Paquetes utilizados

Se hará uso de la base de datos recolectada la cual consta de 80 observaciones y 105 variables de mujeres con cáncer de mama en la ciudad de Cali, concretando algunos parámetros para las simulaciones y el MCMC para obtener la convergencia de los parámetros esperados. Donde se parametrizara el numero de muestras de calentamiento (BURNIN1), el número de iteraciones(SAMPLE1) y el numero de cadenas (NCHAINS1).

options(mc.cores = parallel::detectCores())
datos2 <- readRDS("data/datos2.RDS")
datos <- datos2

set.seed(535535)
BURNIN1 = 12000 
SAMPLE1 = 20000
NCHAINS1 =  14  

BURNIN = 3000 # 2500
SAMPLE = 7000 # 6500 
CHAINS = 6    # 6

MODELOS PLANTEADOS

A partir del analisis de los modelos propuestos por Wilson & Cleary se tienen en cuenta para el planteamiento de un modelo base y los modelos mas completos donde final se obtiene el modelo final.

Se establece después de las prueba de modelos frecuentistas y sus efectos indirectos, finalmente con la investigación en la literatura, el modelo bayesiano con sus variables latentes.

Modelo base: primer modelo planteado. Modelo base bio: modelo base mas la variable latente biologica. Modelo base bio ind: modelo base mas la variable latente biologica y sus respectivas variables moderadoras. model_base_bio_ind_econ: modelo base mas la variable latente biologica,con sus respectivas variables moderadoras y variable latente ecnomica. MODELO DE REFENCIA: modelo final planteado a partir de los resultados que se observaron. Modelo indic: Modelo final con efectos indirectos

model_base <- '
    funcionalidad =~
        prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~
        prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30

  # regressions
    cv_gral ~ salud
    salud   ~ funcionalidad
    funcionalidad ~ sintomas

  # residual correlations

'

#fitref_bio = model_base_bio
model_base_bio <- '
  # measurement model
    funcionalidad =~ prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~ prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
    
    biologicas =~ her2_pos + edad + comorb + estadio_avz

  # regressions
    cv_gral ~ salud
    salud   ~ funcionalidad
    funcionalidad ~ sintomas
    sintomas ~ biologicas

  # residual correlations

'

#fitbase_bio_ind = model_base_bio_ind
model_base_bio_ind <- '
  # measurement model
    funcionalidad =~ prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~ prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
    
    biologicas =~ her2_pos + edad + comorb + estadio_avz

  # regressions
    cv_gral ~ salud + sintomas + funcionalidad
    salud   ~ funcionalidad
    funcionalidad ~ sintomas
    sintomas ~ biologicas

  # residual correlations

'

model_base_bio_ind_econ <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~
        prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
        
    biologicas =~ her2_pos + edad + comorb + estadio_avz
    
    socioeconom =~ estr_bajo + rs_subsid + hasta_sec  + trabaja 
 
  # regressions
    cv_gral ~ salud + sintomas + funcionalidad + companero
    salud   ~ funcionalidad
    funcionalidad ~ sintomas
    sintomas ~ biologicas

  # residual correlations

'



model_ref_bio_ind_sinedad <- '
  # measurement model
    funcionalidad =~ prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~ prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
    
    biologicas =~ her2_pos + comorb + estadio_avz

  # regressions
    cv_gral ~ salud + sintomas + funcionalidad
    salud   ~ funcionalidad
    funcionalidad ~ sintomas
    sintomas ~ biologicas

  # residual correlations

'


model_ref_bio_ind_sinedad_indi <- '
  # measurement model
    funcionalidad =~ prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~ prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
    
    biologicas =~ her2_pos + comorb + estadio_avz

  # regressions
    cv_gral ~ d*salud + e*sintomas + c*funcionalidad
    salud   ~ funcionalidad
    funcionalidad ~ b*sintomas
    sintomas ~ a*biologicas
    
  # indirect effect
  ab:= a*b
  abc:= a*b*c
  abcd:=a*b*c*d
  bc:= b*c
  
  # total effect
  indtot := ab + abc + abcd 
  tot := indtot + e

'

Exploracion de funcion bsem

De el paquete Blavaan que ayuda a ejecutar la estimacion de los modelos bayesianos para ecuaciones de modelos estructurales, por medio Markov Chain Monte Carlo (MCMC) el cual es un metodo de simulacion para generar muestras de las distribuciones a posteriori y estimar cantidades de interes a posteriori.

#codigo para funcion sem
set.seed(535535)
fitbase = bsem(
  model = model_base,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  save.lvs = TRUE,
  inits = "prior", 
  sample = BURNIN1,
  burnin = SAMPLE1,
  n.chains = NCHAINS1)
## Computing posterior predictives...
#save(fitfitref.Rdata, file = "data/fitfitref.Rdata.Rdata")
#fitbase load("data/fitref.Rdata")# para cargar

#set.seed(535535)
#fitref_bio <- bsem(
#  model = model_base_bio,
#  data = datos,
#  auto.var = TRUE,
#  auto.fix.first = TRUE,
#  auto.cov.lv.x = TRUE,
#  save.lvs = TRUE,
#  inits = "prior", 
#  sample = BURNIN1,
#  burnin = SAMPLE1,
#  n.chains = NCHAINS1)  
#save(fitref_bio, file = "data/fitref_bio.Rdata") #Modelo estable
load("data/fitref_bio.Rdata")# para cargar

#set.seed(535535)
#fitbase_bio_ind <- bsem(
#  model = model_base_bio_ind,
#  data = datos,
#  auto.var = TRUE,
#  auto.fix.first = TRUE,
#  auto.cov.lv.x = TRUE,
#  save.lvs = TRUE,
#  inits = "prior", 
#  sample = BURNIN1,
#  burnin = SAMPLE1,
#  n.chains = NCHAINS1)
#save(fitbase_bio_ind, file = "data/fitbase_bio_ind.Rdata") #Modelo estable
load("data/fitbase_bio_ind.Rdata")# para cargar

set.seed(535535)
fitbase_bio_ind_econ <- bsem(
  model = model_base_bio_ind_econ,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  save.lvs = TRUE,
  inits = "prior", 
  sample = BURNIN1,
  burnin = SAMPLE1,
  n.chains = NCHAINS1)
## Computing posterior predictives...
#set.seed(535535)
#fitref_bio_ind_sinedad <- bsem(
#  model = model_ref_bio_ind_sinedad,
#  data = datos,
#  auto.var = TRUE,
#  auto.fix.first = TRUE,
#  auto.cov.lv.x = TRUE,
#  save.lvs = TRUE,
#  inits = "prior", 
#  sample = BURNIN1,
#  burnin = SAMPLE1,
#  n.chains = NCHAINS1)
load("data/fitref_bio_ind_sinedad.Rdata") #estable

set.seed(535535)
fit_ref_bio_ind_sinedad_indi <- bsem(
  model = model_ref_bio_ind_sinedad_indi,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  save.lvs = TRUE,
  inits = "prior", 
  sample = BURNIN1,
  burnin = SAMPLE1,
  n.chains = NCHAINS1)
## Computing posterior predictives...

