Dosen Pengampu : Prof. Dr. Suhartono, Mkom

UIN Maulana Malik Ibrahim Malang

library(readxl)
datainflowsumatera <- read_excel(path = "sumatera.xlsx")
datainflowsumatera
## # A tibble: 10 x 10
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh             2308   2620  36337   4570   4710   5775   5514   5799   7509
##  2 Sumatera Utara  23238  25981  18120   3050  30254  34427  35617  41769  47112
##  3 Sumatera Barat   9385  11192  14056   1410  13309  14078  15312  15058  14750
##  4 Riau             3012   4447   8933   6360   7156   8211   8553  10730  10915
##  5 Kep. Riau        1426   2236   3378   2560   3218   4317   4412   5134   6077
##  6 Jambi            1868   2138   3047   5170   4978   4398   4404   5657   6486
##  7 Sumatera Sela~   7820   9126   8647  10000  10797  12752  13075  14267  14812
##  8 Bengkulu         1153   1201   2378   3260   2791   2889   3620   4150   5789
##  9 Lampung          7690   6969   3474   9450   8160   9373  12078  13415  17046
## 10 Kep. Bangka B~      0      0      0   1370   1177   1544   1164   1517   3265
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.6     v purrr   0.3.4
## v tibble  3.1.7     v dplyr   1.0.9
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
sumatera2011 <- select(datainflowsumatera, '2011')
sumatera2011
## # A tibble: 10 x 1
##    `2011`
##     <dbl>
##  1   2308
##  2  23238
##  3   9385
##  4   3012
##  5   1426
##  6   1868
##  7   7820
##  8   1153
##  9   7690
## 10      0
library(tidyverse)
sumateranon2011 <- select(datainflowsumatera, -'2011')
sumateranon2011
## # A tibble: 10 x 9
##    Propinsi             `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>                 <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh                   2620  36337   4570   4710   5775   5514   5799   7509
##  2 Sumatera Utara        25981  18120   3050  30254  34427  35617  41769  47112
##  3 Sumatera Barat        11192  14056   1410  13309  14078  15312  15058  14750
##  4 Riau                   4447   8933   6360   7156   8211   8553  10730  10915
##  5 Kep. Riau              2236   3378   2560   3218   4317   4412   5134   6077
##  6 Jambi                  2138   3047   5170   4978   4398   4404   5657   6486
##  7 Sumatera Selatan       9126   8647  10000  10797  12752  13075  14267  14812
##  8 Bengkulu               1201   2378   3260   2791   2889   3620   4150   5789
##  9 Lampung                6969   3474   9450   8160   9373  12078  13415  17046
## 10 Kep. Bangka Belitung      0      0   1370   1177   1544   1164   1517   3265
sumatera2012 <- datainflowsumatera %>% select('2012')
sumatera2012
## # A tibble: 10 x 1
##    `2012`
##     <dbl>
##  1   2620
##  2  25981
##  3  11192
##  4   4447
##  5   2236
##  6   2138
##  7   9126
##  8   1201
##  9   6969
## 10      0
library(dplyr)
sumateratahun <- datainflowsumatera %>% rename('2010' = '2011')
head(sumateratahun)
## # A tibble: 6 x 10
##   Propinsi       `2010` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##   <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Aceh             2308   2620  36337   4570   4710   5775   5514   5799   7509
## 2 Sumatera Utara  23238  25981  18120   3050  30254  34427  35617  41769  47112
## 3 Sumatera Barat   9385  11192  14056   1410  13309  14078  15312  15058  14750
## 4 Riau             3012   4447   8933   6360   7156   8211   8553  10730  10915
## 5 Kep. Riau        1426   2236   3378   2560   3218   4317   4412   5134   6077
## 6 Jambi            1868   2138   3047   5170   4978   4398   4404   5657   6486
library(dplyr)
sumateraaceh <- datainflowsumatera %>%
    filter(Propinsi == 'Aceh') %>%
    select('2011','2012')
sumateraaceh
## # A tibble: 1 x 2
##   `2011` `2012`
##    <dbl>  <dbl>
## 1   2308   2620
library(dplyr)
sumateraup1 <- datainflowsumatera %>%
  filter(Propinsi == 'Aceh', Propinsi == 'Bengkulu') %>%
  select('2011','2012')
sumateraup1
## # A tibble: 0 x 2
## # ... with 2 variables: 2011 <dbl>, 2012 <dbl>
str(datainflowsumatera)
