ggplot(mtcars, aes(cyl, mpg))+
geom_col() +
scale_y_continuous(expand=c(0,0))library(ggplot2)
set.seed(97531)
data1 <- data <- data.frame(values = c(rnorm(1000, 5, 3),
rnorm(1000, 7, 2),
runif(1000, 8, 11)),
group = c(rep("A", 1000),
rep("B", 1000),
rep("C", 1000)))
ggplot(data1, aes(x = values, y=100*(..count..)/sum(..count..), fill = group)) +
geom_histogram(position = "identity", alpha = 0.3, bins = 50)+
ylab("percent")ggplot(data,aes(x=values)) +
geom_histogram(data=subset(data,group == 'A'),fill = "red", alpha = 0.2) +
geom_histogram(data=subset(data, group == 'B'),fill = "blue", alpha = 0.2) +
geom_histogram(data=subset(data, group == 'C'),fill = "green", alpha = 0.2)## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
library(tidyverse)
df <- data.frame(E2A = c(1, 1, 2, 2, 1, 1, 2, 1, 2, NA),
E4A = c("P", "P", "P", NA, "G", "G", "H", "H", "H", "H"),
E5A = c("R", "R", "R", "R", "R", "O", "O", "O", "O", "O"),
Tooth = c(rep("P3", 9), NA))
ggplot(data = remove_missing(df, na.rm = TRUE, vars = c("E2A", "E4A", "E5A"))) + # remove NA's for cleaner plot
aes(x = E4A, fill = E5A) +
geom_bar(position = "fill") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = "", y = "", fill = "Canal configurations") +
theme_bw(base_size = 14) +
theme(legend.position = "top") +
theme(axis.text.y = element_text(size = 8)) +
theme(axis.text.x = element_text(size = 10)) +
guides(fill = guide_legend(nrow = 1, byrow = TRUE)) +
facet_wrap(.~ E2A, scales = "free") +
geom_label(data = . %>%
count(E2A, E4A, E5A, Tooth),
aes(y = n, label = n),size=5,
position = position_fill(0.5),
show.legend = FALSE)| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|---|---|---|---|
| 5.1 | 3.5 | 1.4 | 0.2 | setosa |
| 4.9 | 3.0 | 1.4 | 0.2 | setosa |
| 4.7 | 3.2 | 1.3 | 0.2 | setosa |
| 4.6 | 3.1 | 1.5 | 0.2 | setosa |
| 5.0 | 3.6 | 1.4 | 0.2 | setosa |
| 5.4 | 3.9 | 1.7 | 0.4 | setosa |
| 4.6 | 3.4 | 1.4 | 0.3 | setosa |
| 5.0 | 3.4 | 1.5 | 0.2 | setosa |
| 4.4 | 2.9 | 1.4 | 0.2 | setosa |
| 4.9 | 3.1 | 1.5 | 0.1 | setosa |
| 5.4 | 3.7 | 1.5 | 0.2 | setosa |
| 4.8 | 3.4 | 1.6 | 0.2 | setosa |
| 4.8 | 3.0 | 1.4 | 0.1 | setosa |
| 4.3 | 3.0 | 1.1 | 0.1 | setosa |
| 5.8 | 4.0 | 1.2 | 0.2 | setosa |
| 5.7 | 4.4 | 1.5 | 0.4 | setosa |
| 5.4 | 3.9 | 1.3 | 0.4 | setosa |
| 5.1 | 3.5 | 1.4 | 0.3 | setosa |
| 5.7 | 3.8 | 1.7 | 0.3 | setosa |
| 5.1 | 3.8 | 1.5 | 0.3 | setosa |
| 5.4 | 3.4 | 1.7 | 0.2 | setosa |
| 5.1 | 3.7 | 1.5 | 0.4 | setosa |
| 4.6 | 3.6 | 1.0 | 0.2 | setosa |
| 5.1 | 3.3 | 1.7 | 0.5 | setosa |
| 4.8 | 3.4 | 1.9 | 0.2 | setosa |
| 5.0 | 3.0 | 1.6 | 0.2 | setosa |
| 5.0 | 3.4 | 1.6 | 0.4 | setosa |
| 5.2 | 3.5 | 1.5 | 0.2 | setosa |
| 5.2 | 3.4 | 1.4 | 0.2 | setosa |
| 4.7 | 3.2 | 1.6 | 0.2 | setosa |
| 4.8 | 3.1 | 1.6 | 0.2 | setosa |
| 5.4 | 3.4 | 1.5 | 0.4 | setosa |