El resumen del modelo el cual nos indica diferentes resultados de interes

summary(fitbase,standardized = TRUE, rsquare=TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 8000 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                      -1017.126       0.062
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.169    0.393
##     f_c30             1.476    0.162    1.198    1.835    0.250    0.709
##   sintomas =~                                                           
##     s_br23            1.000                               0.321    0.564
##     s_c30            -0.025    7.523  -25.688    3.489   -0.008   -0.035
##      Rhat    Prior       
##                          
##                          
##     1.006    normal(0,15)
##                          
##                          
##     3.588    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.899    0.046    0.809    0.989    0.899    0.857
##   salud ~                                                               
##     funcionalidad     2.608    0.390    1.905    3.431    0.442    0.328
##   funcionalidad ~                                                       
##     sintomas          0.003    4.663   -2.239   15.950    0.006    0.006
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.002    normal(0,10)
##                          
##     3.529    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.343    0.072    2.200    2.484    2.343    5.434
##    .f_c30             2.438    0.087    2.264    2.608    2.438    6.914
##    .s_br23            1.765    0.064    1.640    1.891    1.765    3.098
##    .s_c30             2.164    0.089    1.989    2.338    2.164    9.364
##    .cv_gral           0.200    0.215   -0.221    0.622    0.200    0.141
##    .salud             4.337    0.204    3.932    4.734    4.337    3.221
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.157    0.030    0.108    0.224    0.157    0.846
##    .f_c30             0.062    0.028    0.009    0.120    0.062    0.497
##    .s_br23            0.221    0.059    0.148    0.390    0.221    0.682
##    .s_c30             0.053    0.041    0.000    0.141    0.053    0.999
##    .cv_gral           0.529    0.088    0.384    0.729    0.529    0.265
##    .salud             1.617    0.283    1.145    2.254    1.617    0.892
##    .funcionalidad     0.029    0.020    0.000    0.070    1.000    1.000
##     sintomas          0.103    0.053    0.001    0.209    1.000    1.000
##      Rhat    Prior       
##     1.002 gamma(1,.5)[sd]
##     1.009 gamma(1,.5)[sd]
##     1.544 gamma(1,.5)[sd]
##     1.008 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.320 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.154
##     f_c30             0.503
##     s_br23            0.318
##     s_c30             0.001
##     cv_gral           0.735
##     salud             0.108
##     funcionalidad     0.000
summary(fitref_bio,standardized = TRUE, rsquare=TRUE)# estable
## blavaan (0.4-1) results of 9000 samples after 19000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                      -1106.965       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.467    0.763
##     f_c30             1.476    0.163    1.201    1.838    0.690    0.941
##   sintomas =~                                                           
##     s_br23            1.000                               0.296    0.545
##     s_c30             2.369    0.472    1.702    3.463    0.701    0.955
##   biologicas =~                                                         
##     her2_pos          1.000                               0.038    0.075
##     edad             -0.410   10.649  -21.435   20.481   -0.016   -0.001
##     comorb            0.095    6.019  -13.148   13.522    0.004    0.008
##     estadio_avz      -1.185    9.459  -19.096   17.958   -0.045   -0.102
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.002    normal(0,15)
##                          
##                          
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.899    0.046    0.809    0.989    0.899    0.909
##   salud ~                                                               
##     funcionalidad     2.610    0.396    1.905    3.458    1.220    0.692
##   funcionalidad ~                                                       
##     sintomas         -1.463    0.329   -2.198   -0.982   -0.926   -0.926
##   sintomas ~                                                            
##     biologicas        0.676    8.859  -17.433   17.857    0.087    0.087
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##                          
##     1.002    normal(0,10)
##                          
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.342    0.072    2.201    2.482    2.342    3.822
##    .f_c30             2.436    0.088    2.265    2.608    2.436    3.323
##    .s_br23            1.765    0.063    1.641    1.889    1.765    3.253
##    .s_c30             2.165    0.090    1.989    2.341    2.165    2.948
##    .her2_pos          0.438    0.057    0.326    0.549    0.438    0.859
##    .edad             53.719    1.343   51.094   56.371   53.719    4.482
##    .comorb            0.337    0.055    0.230    0.444    0.337    0.710
##    .estadio_avz       0.337    0.054    0.230    0.443    0.337    0.762
##    .cv_gral           0.201    0.214   -0.220    0.622    0.201    0.115
##    .salud             4.334    0.205    3.935    4.738    4.334    2.459
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.157    0.029    0.108    0.223    0.157    0.419
##    .f_c30             0.061    0.028    0.008    0.119    0.061    0.114
##    .s_br23            0.207    0.036    0.148    0.287    0.207    0.703
##    .s_c30             0.048    0.039    0.000    0.132    0.048    0.088
##    .her2_pos          0.258    0.042    0.188    0.353    0.258    0.994
##    .edad            143.678   22.422  105.911  193.423  143.678    1.000
##    .comorb            0.226    0.050    0.109    0.318    0.226    1.000
##    .estadio_avz       0.194    0.064    0.020    0.301    0.194    0.990
##    .cv_gral           0.529    0.086    0.387    0.724    0.529    0.174
##    .salud             1.620    0.285    1.145    2.259    1.620    0.521
##    .funcionalidad     0.031    0.020    0.000    0.072    0.142    0.142
##    .sintomas          0.087    0.049    0.003    0.190    0.992    0.992
##     biologicas        0.001    0.004    0.000    0.009    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.581
##     f_c30             0.886
##     s_br23            0.297
##     s_c30             0.912
##     her2_pos          0.006
##     edad              0.000
##     comorb            0.000
##     estadio_avz       0.010
##     cv_gral           0.826
##     salud             0.479
##     funcionalidad     0.858
##     sintomas          0.008
summary(fitbase_bio_ind,standardized = TRUE, rsquare=TRUE)#estable
## blavaan (0.4-1) results of 5000 samples after 12000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                      -1105.079       0.002
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.472    0.770
##     f_c30             1.452    0.161    1.179    1.810    0.685    0.927
##   sintomas =~                                                           
##     s_br23            1.000                               0.296    0.546
##     s_c30             2.352    0.473    1.674    3.504    0.695    0.931
##   biologicas =~                                                         
##     her2_pos          1.000                               0.038    0.074
##     edad             -0.286   10.575  -20.969   20.455   -0.011   -0.001
##     comorb            0.089    6.322  -13.992   14.069    0.003    0.007
##     estadio_avz      -1.036    9.409  -19.014   18.052   -0.039   -0.088
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
##                          
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.758    0.067    0.625    0.890    0.758    0.778
##     sintomas         -0.551    5.600  -13.150   12.150   -0.163   -0.095
##     funcionalidad     0.364    3.658   -7.878    8.620    0.172    0.100
##   salud ~                                                               
##     funcionalidad     2.605    0.394    1.905    3.448    1.229    0.695
##   funcionalidad ~                                                       
##     sintomas         -1.539    0.331   -2.325   -1.044   -0.965   -0.965
##   sintomas ~                                                            
##     biologicas        0.571    8.797  -17.460   17.916    0.073    0.073
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##                          
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.342    0.072    2.199    2.484    2.342    3.825
