Getting data

Data <- read.csv("~/2nd Sem/MULTIVARIATE DATA ANALYSIS/Activity-7/Data (1).txt")
str(Data)
## 'data.frame':    22 obs. of  9 variables:
##  $ Company     : chr  "Arizona " "Boston " "Central " "Commonwealth" ...
##  $ Fixed_charge: num  1.06 0.89 1.43 1.02 1.49 1.32 1.22 1.1 1.34 1.12 ...
##  $ RoR         : num  9.2 10.3 15.4 11.2 8.8 13.5 12.2 9.2 13 12.4 ...
##  $ Cost        : int  151 202 113 168 192 111 175 245 168 197 ...
##  $ Load        : num  54.4 57.9 53 56 51.2 60 67.6 57 60.4 53 ...
##  $ D.Demand    : num  1.6 2.2 3.4 0.3 1 -2.2 2.2 3.3 7.2 2.7 ...
##  $ Sales       : int  9077 5088 9212 6423 3300 11127 7642 13082 8406 6455 ...
##  $ Nuclear     : num  0 25.3 0 34.3 15.6 22.5 0 0 0 39.2 ...
##  $ Fuel_Cost   : num  0.628 1.555 1.058 0.7 2.044 ...
head(Data)
##        Company Fixed_charge  RoR Cost Load D.Demand Sales Nuclear Fuel_Cost
## 1     Arizona          1.06  9.2  151 54.4      1.6  9077     0.0     0.628
## 2      Boston          0.89 10.3  202 57.9      2.2  5088    25.3     1.555
## 3     Central          1.43 15.4  113 53.0      3.4  9212     0.0     1.058
## 4 Commonwealth         1.02 11.2  168 56.0      0.3  6423    34.3     0.700
## 5    Con Ed NY         1.49  8.8  192 51.2      1.0  3300    15.6     2.044
## 6     Florida          1.32 13.5  111 60.0     -2.2 11127    22.5     1.241
pairs(Data[2:9])

Scatter plot

plot(Data$Fuel_Cost~ Data$Sales, data = Data)
with(Data,text(Data$Fuel_Cost ~ Data$Sales, labels=Data$Company,pos=4))

Normalize

Normalization is very important in cluster analysis, sometimes we have variables in different scales, need to normalized based on scale function before clustering the data sets. Normalization is mandatory for cluster analysis.

z <- Data[,-c(1,1)]
means <- apply(z,2,mean)
sds <- apply(z,2,sd)
nor <- scale(z,center=means,scale=sds)

Calculate distance matrix

distance = dist(nor)

Hierarchical agglomerative clustering

Data.hclust = hclust(distance)
plot(Data.hclust)

plot(Data.hclust,labels=Data$Company,main='Default from hclust')

plot(Data.hclust,hang=-1, labels=Data$Company,main='Default from hclust')

Hierarchical agglomerative clustering using “average” linkage

Data.hclust<-hclust(distance,method="average") 
plot(Data.hclust,hang=-1) 

Cluster membership

member = cutree(Data.hclust,3)
table(member)
## member
##  1  2  3 
## 18  1  3
member
##  [1] 1 1 1 1 2 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1

Characterizing clusters

aggregate(nor,list(member),mean)
##   Group.1 Fixed_charge        RoR       Cost       Load   D.Demand      Sales
## 1       1  -0.01313873  0.1868016 -0.2552757  0.1520422 -0.1253617 -0.2215631
## 2       2   2.03732429 -0.8628882  0.5782326 -1.2950193 -0.7186431 -1.5814284
## 3       3  -0.60027572 -0.8331800  1.3389101 -0.4805802  0.9917178  1.8565214
##      Nuclear   Fuel_Cost
## 1  0.1071944  0.06692555
## 2  0.2143888  1.69263800
## 3 -0.7146294 -0.96576599
aggregate(Data[,-c(1,1)],list(member),mean)
##   Group.1 Fixed_charge       RoR     Cost     Load D.Demand    Sales Nuclear
## 1       1     1.111667 11.155556 157.6667 57.65556 2.850000  8127.50    13.8
## 2       2     1.490000  8.800000 192.0000 51.20000 1.000000  3300.00    15.6
## 3       3     1.003333  8.866667 223.3333 54.83333 6.333333 15504.67     0.0
##   Fuel_Cost
## 1 1.1399444
## 2 2.0440000
## 3 0.5656667

Silhouette Plot

library(cluster)
plot(silhouette(cutree(Data.hclust,3), distance))

Based on the above plot, if any bar comes as negative side then we can conclude particular data is an outlier can remove from our analysis.

