
## [1] "/Users/carina"
dta <- read.csv("ncku_prof_V6.csv", h=T, stringsAsFactors = TRUE)
head(dta)
## ID Initial Citation H.id Gender Degree Rank College Dept Grads FPY
## 1 10001 YCC 305 9 M D 3 ENG ESC 3 2013
## 2 10002 CYC 355 11 M D 2 ENG ESC 10 2008
## 3 10003 HBC 3452 10 M D 1 ENG ESC 0 2011
## 4 10004 HHC 15808 65 M O 1 ENG ESC 92 1997
## 5 10005 JSC 280 10 F O 2 ENG ESC 25 2011
## 6 10006 MYC 2506 22 M D 2 ENG ESC 41 2002
## Articles StuApp Colprof
## 1 30 169 309
## 2 22 169 309
## 3 14 169 309
## 4 349 169 309
## 5 23 169 309
## 6 90 169 309
str(dta)
## 'data.frame': 460 obs. of 14 variables:
## $ ID : int 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 ...
## $ Initial : Factor w/ 347 levels "BCT","BHC","BLC",..: 308 60 81 90 145 201 293 176 198 276 ...
## $ Citation: int 305 355 3452 15808 280 2506 672 5735 1118 685 ...
## $ H.id : int 9 11 10 65 10 22 14 40 19 14 ...
## $ Gender : Factor w/ 2 levels "F","M": 2 2 2 2 1 2 2 2 2 2 ...
## $ Degree : Factor w/ 2 levels "D","O": 1 1 1 2 2 1 1 1 2 1 ...
## $ Rank : int 3 2 1 1 2 2 1 1 2 1 ...
## $ College : Factor w/ 5 levels "ENG","LIB","MNG",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Dept : Factor w/ 25 levels "ACC","BAD","CEN",..: 10 10 10 10 10 10 10 10 10 10 ...
## $ Grads : int 3 10 0 92 25 41 36 54 74 195 ...
## $ FPY : int 2013 2008 2011 1997 2011 2002 2008 2001 1994 1991 ...
## $ Articles: int 30 22 14 349 23 90 36 123 26 70 ...
## $ StuApp : int 169 169 169 169 169 169 169 169 169 169 ...
## $ Colprof : int 309 309 309 309 309 309 309 309 309 309 ...
assessment1 <- dta %>%
filter(H.id > 12) %>%
select(H.id, Gender, College, Rank, Degree, Grads)
tail(assessment1)
## H.id Gender College Rank Degree Grads
## 187 14 F MNG 2 D 17
## 188 13 M MNG 1 O 89
## 189 15 M MNG 2 D 27
## 190 17 M MNG 1 D 26
## 191 27 M MNG 1 D 23
## 192 14 M MNG 2 D 9
assessment2 <- dta
assessment2 %>%
filter(!is.na(FPY)) %>%
mutate(academicy = 2022 - FPY,
Grads_m = Grads / academicy)%>%
select(H.id, Gender, Degree, Rank, Grads, academicy, Grads_m)%>%
head()
## H.id Gender Degree Rank Grads academicy Grads_m
## 1 9 M D 3 3 9 0.3333333
## 2 11 M D 2 10 14 0.7142857
## 3 10 M D 1 0 11 0.0000000
## 4 65 M O 1 92 25 3.6800000
## 5 10 F O 2 25 11 2.2727273
## 6 22 M D 2 41 20 2.0500000
assessment3 <- dta
assessment3 %>%
group_by(College, Gender, Rank, Degree) %>%
summarize(mean_H.id = mean(H.id, na.rm = TRUE),
sd_H.id = sd(H.id),
v_H.id = var(H.id),
max_H.id = max(H.id),
min_H.id = min(H.id),
count = n()) %>%
arrange(desc(mean_H.id))
## `summarise()` has grouped output by 'College', 'Gender', 'Rank'. You can
## override using the `.groups` argument.
## # A tibble: 53 × 10
## # Groups: College, Gender, Rank [30]
## College Gender Rank Degree mean_H.id sd_H.id v_H.id max_H.id min_H.id count
## <fct> <fct> <int> <fct> <dbl> <dbl> <dbl> <int> <int> <int>
## 1 ENG F 1 D 34 10.4 108 46 28 3
## 2 ENG M 1 D 24.4 11.0 121. 54 6 28
## 3 ENG M 1 O 24.2 13.9 192. 92 3 76
## 4 SCI M 1 D 21 16.1 258 39 6 4
## 5 ENG F 1 O 19.5 9.71 94.3 32 10 4
## 6 SCI M 1 O 18.8 15.2 231. 58 3 24
## 7 SCI F 1 O 18.2 14.4 206. 34 3 5
## 8 ENG M 2 D 17.3 6.81 46.4 40 10 20
## 9 MNG M 1 D 16 6.48 42 27 8 6
## 10 MNG F 1 O 15.2 8.54 72.9 27 8 4
## # … with 43 more rows
assessment4 <- dta
assessment4_1 <- assessment4 %>% dplyr::select(College, Gender, Degree, Rank)
assesment4.1 <- tbl_summary(
assessment4_1,
by = College, #group
missing = "no"
) %>%
add_n() %>%
bold_labels()
assesment4.1
| Characteristic | N | ENG, N = 1841 | LIB, N = 631 | MNG, N = 841 | SCI, N = 721 | SSC, N = 571 |
|---|---|---|---|---|---|---|
| Gender | 460 | |||||
| F | 17 (9.2%) | 34 (54%) | 24 (29%) | 14 (19%) | 22 (39%) | |
| M | 167 (91%) | 29 (46%) | 60 (71%) | 58 (81%) | 35 (61%) | |
| Degree | 460 | |||||
| D | 63 (34%) | 21 (33%) | 25 (30%) | 16 (22%) | 13 (23%) | |
| O | 121 (66%) | 42 (67%) | 59 (70%) | 56 (78%) | 44 (77%) | |
| Rank | 460 | |||||
| 1 | 111 (60%) | 29 (46%) | 36 (43%) | 36 (50%) | 28 (49%) | |
| 2 | 44 (24%) | 29 (46%) | 27 (32%) | 27 (38%) | 22 (39%) | |
| 3 | 29 (16%) | 5 (7.9%) | 21 (25%) | 9 (12%) | 7 (12%) | |
| 1 n (%) | ||||||
Conclusion:
1.
除了文學院以外,其他學院的男性教授都多於女性教授。
2.
無論哪一個學院,都有大於六成的教授在海外取得學位。
3.
無論哪一個學院,職等為1的教授比例最高、再來是職等為2的教授比例、職等為3的教授比例最低。