##    .f_c30             2.437    0.088    2.264    2.610    2.437    3.300
##    .s_br23            1.765    0.063    1.641    1.888    1.765    3.258
##    .s_c30             2.164    0.090    1.988    2.342    2.164    2.899
##    .her2_pos          0.438    0.057    0.326    0.549    0.438    0.859
##    .edad             53.730    1.342   51.089   56.380   53.730    4.483
##    .comorb            0.337    0.054    0.230    0.445    0.337    0.710
##    .estadio_avz       0.337    0.055    0.230    0.445    0.337    0.758
##    .cv_gral           0.810    0.305    0.214    1.418    0.810    0.471
##    .salud             4.335    0.206    3.933    4.737    4.335    2.454
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.153    0.029    0.104    0.217    0.153    0.407
##    .f_c30             0.077    0.028    0.025    0.136    0.077    0.141
##    .s_br23            0.206    0.036    0.147    0.287    0.206    0.702
##    .s_c30             0.074    0.040    0.001    0.149    0.074    0.133
##    .her2_pos          0.258    0.043    0.187    0.355    0.258    0.994
##    .edad            143.662   22.366  105.926  193.163  143.662    1.000
##    .comorb            0.226    0.049    0.116    0.320    0.226    1.000
##    .estadio_avz       0.197    0.063    0.023    0.303    0.197    0.992
##    .cv_gral           0.444    0.099    0.232    0.638    0.444    0.150
##    .salud             1.611    0.285    1.139    2.252    1.611    0.516
##    .funcionalidad     0.015    0.017    0.000    0.058    0.069    0.069
##    .sintomas          0.087    0.048    0.003    0.190    0.995    0.995
##     biologicas        0.001    0.004    0.000    0.010    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.593
##     f_c30             0.859
##     s_br23            0.298
##     s_c30             0.867
##     her2_pos          0.006
##     edad              0.000
##     comorb            0.000
##     estadio_avz       0.008
##     cv_gral           0.850
##     salud             0.484
##     funcionalidad     0.931
##     sintomas          0.005
summary(fitbase_bio_ind_econ,standardized = TRUE, rsquare=TRUE)#estacle
## ** WARNING ** blavaan (0.4-1) did NOT converge after 8000 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                      -1773.345       0.005
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.137    0.329
##     f_c30             1.462    0.163    1.185    1.827    0.200    0.592
##   sintomas =~                                                           
##     s_br23            1.000                               0.287    0.521
##     s_c30             0.112    7.025  -23.747    3.456    0.032    0.120
##   biologicas =~                                                         
##     her2_pos          1.000                               0.060    0.118
##     edad             -3.316   11.549  -25.836   19.130   -0.200   -0.017
##     comorb           -0.705    5.033  -11.341   10.634   -0.042   -0.088
##     estadio_avz      -1.738    8.696  -17.763   16.866   -0.105   -0.226
##   socioeconom =~                                                        
##     estr_bajo         1.000                               0.132    0.263
##     rs_subsid         3.279    2.531    0.930   10.335    0.432    0.722
##     hasta_sec         5.388    3.767    1.698   15.937    0.709    0.965
##     trabaja           0.429    0.984   -1.351    2.752    0.057    0.112
##      Rhat    Prior       
##                          
##                          
##     1.007    normal(0,15)
##                          
##                          
##     3.599    normal(0,15)
##                          
##                          
##     1.010    normal(0,10)
##     1.016    normal(0,10)
##     1.032    normal(0,10)
##                          
##                          
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.760    0.069    0.623    0.894    0.760    0.817
##     sintomas          0.027    5.733  -12.332   13.366    0.008    0.006
##     funcionalidad     0.583    3.352   -6.939    8.545    0.080    0.065
##     companero        -0.001    0.162   -0.321    0.317   -0.001   -0.001
##   salud ~                                                               
##     funcionalidad     2.616    0.394    1.915    3.460    0.358    0.271
##   funcionalidad ~                                                       
##     sintomas         -0.133    4.378   -2.292   14.662   -0.280   -0.280
##   sintomas ~                                                            
##     biologicas        1.482    8.177  -16.192   16.634    0.311    0.311
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.008    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.002    normal(0,10)
##                          
##     3.545    normal(0,10)
##                          
##     1.042    normal(0,10)
## 
## Covariances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   biologicas ~~                                                         
##     socioeconom      -0.002    0.005   -0.016    0.003   -0.266   -0.266
##      Rhat    Prior       
##                          
##     1.020       beta(1,1)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.342    0.072    2.200    2.483    2.342    5.631
##    .f_c30             2.437    0.087    2.265    2.607    2.437    7.212
##    .s_br23            1.765    0.064    1.640    1.891    1.765    3.207
##    .s_c30             2.164    0.089    1.990    2.340    2.164    8.094
##    .her2_pos          0.438    0.057    0.325    0.550    0.438    0.860
##    .edad             53.725    1.343   51.062   56.341   53.725    4.508
##    .comorb            0.338    0.055    0.230    0.444    0.338    0.702
##    .estadio_avz       0.337    0.054    0.230    0.443    0.337    0.729
##    .estr_bajo         0.562    0.057    0.450    0.674    0.562    1.124
##    .rs_subsid         0.362    0.056    0.253    0.471    0.362    0.606
##    .hasta_sec         0.650    0.055    0.542    0.757    0.650    0.884
##    .trabaja           0.600    0.057    0.488    0.712    0.600    1.185
##    .cv_gral           0.806    0.312    0.197    1.432    0.806    0.656
##    .salud             4.336    0.204    3.933    4.736    4.336    3.284
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##     socioeconom       0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.154    0.029    0.106    0.220    0.154    0.892
##    .f_c30             0.074    0.028    0.020    0.134    0.074    0.650
##    .s_br23            0.221    0.059    0.148    0.389    0.221    0.728
##    .s_c30             0.070    0.040    0.001    0.147    0.070    0.986
##    .her2_pos          0.255    0.042    0.185    0.350    0.255    0.986
##    .edad            142.017   22.942  103.312  192.465  142.017    1.000
##    .comorb            0.229    0.040    0.164    0.316    0.229    0.992
##    .estadio_avz       0.203    0.045    0.119    0.294    0.203    0.949
##    .estr_bajo         0.233    0.040    0.167    0.321    0.233    0.931
##    .rs_subsid         0.171    0.036    0.101    0.244    0.171    0.479
##    .hasta_sec         0.038    0.039    0.000    0.139    0.038    0.070
##    .trabaja           0.253    0.042    0.183    0.347    0.253    0.988
##    .cv_gral           0.454    0.101    0.242    0.653    0.454    0.301
##    .salud             1.616    0.287    1.141    2.262    1.616    0.927
##    .funcionalidad     0.017    0.018    0.000    0.060    0.922    0.922
##    .sintomas          0.074    0.045    0.000    0.168    0.903    0.903
##     biologicas        0.004    0.009    0.000    0.032    1.000    1.000
##     socioeconom       0.017    0.017    0.001    0.063    1.000    1.000
##      Rhat    Prior       
##     1.002 gamma(1,.5)[sd]
##     1.014 gamma(1,.5)[sd]
##     1.550 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.007 gamma(1,.5)[sd]
##     1.205 gamma(1,.5)[sd]
##     1.008 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.108
##     f_c30             0.350
##     s_br23            0.272
##     s_c30             0.014
##     her2_pos          0.014
##     edad              0.000
##     comorb            0.008
##     estadio_avz       0.051
##     estr_bajo         0.069
##     rs_subsid         0.521
##     hasta_sec         0.930
##     trabaja           0.012
##     cv_gral           0.699
##     salud             0.073
##     funcionalidad     0.078
##     sintomas          0.097
summary(fitref_bio_ind_sinedad,standardized = TRUE, rsquare=TRUE)#esta
## blavaan (0.4-1) results of 500 samples after 12000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -719.918       0.066
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.471    0.770