| 5.2 | 4.1 | 1.5 | 0.1 | setosa |
| 5.5 | 4.2 | 1.4 | 0.2 | setosa |
| 4.9 | 3.1 | 1.5 | 0.2 | setosa |
| 5.0 | 3.2 | 1.2 | 0.2 | setosa |
| 5.5 | 3.5 | 1.3 | 0.2 | setosa |
| 4.9 | 3.6 | 1.4 | 0.1 | setosa |
| 4.4 | 3.0 | 1.3 | 0.2 | setosa |
| 5.1 | 3.4 | 1.5 | 0.2 | setosa |
| 5.0 | 3.5 | 1.3 | 0.3 | setosa |
| 4.5 | 2.3 | 1.3 | 0.3 | setosa |
| 4.4 | 3.2 | 1.3 | 0.2 | setosa |
| 5.0 | 3.5 | 1.6 | 0.6 | setosa |
| 5.1 | 3.8 | 1.9 | 0.4 | setosa |
| 4.8 | 3.0 | 1.4 | 0.3 | setosa |
| 5.1 | 3.8 | 1.6 | 0.2 | setosa |
| 4.6 | 3.2 | 1.4 | 0.2 | setosa |
| 5.3 | 3.7 | 1.5 | 0.2 | setosa |
| 5.0 | 3.3 | 1.4 | 0.2 | setosa |
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | |
|---|---|---|---|---|---|
| 51 | 7.0 | 3.2 | 4.7 | 1.4 | versicolor |
| 52 | 6.4 | 3.2 | 4.5 | 1.5 | versicolor |
| 53 | 6.9 | 3.1 | 4.9 | 1.5 | versicolor |
| 54 | 5.5 | 2.3 | 4.0 | 1.3 | versicolor |
| 55 | 6.5 | 2.8 | 4.6 | 1.5 | versicolor |
| 56 | 5.7 | 2.8 | 4.5 | 1.3 | versicolor |
| 57 | 6.3 | 3.3 | 4.7 | 1.6 | versicolor |
| 58 | 4.9 | 2.4 | 3.3 | 1.0 | versicolor |
| 59 | 6.6 | 2.9 | 4.6 | 1.3 | versicolor |
| 60 | 5.2 | 2.7 | 3.9 | 1.4 | versicolor |
| 61 | 5.0 | 2.0 | 3.5 | 1.0 | versicolor |
| 62 | 5.9 | 3.0 | 4.2 | 1.5 | versicolor |
| 63 | 6.0 | 2.2 | 4.0 | 1.0 | versicolor |
| 64 | 6.1 | 2.9 | 4.7 | 1.4 | versicolor |
| 65 | 5.6 | 2.9 | 3.6 | 1.3 | versicolor |
| 66 | 6.7 | 3.1 | 4.4 | 1.4 | versicolor |
| 67 | 5.6 | 3.0 | 4.5 | 1.5 | versicolor |
| 68 | 5.8 | 2.7 | 4.1 | 1.0 | versicolor |
| 69 | 6.2 | 2.2 | 4.5 | 1.5 | versicolor |
| 70 | 5.6 | 2.5 | 3.9 | 1.1 | versicolor |
| 71 | 5.9 | 3.2 | 4.8 | 1.8 | versicolor |
| 72 | 6.1 | 2.8 | 4.0 | 1.3 | versicolor |
| 73 | 6.3 | 2.5 | 4.9 | 1.5 | versicolor |
| 74 | 6.1 | 2.8 | 4.7 | 1.2 | versicolor |
| 75 | 6.4 | 2.9 | 4.3 | 1.3 | versicolor |
| 76 | 6.6 | 3.0 | 4.4 | 1.4 | versicolor |
| 77 | 6.8 | 2.8 | 4.8 | 1.4 | versicolor |
| 78 | 6.7 | 3.0 | 5.0 | 1.7 | versicolor |
| 79 | 6.0 | 2.9 | 4.5 | 1.5 | versicolor |
| 80 | 5.7 | 2.6 | 3.5 | 1.0 | versicolor |
| 81 | 5.5 | 2.4 | 3.8 | 1.1 | versicolor |
| 82 | 5.5 | 2.4 | 3.7 | 1.0 | versicolor |
| 83 | 5.8 | 2.7 | 3.9 | 1.2 | versicolor |
| 84 | 6.0 | 2.7 | 5.1 | 1.6 | versicolor |
| 85 | 5.4 | 3.0 | 4.5 | 1.5 | versicolor |
| 86 | 6.0 | 3.4 | 4.5 | 1.6 | versicolor |
| 87 | 6.7 | 3.1 | 4.7 | 1.5 | versicolor |
| 88 | 6.3 | 2.3 | 4.4 | 1.3 | versicolor |
| 89 | 5.6 | 3.0 | 4.1 | 1.3 | versicolor |
| 90 | 5.5 | 2.5 | 4.0 | 1.3 | versicolor |
| 91 | 5.5 | 2.6 | 4.4 | 1.2 | versicolor |
| 92 | 6.1 | 3.0 | 4.6 | 1.4 | versicolor |
| 93 | 5.8 | 2.6 | 4.0 | 1.2 | versicolor |
| 94 | 5.0 | 2.3 | 3.3 | 1.0 | versicolor |
| 95 | 5.6 | 2.7 | 4.2 | 1.3 | versicolor |
| 96 | 5.7 | 3.0 | 4.2 | 1.2 | versicolor |
| 97 | 5.7 | 2.9 | 4.2 | 1.3 | versicolor |