Scree Plot

Scree plot will allow us to see the variabilities in clusters, suppose if we increase the number of clusters within-group sum of squares will come down.

wss <- (nrow(nor)-1)*sum(apply(nor,2,var))
for (i in 2:20) wss[i] <- sum(kmeans(nor, centers=i)$withinss)
plot(1:20, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares")

So in this data ideal number of clusters should be 3, 4, or 5.

K-means clustering

set.seed(123)
kc<-kmeans(nor,3)
kc
## K-means clustering with 3 clusters of sizes 7, 5, 10
## 
## Cluster means:
##   Fixed_charge         RoR       Cost       Load    D.Demand      Sales
## 1  -0.23896065 -0.65917479  0.2556961  0.7992527 -0.05435116 -0.8604593
## 2   0.51980100  1.02655333 -1.2959473 -0.5104679 -0.83409247  0.5120458
## 3  -0.09262805 -0.05185431  0.4689864 -0.3042429  0.45509205  0.3462986
##      Nuclear  Fuel_Cost
## 1 -0.2884040  1.2497562
## 2 -0.4466434 -0.3174391
## 3  0.4252045 -0.7161098
## 
## Clustering vector:
##  [1] 3 1 2 3 1 2 1 3 3 3 3 1 3 2 1 3 1 2 2 3 1 3
## 
## Within cluster sum of squares by cluster:
## [1] 34.16481 15.15613 57.53424
##  (between_SS / total_SS =  36.4 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
ot<-nor
datadistshortset<-dist(ot,method = "euclidean")
hc1 <- hclust(datadistshortset, method = "complete" )
pamvshortset <- pam(datadistshortset,4, diss = FALSE)
clusplot(pamvshortset, shade = FALSE,labels=2,col.clus="blue",col.p="red",span=FALSE,main="Cluster Mapping",cex=1.2)

Cluster Analysis in R

library(factoextra) 
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
k2 <- kmeans(nor, centers = 3, nstart = 25)

We can execute k-means in R with the help of kmeans function.

The kmeans function also has a nstart option that attempts multiple initial configurations and reports on the best output.

For example, adding nstart = 25 will generate 25 initial configurations. This approach is often recommended.

str(k2)
## List of 9
##  $ cluster     : int [1:22] 3 2 3 3 2 3 2 1 3 3 ...
##  $ centers     : num [1:3, 1:8] -0.6 -0.239 0.289 -0.833 -0.659 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:3] "1" "2" "3"
##   .. ..$ : chr [1:8] "Fixed_charge" "RoR" "Cost" "Load" ...
##  $ totss       : num 168
##  $ withinss    : num [1:3] 9.53 34.16 58.01
##  $ tot.withinss: num 102
##  $ betweenss   : num 66.3
##  $ size        : int [1:3] 3 7 12
##  $ iter        : int 2
##  $ ifault      : int 0
##  - attr(*, "class")= chr "kmeans"
fviz_cluster(k2, data = nor)

We can also view our kmeans results by using fviz_cluster. This provides a beautiful illustration of the clusters.

If there are more than two dimensions (variables) fviz_cluster will perform principal component analysis (PCA) and plot the data points according to the first two principal components that explain the majority of the variance.

Optimal Clusters

We can find out optimal clusters in R with the following code. The results suggest that 4 is the optimal number of clusters as it appears to be the bend in the knee.

The same we executed above with traditional coding’s.

fviz_nbclust(nor, kmeans, method = "wss")

Average Silhouette Method

The average silhouette approach measures the quality of a clustering. It determines how well each observation lies within its cluster.

A high average silhouette width indicates a good clustering. The average silhouette method computes the average silhouette of observations for different values of k.

We can execute the same based on the below code

fviz_nbclust(nor, kmeans, method = "silhouette")

Gap Statistic Method

This approach can be utilized in any type of clustering method (i.e. K-means clustering, hierarchical clustering).

The gap statistic compares the total intracluster variation for different values of k with their expected values under null reference distribution of the data.

gap_stat <- clusGap(nor, FUN = kmeans, nstart = 25,
                    K.max = 10, B = 50)
fviz_gap_stat(gap_stat)

In this method also optimal number of cluster is 5.

Conclusion K-means clustering is a very simple and fast algorithm and it can efficiently deal with very large data sets.

K-means clustering needs to provide a number of clusters as an input, Hierarchical clustering is an alternative approach that does not require that we commit to a particular choice of clusters.

Hierarchical clustering has an added advantage over K-means clustering because it has an attractive tree-based representation of the observations (dendrogram).