##     f_c30             1.450    0.166    1.167    1.823    0.683    0.926
##   sintomas =~                                                           
##     s_br23            1.000                               0.296    0.546
##     s_c30             2.339    0.460    1.685    3.447    0.692    0.929
##   biologicas =~                                                         
##     her2_pos          1.000                               0.033    0.064
##     comorb           -0.167    5.726  -13.495   11.956   -0.005   -0.011
##     estadio_avz      -1.236    9.994  -20.074   18.700   -0.040   -0.093
##      Rhat    Prior       
##                          
##                          
##     1.005    normal(0,15)
##                          
##                          
##     1.003    normal(0,15)
##                          
##                          
##     1.001    normal(0,10)
##     1.020    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.759    0.066    0.628    0.892    0.759    0.786
##     sintomas         -0.946    5.689  -14.997   10.777   -0.280   -0.164
##     funcionalidad     0.079    3.712   -8.697    7.867    0.037    0.022
##   salud ~                                                               
##     funcionalidad     2.603    0.391    1.891    3.435    1.226    0.695
##   funcionalidad ~                                                       
##     sintomas         -1.539    0.338   -2.331   -1.031   -0.967   -0.967
##   sintomas ~                                                            
##     biologicas        0.764    8.619  -15.798   18.530    0.084    0.084
##      Rhat    Prior       
##                          
##     1.006    normal(0,10)
##     1.012    normal(0,10)
##     1.012    normal(0,10)
##                          
##     1.003    normal(0,10)
##                          
##     1.003    normal(0,10)
##                          
##     1.009    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.343    0.072    2.203    2.483    2.343    3.830
##    .f_c30             2.438    0.086    2.272    2.606    2.438    3.307
##    .s_br23            1.765    0.062    1.643    1.887    1.765    3.255
##    .s_c30             2.162    0.088    1.992    2.337    2.162    2.901
##    .her2_pos          0.437    0.058    0.321    0.553    0.437    0.859
##    .comorb            0.338    0.058    0.229    0.453    0.338    0.704
##    .estadio_avz       0.338    0.054    0.233    0.445    0.338    0.780
##    .cv_gral           0.807    0.300    0.203    1.386    0.807    0.474
##    .salud             4.341    0.207    3.933    4.750    4.341    2.460
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     0.999    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     0.999    normal(0,32)
##     0.999    normal(0,32)
##     1.006    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.152    0.028    0.105    0.215    0.152    0.407
##    .f_c30             0.077    0.028    0.023    0.134    0.077    0.142
##    .s_br23            0.206    0.036    0.147    0.287    0.206    0.702
##    .s_c30             0.076    0.040    0.001    0.151    0.076    0.137
##    .her2_pos          0.257    0.041    0.190    0.348    0.257    0.996
##    .comorb            0.231    0.040    0.164    0.315    0.231    1.000
##    .estadio_avz       0.186    0.072    0.003    0.294    0.186    0.991
##    .cv_gral           0.437    0.110    0.160    0.638    0.437    0.151
##    .salud             1.611    0.278    1.142    2.228    1.611    0.517
##    .funcionalidad     0.014    0.017    0.000    0.058    0.065    0.065
##    .sintomas          0.087    0.047    0.003    0.188    0.993    0.993
##     biologicas        0.001    0.002    0.000    0.007    1.000    1.000
##      Rhat    Prior       
##     1.002 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.005 gamma(1,.5)[sd]
##     0.999 gamma(1,.5)[sd]
##     0.999 gamma(1,.5)[sd]
##     1.020 gamma(1,.5)[sd]
##     1.011 gamma(1,.5)[sd]
##     0.999 gamma(1,.5)[sd]
##     1.008 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.593
##     f_c30             0.858
##     s_br23            0.298
##     s_c30             0.863
##     her2_pos          0.004
##     comorb            0.000
##     estadio_avz       0.009
##     cv_gral           0.849
##     salud             0.483
##     funcionalidad     0.935
##     sintomas          0.007
summary(fit_ref_bio_ind_sinedad_indi,standardized = TRUE, rsquare=TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 8000 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -997.790       0.062
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.417    0.696
##     f_c30            -0.023    4.564  -15.333    1.793   -0.010   -0.035
##   sintomas =~                                                           
##     s_br23            1.000                               0.293    0.542
##     s_c30             2.367    0.483    1.684    3.528    0.694    0.934
##   biologicas =~                                                         
##     her2_pos          1.000                               0.034    0.066
##     comorb            0.122    6.116  -13.218   13.685    0.004    0.009
##     estadio_avz      -1.137    9.631  -19.151   18.309   -0.038   -0.087
##      Rhat    Prior       
##                          
##                          
##     4.179    normal(0,15)
##                          
##                          
##     1.008    normal(0,15)
##                          
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud      (d)    0.759    0.068    0.624    0.893    0.759    0.785
##     sintomas   (e)   -0.570    5.312  -12.731   11.637   -0.167   -0.135
##     funcionldd (c)    0.372    4.100   -8.557    9.589    0.155    0.126
##   salud ~                                                               
##     funcionldd        0.181    7.491  -25.158    3.422    0.075    0.059
##   funcionalidad ~                                                       
##     sintomas   (b)   -1.366    0.605   -2.295    0.210   -0.960   -0.960
##   sintomas ~                                                            
##     biologicas (a)    0.567    8.877  -17.859   17.524    0.065    0.065
##      Rhat    Prior       
##                          
##     1.006    normal(0,10)
##     1.002    normal(0,10)
##     1.001    normal(0,10)
##                          
##     4.375    normal(0,10)
##                          
##     1.951    normal(0,10)
##                          
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.342    0.073    2.199    2.486    2.342    3.909
##    .f_c30             2.437    0.088    2.264    2.609    2.437    8.830
##    .s_br23            1.765    0.064    1.640    1.890    1.765    3.264
##    .s_c30             2.165    0.091    1.987    2.342    2.165    2.914
##    .her2_pos          0.437    0.056    0.325    0.549    0.437    0.859
##    .comorb            0.338    0.055    0.230    0.446    0.338    0.705
##    .estadio_avz       0.337    0.055    0.229    0.445    0.337    0.763
##    .cv_gral           0.805    0.310    0.199    1.426    0.805    0.653
##    .salud             4.336    0.206    3.927    4.740    4.336    3.405
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.005    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.185    0.104    0.105    0.524    0.185    0.515
##    .f_c30             0.076    0.030    0.017    0.138    0.076    0.999
##    .s_br23            0.207    0.036    0.148    0.287    0.207    0.706
##    .s_c30             0.070    0.041    0.001    0.147    0.070    0.128
##    .her2_pos          0.258    0.042    0.188    0.352    0.258    0.996
##    .comorb            0.230    0.043    0.157    0.319    0.230    1.000
##    .estadio_avz       0.194    0.064    0.020    0.301    0.194    0.992
##    .cv_gral           0.446    0.101    0.234    0.643    0.446    0.294
##    .salud             1.616    0.288    1.142    2.262    1.616    0.997
##    .funcionalidad     0.014    0.017    0.000    0.057    0.079    0.079
##    .sintomas          0.086    0.048    0.002    0.187    0.996    0.996
##     biologicas        0.001    0.003    0.000    0.007    1.000    1.000
##      Rhat    Prior       
##     2.849 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.042 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.007 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.039 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.485
##     f_c30             0.001
##     s_br23            0.294
##     s_c30             0.872
##     her2_pos          0.004
##     comorb            0.000
##     estadio_avz       0.008
##     cv_gral           0.706
##     salud             0.003
##     funcionalidad     0.921
##     sintomas          0.004
## 
## Defined Parameters:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##     ab               -0.774   13.100  -26.450   24.902   -0.063   -0.063
##     abc              -0.288   47.521  -93.428   92.852   -0.010   -0.008
##     abcd             -0.219   35.840  -70.463   70.026   -0.007   -0.006
##     bc               -0.508    5.317  -10.930    9.913   -0.149   -0.121
##     indtot           -1.281   85.654 -169.159  166.597   -0.080   -0.077
##     tot              -1.851   85.573 -169.571  165.870   -0.247   -0.212
##      Rhat    Prior       
##                          
##                          
##                          
##                          
##                          
## 

