研究方法

利用MSCI ACWI Europe ESG Leaders Index 中的個股與其碳排管理指標,進行單因子迴歸分析,以探討「碳排管理是否能帶來超額報酬」之課題。由於產業間業務性質差異甚大,因此也會將個股按照產業區分,以達到產業中立之目的。

研究動機

分析師報告中證實MSCI ACWI ESG Leaders Index的確在2020年疫情爆發之後較MSCI ACWI Index取得相對好的報酬。近期歐盟祭出2050年碳中和目標與一系列政策,企業因此面臨低碳轉型風險,因此我們希望將樣本池鎖定歐盟企業,且著重於ESG中的碳排放管理指標,期許能夠針對這個課題得出一些新發現。

分析與結果

Exploratory Data Analysis

(說明)

1. Correlation Plots

(說明)

(說明)

2. Avergae Emission Score Across EU

(說明)

Modeling

First, seperate data into carbon heavy industries (those 4), and carbon light industries I used two models here, linear regression and random forest, you guys can compare the performance of both models

(說明) might want to show how you build model, what varibles you included

Model Results

1. Linear Model Result

(說明)

## 
## Call:
## lm(formula = TotalReturn_2y ~ IVA_COMPANY_RATING + INDUSTRY_ADJUSTED_SCORE + 
##     GOVERNANCE_PILLAR_SCORE + CARBON_EMISSIONS_SCORE + Industry, 
##     data = heavy_train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -209.16  -86.16  -43.93   18.93 2168.31 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)              309.497    143.109   2.163   0.0311 *
## IVA_COMPANY_RATINGAA     -27.509     42.833  -0.642   0.5211  
## IVA_COMPANY_RATINGAAA     -8.713     77.247  -0.113   0.9103  
## IVA_COMPANY_RATINGB      -86.623    101.055  -0.857   0.3918  
## IVA_COMPANY_RATINGBB     -84.282     71.065  -1.186   0.2363  
## IVA_COMPANY_RATINGBBB      3.597     42.413   0.085   0.9325  
## IVA_COMPANY_RATINGCCC   -164.480    137.015  -1.200   0.2307  
## INDUSTRY_ADJUSTED_SCORE  -20.674     23.366  -0.885   0.3768  
## GOVERNANCE_PILLAR_SCORE    6.762      7.877   0.858   0.3912  
## CARBON_EMISSIONS_SCORE    -6.389      5.085  -1.256   0.2097  
## IndustryMaterials        -15.058     24.623  -0.612   0.5412  
## IndustryUtilities        -38.844     28.921  -1.343   0.1800  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 186.5 on 411 degrees of freedom
## Multiple R-squared:  0.05353,    Adjusted R-squared:  0.02819 
## F-statistic: 2.113 on 11 and 411 DF,  p-value: 0.01852
## 
## Call:
## lm(formula = TotalReturn_2y ~ IVA_COMPANY_RATING + INDUSTRY_ADJUSTED_SCORE + 
##     GOVERNANCE_PILLAR_SCORE + CARBON_EMISSIONS_SCORE + Industry, 
##     data = light_train, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -199.37  -60.38  -19.63   23.93 2901.11 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      47.169     59.027   0.799 0.424323    
## IVA_COMPANY_RATINGAA             -9.005     15.692  -0.574 0.566102    
## IVA_COMPANY_RATINGAAA           -20.020     30.353  -0.660 0.509613    
## IVA_COMPANY_RATINGB              10.086     38.559   0.262 0.793679    
## IVA_COMPANY_RATINGBB             -4.380     26.954  -0.162 0.870933    
## IVA_COMPANY_RATINGBBB             8.100     16.128   0.502 0.615576    
## IVA_COMPANY_RATINGCCC            37.840     54.187   0.698 0.485055    
## INDUSTRY_ADJUSTED_SCORE           3.022      8.430   0.358 0.720034    
## GOVERNANCE_PILLAR_SCORE           1.793      3.014   0.595 0.552030    
## CARBON_EMISSIONS_SCORE           -2.483      2.372  -1.047 0.295219    
## IndustryConsumer Discretionary   33.965     15.819   2.147 0.031897 *  
## IndustryConsumer Staples        -20.376     16.623  -1.226 0.220408    
## IndustryFinancials               34.516     15.003   2.301 0.021511 *  
## IndustryHealth Care              15.628     16.297   0.959 0.337691    
## IndustryIndustrials              57.072     15.115   3.776 0.000164 ***
## IndustryInformation Technology   44.555     15.424   2.889 0.003911 ** 
## IndustryReal Estate              -5.495     18.395  -0.299 0.765190    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 152.9 on 2008 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.02906,    Adjusted R-squared:  0.02132 
## F-statistic: 3.756 on 16 and 2008 DF,  p-value: 6.56e-07
2. Random Forest Result

(說明)

## 
## Call:
##  randomForest(formula = TotalReturn_2y ~ IVA_COMPANY_RATING +      INDUSTRY_ADJUSTED_SCORE + GOVERNANCE_PILLAR_SCORE + CARBON_EMISSIONS_SCORE +      Industry, data = heavy_train, control = rpart.control(cp = 0.002,      minsplit = 30), importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 1
## 
##           Mean of squared residuals: 35526.41
##                     % Var explained: 0.51
## 
## Call:
##  randomForest(formula = TotalReturn_2y ~ IVA_COMPANY_RATING +      INDUSTRY_ADJUSTED_SCORE + GOVERNANCE_PILLAR_SCORE + CARBON_EMISSIONS_SCORE +      Industry, data = light_train, control = rpart.control(cp = 0.002,      minsplit = 30), importance = TRUE, na.action = na.omit) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 1
## 
##           Mean of squared residuals: 23971.04
##                     % Var explained: -0.43
3. Compare Out-of-Sample Performance

(說明) you can use rmse_lm_h to show the variable

## [1] 115.2414
## [1] 115.2414
## [1] 126.2252
## [1] 96.92479

Conclusion

(說明)