## tibble [10 x 10] (S3: tbl_df/tbl/data.frame)
##  $ Propinsi: chr [1:10] "Aceh" "Sumatera Utara" "Sumatera Barat" "Riau" ...
##  $ 2011    : num [1:10] 2308 23238 9385 3012 1426 ...
##  $ 2012    : num [1:10] 2620 25981 11192 4447 2236 ...
##  $ 2013    : num [1:10] 36337 18120 14056 8933 3378 ...
##  $ 2014    : num [1:10] 4570 3050 1410 6360 2560 5170 10000 3260 9450 1370
##  $ 2015    : num [1:10] 4710 30254 13309 7156 3218 ...
##  $ 2016    : num [1:10] 5775 34427 14078 8211 4317 ...
##  $ 2017    : num [1:10] 5514 35617 15312 8553 4412 ...
##  $ 2018    : num [1:10] 5799 41769 15058 10730 5134 ...
##  $ 2019    : num [1:10] 7509 47112 14750 10915 6077 ...
str(datainflowsumatera %>% group_by(Propinsi))
## grouped_df [10 x 10] (S3: grouped_df/tbl_df/tbl/data.frame)
##  $ Propinsi: chr [1:10] "Aceh" "Sumatera Utara" "Sumatera Barat" "Riau" ...
##  $ 2011    : num [1:10] 2308 23238 9385 3012 1426 ...
##  $ 2012    : num [1:10] 2620 25981 11192 4447 2236 ...
##  $ 2013    : num [1:10] 36337 18120 14056 8933 3378 ...
##  $ 2014    : num [1:10] 4570 3050 1410 6360 2560 5170 10000 3260 9450 1370
##  $ 2015    : num [1:10] 4710 30254 13309 7156 3218 ...
##  $ 2016    : num [1:10] 5775 34427 14078 8211 4317 ...
##  $ 2017    : num [1:10] 5514 35617 15312 8553 4412 ...
##  $ 2018    : num [1:10] 5799 41769 15058 10730 5134 ...
##  $ 2019    : num [1:10] 7509 47112 14750 10915 6077 ...
##  - attr(*, "groups")= tibble [10 x 2] (S3: tbl_df/tbl/data.frame)
##   ..$ Propinsi: chr [1:10] "Aceh" "Bengkulu" "Jambi" "Kep. Bangka Belitung" ...
##   ..$ .rows   : list<int> [1:10] 
##   .. ..$ : int 1
##   .. ..$ : int 8
##   .. ..$ : int 6
##   .. ..$ : int 10
##   .. ..$ : int 5
##   .. ..$ : int 9
##   .. ..$ : int 4
##   .. ..$ : int 3
##   .. ..$ : int 7
##   .. ..$ : int 2
##   .. ..@ ptype: int(0) 
##   ..- attr(*, ".drop")= logi TRUE
sumateraup3 <- datainflowsumatera %>%
    group_by(Propinsi)
sumateraup3
## # A tibble: 10 x 10
## # Groups:   Propinsi [10]
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh             2308   2620  36337   4570   4710   5775   5514   5799   7509
##  2 Sumatera Utara  23238  25981  18120   3050  30254  34427  35617  41769  47112
##  3 Sumatera Barat   9385  11192  14056   1410  13309  14078  15312  15058  14750
##  4 Riau             3012   4447   8933   6360   7156   8211   8553  10730  10915
##  5 Kep. Riau        1426   2236   3378   2560   3218   4317   4412   5134   6077
##  6 Jambi            1868   2138   3047   5170   4978   4398   4404   5657   6486
##  7 Sumatera Sela~   7820   9126   8647  10000  10797  12752  13075  14267  14812
##  8 Bengkulu         1153   1201   2378   3260   2791   2889   3620   4150   5789
##  9 Lampung          7690   6969   3474   9450   8160   9373  12078  13415  17046
## 10 Kep. Bangka B~      0      0      0   1370   1177   1544   1164   1517   3265
datainflowsumatera %>%
    filter(Propinsi == 'Aceh') %>%
    count('2011', sort = TRUE)
## # A tibble: 1 x 2
##   `"2011"`     n
##   <chr>    <int>
## 1 2011         1
sumateraacehup1 <- datainflowsumatera %>%
    mutate('2010' = datainflowsumatera$'2011'/2)
sumateraacehup1 
## # A tibble: 10 x 11
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh             2308   2620  36337   4570   4710   5775   5514   5799   7509
##  2 Sumatera Utara  23238  25981  18120   3050  30254  34427  35617  41769  47112
##  3 Sumatera Barat   9385  11192  14056   1410  13309  14078  15312  15058  14750
##  4 Riau             3012   4447   8933   6360   7156   8211   8553  10730  10915
##  5 Kep. Riau        1426   2236   3378   2560   3218   4317   4412   5134   6077
##  6 Jambi            1868   2138   3047   5170   4978   4398   4404   5657   6486
##  7 Sumatera Sela~   7820   9126   8647  10000  10797  12752  13075  14267  14812
##  8 Bengkulu         1153   1201   2378   3260   2791   2889   3620   4150   5789
##  9 Lampung          7690   6969   3474   9450   8160   9373  12078  13415  17046
## 10 Kep. Bangka B~      0      0      0   1370   1177   1544   1164   1517   3265
## # ... with 1 more variable: `2010` <dbl>
ggplot(data = datainflowsumatera, mapping = aes(x = Propinsi, y = `2011`)) +
  geom_point()