Informacion del BRMSEA

blavFitIndices(fitbase)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.196        0.927        0.658        0.887
blavFitIndices(fitref_bio)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.134        0.878        0.796        0.706
blavFitIndices(fitbase_bio_ind) #Estable
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.129        0.890        0.807        0.735
blavFitIndices(fitbase_bio_ind_econ)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.195        0.898        0.852        0.656
blavFitIndices(fitref_bio_ind_sinedad)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.099        0.941        0.887        0.869
blavFitIndices(fit_ref_bio_ind_sinedad_indi)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.124        0.925        0.818        0.834

Informacion de R hat modelo de referencia

blavInspect(fitref_bio_ind_sinedad, 'rhat')
##         funcionalidad=~f_c30              sintomas=~s_c30 
##                    1.0048315                    1.0030244 
##           biologicas=~comorb      biologicas=~estadio_avz 
##                    1.0013575                    1.0201912 
##                cv_gral~salud             cv_gral~sintomas 
##                    1.0056862                    1.0119441 
##        cv_gral~funcionalidad          salud~funcionalidad 
##                    1.0118498                    1.0028308 
##       funcionalidad~sintomas          sintomas~biologicas 
##                    1.0034780                    1.0091393 
##               f_br23~~f_br23                 f_c30~~f_c30 
##                    1.0019487                    1.0007276 
##               s_br23~~s_br23                 s_c30~~s_c30 
##                    0.9996431                    1.0054009 
##           her2_pos~~her2_pos               comorb~~comorb 
##                    0.9994917                    0.9994663 
##     estadio_avz~~estadio_avz             cv_gral~~cv_gral 
##                    1.0202822                    1.0107859 
##                 salud~~salud funcionalidad~~funcionalidad 
##                    0.9992926                    1.0084047 
##           sintomas~~sintomas       biologicas~~biologicas 
##                    1.0036061                    1.0021398 
##                     f_br23~1                      f_c30~1 
##                    1.0004614                    0.9993499 
##                     s_br23~1                      s_c30~1 
##                    0.9999890                    0.9996622 
##                   her2_pos~1                     comorb~1 
##                    0.9999089                    0.9993346 
##                estadio_avz~1                    cv_gral~1 
##                    0.9994897                    1.0055727 
##                      salud~1 
##                    1.0004099

Informacion del neff modelo de referencia

blavInspect(fitref_bio_ind_sinedad, 'neff')
##         funcionalidad=~f_c30              sintomas=~s_c30 
##                    1350.0703                    1194.6285 
##           biologicas=~comorb      biologicas=~estadio_avz 
##                    1687.1179                     368.0325 
##                cv_gral~salud             cv_gral~sintomas 
##                    1391.6145                     578.9260 
##        cv_gral~funcionalidad          salud~funcionalidad 
##                     562.8230                    2027.5925 
##       funcionalidad~sintomas          sintomas~biologicas 
##                    1182.8548                     616.4119 
##               f_br23~~f_br23                 f_c30~~f_c30 
##                    2970.8817                    1772.8345 
##               s_br23~~s_br23                 s_c30~~s_c30 
##                    3465.0440                    1128.2822 
##           her2_pos~~her2_pos               comorb~~comorb 
##                    3704.4874                    3591.1805 
##     estadio_avz~~estadio_avz             cv_gral~~cv_gral 
##                     249.5160                     494.7867 
##                 salud~~salud funcionalidad~~funcionalidad 
##                    3149.4470                     899.0129 
##           sintomas~~sintomas       biologicas~~biologicas 
##                    1350.5927                    1086.4631 
##                     f_br23~1                      f_c30~1 
##                    1102.2056                     928.0063 
##                     s_br23~1                      s_c30~1 
##                    1494.5909                     941.1430 
##                   her2_pos~1                     comorb~1 
##                    3776.4438                    3730.5295 
##                estadio_avz~1                    cv_gral~1 
##                    3702.1813                    1382.5197 
##                      salud~1 
##                    1369.4601

Graficos de modelos sem bayesiano con la funcion semplot

semPaths(
  fitbase,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

semPaths(
  fitref_bio,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

semPaths(
  fitbase_bio_ind,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

semPaths(
  fitbase_bio_ind_econ,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

semPaths(
  fitref_bio_ind_sinedad,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

graficos de mcmc

plot(fitref_bio_ind_sinedad, par = 1:12,  facet_args = list(ncol = 4))

continuacion de graficos mcmc modelos ref

plot(fitref_bio_ind_sinedad,par = 13:20, facet_args = list(ncol = 4))

plot(fitref_bio_ind_sinedad,par = 21:30, facet_args = list(ncol = 4))

Grafico de intervalos todo modelos ref

plot(fitbase,  plot.type = "intervals")

plot(fitref_bio,  plot.type = "intervals")

plot(fitbase_bio_ind,  plot.type = "intervals")

plot(fitbase_bio_ind_econ,  plot.type = "intervals")

plot(fitref_bio_ind_sinedad,  plot.type = "intervals")

Gráfico de coordenas paralelas de todos modelos ref

plot(fitbase, plot.type = "parcoord")

plot(fitref_bio, plot.type = "parcoord")

plot(fitbase_bio_ind, plot.type = "parcoord")

plot(fitbase_bio_ind_econ, plot.type = "parcoord")

plot(fitref_bio_ind_sinedad, plot.type = "parcoord")

Tabla de indices relevantes para describir el SEM

describe_posterior(fitref_bio_ind_sinedad)
## Summary of Posterior Distribution
## 
## Parameter                    |  Component |   Median |          95% CI |     pd |          ROPE | % in ROPE |  Rhat |     ESS
## -----------------------------------------------------------------------------------------------------------------------------
## funcionalidad=~f_c30         |     latent |     1.43 | [  1.15,  1.78] |   100% | [-0.10, 0.10] |        0% | 1.005 | 1350.00
## sintomas=~s_c30              |     latent |     2.26 | [  1.64,  3.35] |   100% | [-0.10, 0.10] |        0% | 1.003 | 1195.00
## biologicas=~comorb           |     latent |     0.10 | [-12.27, 12.65] | 51.63% | [-0.10, 0.10] |     3.23% | 1.001 | 1687.00
## biologicas=~estadio_avz      |     latent |    -2.22 | [-20.85, 17.86] | 57.30% | [-0.10, 0.10] |     0.49% | 1.020 |  368.00
## cv_gral~salud                | regression |     0.76 | [  0.64,  0.90] |   100% | [-0.10, 0.10] |        0% | 1.006 | 1392.00
## cv_gral~sintomas             | regression |    -0.63 | [-13.02, 11.77] | 60.87% | [-0.10, 0.10] |     3.72% | 1.012 |  579.00
## cv_gral~funcionalidad        | regression |     0.28 | [ -8.79,  7.54] | 56.93% | [-0.10, 0.10] |     4.84% | 1.012 |  563.00
## salud~funcionalidad          | regression |     2.58 | [  1.84,  3.33] |   100% | [-0.10, 0.10] |        0% | 1.003 | 2028.00
## funcionalidad~sintomas       | regression |    -1.48 | [ -2.24, -0.99] |   100% | [-0.10, 0.10] |        0% | 1.003 | 1183.00
## sintomas~biologicas          | regression |     1.45 | [-15.02, 19.06] | 57.27% | [-0.10, 0.10] |     0.84% | 1.009 |  616.00
## f_br23~~f_br23               |   residual |     0.15 | [  0.10,  0.21] |   100% | [-0.10, 0.10] |        0% | 1.002 | 2971.00
## f_c30~~f_c30                 |   residual |     0.08 | [  0.02,  0.13] |   100% | [-0.10, 0.10] |    83.02% | 1.001 | 1773.00
## s_br23~~s_br23               |   residual |     0.20 | [  0.14,  0.28] |   100% | [-0.10, 0.10] |        0% | 1.000 | 3465.00
## s_c30~~s_c30                 |   residual |     0.08 | [  0.00,  0.14] |   100% | [-0.10, 0.10] |    76.01% | 1.005 | 1128.00
## her2_pos~~her2_pos           |   residual |     0.25 | [  0.18,  0.34] |   100% | [-0.10, 0.10] |        0% | 0.999 | 3704.00
## comorb~~comorb               |   residual |     0.23 | [  0.16,  0.31] |   100% | [-0.10, 0.10] |        0% | 0.999 | 3591.00
## estadio_avz~~estadio_avz     |   residual |     0.20 | [  0.00,  0.28] |   100% | [-0.10, 0.10] |    13.43% | 1.020 |  250.00
## cv_gral~~cv_gral             |   residual |     0.44 | [  0.22,  0.66] |   100% | [-0.10, 0.10] |        0% | 1.011 |  495.00
## salud~~salud                 |   residual |     1.58 | [  1.10,  2.16] |   100% | [-0.10, 0.10] |        0% | 0.999 | 3149.00
## funcionalidad~~funcionalidad |   residual | 7.39e-03 | [  0.00,  0.05] |   100% | [-0.10, 0.10] |      100% | 1.008 |  899.00
## sintomas~~sintomas           |   residual |     0.09 | [  0.00,  0.17] |   100% | [-0.10, 0.10] |    65.59% | 1.004 | 1351.00
## biologicas~~biologicas       |   residual | 4.18e-04 | [  0.00,  0.00] |   100% | [-0.10, 0.10] |      100% | 1.002 | 1086.00
## f_br23~1                     |  intercept |     2.34 | [  2.21,  2.49] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1102.00
## f_c30~1                      |  intercept |     2.44 | [  2.26,  2.59] |   100% | [-0.10, 0.10] |        0% | 0.999 |  928.00
## s_br23~1                     |  intercept |     1.76 | [  1.64,  1.88] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1495.00
## s_c30~1                      |  intercept |     2.16 | [  2.00,  2.34] |   100% | [-0.10, 0.10] |        0% | 1.000 |  941.00
## her2_pos~1                   |  intercept |     0.44 | [  0.32,  0.55] |   100% | [-0.10, 0.10] |        0% | 1.000 | 3776.00
## comorb~1                     |  intercept |     0.34 | [  0.23,  0.45] |   100% | [-0.10, 0.10] |        0% | 0.999 | 3731.00
## estadio_avz~1                |  intercept |     0.34 | [  0.23,  0.44] |   100% | [-0.10, 0.10] |        0% | 0.999 | 3702.00
## cv_gral~1                    |  intercept |     0.81 | [  0.16,  1.34] | 99.50% | [-0.10, 0.10] |        0% | 1.006 | 1383.00
## salud~1                      |  intercept |     4.34 | [  3.91,  4.72] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1369.00
sexit(fitref_bio_ind_sinedad)
## # Following the Sequential Effect eXistence and sIgnificance Testing (SEXIT) framework, we report the median of the posterior distribution and its 95% CI (Highest Density Interval), along the probability of direction (pd), the probability of significance and the probability of being large. The thresholds beyond which the effect is considered as significant (i.e., non-negligible) and large are |0.05| and |0.30|.
## 
## - funcionalidad=~f_c30 (Median = 1.43, 95% CI [1.15, 1.78]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - sintomas=~s_c30 (Median = 2.26, 95% CI [1.64, 3.35]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - biologicas=~comorb (Median = 0.10, 95% CI [-12.27, 12.65]) has a 51.63% probability of being positive (> 0), 50.87% of being significant (> 0.05), and 47.07% of being large (> 0.30)
## - biologicas=~estadio_avz (Median = -2.22, 95% CI [-20.85, 17.86]) has a 57.30% probability of being negative (< 0), 57.23% of being significant (< -0.05), and 56.53% of being large (< -0.30)
## - cv_gral~salud (Median = 0.76, 95% CI [0.64, 0.90]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - cv_gral~sintomas (Median = -0.63, 95% CI [-13.02, 11.77]) has a 60.87% probability of being negative (< 0), 60.07% of being significant (< -0.05), and 55.63% of being large (< -0.30)
## - cv_gral~funcionalidad (Median = 0.28, 95% CI [-8.79, 7.54]) has a 56.93% probability of being positive (> 0), 55.77% of being significant (> 0.05), and 49.37% of being large (> 0.30)
## - salud~funcionalidad (Median = 2.58, 95% CI [1.84, 3.33]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - funcionalidad~sintomas (Median = -1.48, 95% CI [-2.24, -0.99]) has a 100.00% probability of being negative (< 0), 100.00% of being significant (< -0.05), and 100.00% of being large (< -0.30)
## - sintomas~biologicas (Median = 1.45, 95% CI [-15.02, 19.06]) has a 57.27% probability of being positive (> 0), 57.07% of being significant (> 0.05), and 56.27% of being large (> 0.30)
## - f_br23~~f_br23 (Median = 0.15, 95% CI [0.10, 0.21]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 0.03% of being large (> 0.30)
## - f_c30~~f_c30 (Median = 0.08, 95% CI [0.02, 0.13]) has a 100.00% probability of being positive (> 0), 84.43% of being significant (> 0.05), and 0.00% of being large (> 0.30)
## - s_br23~~s_br23 (Median = 0.20, 95% CI [0.14, 0.28]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 1.40% of being large (> 0.30)
## - s_c30~~s_c30 (Median = 0.08, 95% CI [1.67e-06, 0.14]) has a 100.00% probability of being positive (> 0), 75.50% of being significant (> 0.05), and 0.00% of being large (> 0.30)
## - her2_pos~~her2_pos (Median = 0.25, 95% CI [0.18, 0.34]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 14.47% of being large (> 0.30)
## - comorb~~comorb (Median = 0.23, 95% CI [0.16, 0.31]) has a 100.00% probability of being positive (> 0), 99.97% of being significant (> 0.05), and 5.20% of being large (> 0.30)
## - estadio_avz~~estadio_avz (Median = 0.20, 95% CI [3.71e-07, 0.28]) has a 100.00% probability of being positive (> 0), 91.87% of being significant (> 0.05), and 1.90% of being large (> 0.30)
## - cv_gral~~cv_gral (Median = 0.44, 95% CI [0.22, 0.66]) has a 100.00% probability of being positive (> 0), 98.73% of being significant (> 0.05), and 92.60% of being large (> 0.30)
## - salud~~salud (Median = 1.58, 95% CI [1.10, 2.16]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - funcionalidad~~funcionalidad (Median = 7.39e-03, 95% CI [1.19e-08, 0.05]) has a 100.00% probability of being positive (> 0), 4.80% of being significant (> 0.05), and 0.00% of being large (> 0.30)
## - sintomas~~sintomas (Median = 0.09, 95% CI [9.46e-06, 0.17]) has a 100.00% probability of being positive (> 0), 77.90% of being significant (> 0.05), and 0.00% of being large (> 0.30)
## - biologicas~~biologicas (Median = 4.18e-04, 95% CI [2.30e-11, 4.61e-03]) has a 100.00% probability of being positive (> 0), 0.00% of being significant (> 0.05), and 0.00% of being large (> 0.30)
## - f_br23~1 (Median = 2.34, 95% CI [2.21, 2.49]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - f_c30~1 (Median = 2.44, 95% CI [2.26, 2.59]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - s_br23~1 (Median = 1.76, 95% CI [1.64, 1.88]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - s_c30~1 (Median = 2.16, 95% CI [2.00, 2.34]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## - her2_pos~1 (Median = 0.44, 95% CI [0.32, 0.55]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 98.90% of being large (> 0.30)
## - comorb~1 (Median = 0.34, 95% CI [0.23, 0.45]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 74.40% of being large (> 0.30)
## - estadio_avz~1 (Median = 0.34, 95% CI [0.23, 0.44]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 76.17% of being large (> 0.30)
## - cv_gral~1 (Median = 0.81, 95% CI [0.16, 1.34]) has a 99.50% probability of being positive (> 0), 99.17% of being significant (> 0.05), and 95.07% of being large (> 0.30)
## - salud~1 (Median = 4.34, 95% CI [3.91, 4.72]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
## 
## Parameter                    |   Median |               95% CI | Direction | Significance (> |0.05|) | Large (> |0.30|)
## -----------------------------------------------------------------------------------------------------------------------
## funcionalidad=~f_c30         |     1.43 |         [1.15, 1.78] |      1.00 |                    1.00 |             1.00
## sintomas=~s_c30              |     2.26 |         [1.64, 3.35] |      1.00 |                    1.00 |             1.00
## biologicas=~comorb           |     0.10 |      [-12.27, 12.65] |      0.52 |                    0.51 |             0.47
## biologicas=~estadio_avz      |    -2.22 |      [-20.85, 17.86] |      0.57 |                    0.57 |             0.57
## cv_gral~salud                |     0.76 |         [0.64, 0.90] |      1.00 |                    1.00 |             1.00
## cv_gral~sintomas             |    -0.63 |      [-13.02, 11.77] |      0.61 |                    0.60 |             0.56
## cv_gral~funcionalidad        |     0.28 |        [-8.79, 7.54] |      0.57 |                    0.56 |             0.49
## salud~funcionalidad          |     2.58 |         [1.84, 3.33] |      1.00 |                    1.00 |             1.00
## funcionalidad~sintomas       |    -1.48 |       [-2.24, -0.99] |      1.00 |                    1.00 |             1.00
## sintomas~biologicas          |     1.45 |      [-15.02, 19.06] |      0.57 |                    0.57 |             0.56
## f_br23~~f_br23               |     0.15 |         [0.10, 0.21] |      1.00 |                    1.00 |         3.33e-04
## f_c30~~f_c30                 |     0.08 |         [0.02, 0.13] |      1.00 |                    0.84 |             0.00
## s_br23~~s_br23               |     0.20 |         [0.14, 0.28] |      1.00 |                    1.00 |             0.01
## s_c30~~s_c30                 |     0.08 |     [1.67e-06, 0.14] |      1.00 |                    0.76 |             0.00
## her2_pos~~her2_pos           |     0.25 |         [0.18, 0.34] |      1.00 |                    1.00 |             0.14
## comorb~~comorb               |     0.23 |         [0.16, 0.31] |      1.00 |                    1.00 |             0.05
## estadio_avz~~estadio_avz     |     0.20 |     [3.71e-07, 0.28] |      1.00 |                    0.92 |             0.02
## cv_gral~~cv_gral             |     0.44 |         [0.22, 0.66] |      1.00 |                    0.99 |             0.93
## salud~~salud                 |     1.58 |         [1.10, 2.16] |      1.00 |                    1.00 |             1.00
## funcionalidad~~funcionalidad | 7.39e-03 |     [1.19e-08, 0.05] |      1.00 |                    0.05 |             0.00
## sintomas~~sintomas           |     0.09 |     [9.46e-06, 0.17] |      1.00 |                    0.78 |             0.00
## biologicas~~biologicas       | 4.18e-04 | [2.30e-11, 4.61e-03] |      1.00 |                    0.00 |             0.00
## f_br23~1                     |     2.34 |         [2.21, 2.49] |      1.00 |                    1.00 |             1.00
## f_c30~1                      |     2.44 |         [2.26, 2.59] |      1.00 |                    1.00 |             1.00
## s_br23~1                     |     1.76 |         [1.64, 1.88] |      1.00 |                    1.00 |             1.00
## s_c30~1                      |     2.16 |         [2.00, 2.34] |      1.00 |                    1.00 |             1.00
## her2_pos~1                   |     0.44 |         [0.32, 0.55] |      1.00 |                    1.00 |             0.99
## comorb~1                     |     0.34 |         [0.23, 0.45] |      1.00 |                    1.00 |             0.74
## estadio_avz~1                |     0.34 |         [0.23, 0.44] |      1.00 |                    1.00 |             0.76
## cv_gral~1                    |     0.81 |         [0.16, 1.34] |      0.99 |                    0.99 |             0.95
## salud~1                      |     4.34 |         [3.91, 4.72] |      1.00 |                    1.00 |             1.00

Comparacion de todos los modelos vs modelo de referencia

comparison <- bayesfactor_models(fitbase,fitref_bio,fitbase_bio_ind,fitbase_bio_ind_econ,  denominator = fitref_bio_ind_sinedad)

comparison
## Bayes Factors for Model Comparison
## 
##     Model                       BF
## [1] fitbase              8.40e-130
## [2] fitref_bio           8.08e-169
## [3] fitbase_bio_ind      5.33e-168
## [4] fitbase_bio_ind_econ  0.00e+00
## 
## * Against Denominator: [5] fitref_bio_ind_sinedad
## *   Bayes Factor Type: marginal likelihoods (Laplace approximation)
mat_comp <- as.matrix(comparison)

heatmap(mat_comp)