| 98 | 6.2 | 2.9 | 4.3 | 1.3 | versicolor |
| 99 | 5.1 | 2.5 | 3.0 | 1.1 | versicolor |
| 100 | 5.7 | 2.8 | 4.1 | 1.3 | versicolor |
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | |
|---|---|---|---|---|---|
| 101 | 6.3 | 3.3 | 6.0 | 2.5 | virginica |
| 102 | 5.8 | 2.7 | 5.1 | 1.9 | virginica |
| 103 | 7.1 | 3.0 | 5.9 | 2.1 | virginica |
| 104 | 6.3 | 2.9 | 5.6 | 1.8 | virginica |
| 105 | 6.5 | 3.0 | 5.8 | 2.2 | virginica |
| 106 | 7.6 | 3.0 | 6.6 | 2.1 | virginica |
| 107 | 4.9 | 2.5 | 4.5 | 1.7 | virginica |
| 108 | 7.3 | 2.9 | 6.3 | 1.8 | virginica |
| 109 | 6.7 | 2.5 | 5.8 | 1.8 | virginica |
| 110 | 7.2 | 3.6 | 6.1 | 2.5 | virginica |
| 111 | 6.5 | 3.2 | 5.1 | 2.0 | virginica |
| 112 | 6.4 | 2.7 | 5.3 | 1.9 | virginica |
| 113 | 6.8 | 3.0 | 5.5 | 2.1 | virginica |
| 114 | 5.7 | 2.5 | 5.0 | 2.0 | virginica |
| 115 | 5.8 | 2.8 | 5.1 | 2.4 | virginica |
| 116 | 6.4 | 3.2 | 5.3 | 2.3 | virginica |
| 117 | 6.5 | 3.0 | 5.5 | 1.8 | virginica |
| 118 | 7.7 | 3.8 | 6.7 | 2.2 | virginica |
| 119 | 7.7 | 2.6 | 6.9 | 2.3 | virginica |
| 120 | 6.0 | 2.2 | 5.0 | 1.5 | virginica |
| 121 | 6.9 | 3.2 | 5.7 | 2.3 | virginica |
| 122 | 5.6 | 2.8 | 4.9 | 2.0 | virginica |
| 123 | 7.7 | 2.8 | 6.7 | 2.0 | virginica |
| 124 | 6.3 | 2.7 | 4.9 | 1.8 | virginica |
| 125 | 6.7 | 3.3 | 5.7 | 2.1 | virginica |
| 126 | 7.2 | 3.2 | 6.0 | 1.8 | virginica |
| 127 | 6.2 | 2.8 | 4.8 | 1.8 | virginica |
| 128 | 6.1 | 3.0 | 4.9 | 1.8 | virginica |
| 129 | 6.4 | 2.8 | 5.6 | 2.1 | virginica |
| 130 | 7.2 | 3.0 | 5.8 | 1.6 | virginica |
| 131 | 7.4 | 2.8 | 6.1 | 1.9 | virginica |
| 132 | 7.9 | 3.8 | 6.4 | 2.0 | virginica |
| 133 | 6.4 | 2.8 | 5.6 | 2.2 | virginica |
| 134 | 6.3 | 2.8 | 5.1 | 1.5 | virginica |
| 135 | 6.1 | 2.6 | 5.6 | 1.4 | virginica |
| 136 | 7.7 | 3.0 | 6.1 | 2.3 | virginica |
| 137 | 6.3 | 3.4 | 5.6 | 2.4 | virginica |
| 138 | 6.4 | 3.1 | 5.5 | 1.8 | virginica |
| 139 | 6.0 | 3.0 | 4.8 | 1.8 | virginica |
| 140 | 6.9 | 3.1 | 5.4 | 2.1 | virginica |
| 141 | 6.7 | 3.1 | 5.6 | 2.4 | virginica |
| 142 | 6.9 | 3.1 | 5.1 | 2.3 | virginica |
| 143 | 5.8 | 2.7 | 5.1 | 1.9 | virginica |
| 144 | 6.8 | 3.2 | 5.9 | 2.3 | virginica |
| 145 | 6.7 | 3.3 | 5.7 | 2.5 | virginica |
| 146 | 6.7 | 3.0 | 5.2 | 2.3 | virginica |
| 147 | 6.3 | 2.5 | 5.0 | 1.9 | virginica |
| 148 | 6.5 | 3.0 | 5.2 | 2.0 | virginica |
| 149 | 6.2 | 3.4 | 5.4 | 2.3 | virginica |
| 150 | 5.9 | 3.0 | 5.1 | 1.8 | virginica |
library(packcircles)## Warning: Paket 'packcircles' wurde unter R Version 4.1.3 erstellt
#install.packages("packcircles")
library(ggplot2)
library(ggforce)
names <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N",
"O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "AA", "AB", "AC", "AD",
"AE", "AF", "AG", "AH", "AI", "AJ", "AK", "AL", "AM", "AN", "AO", "AP", "AQ", "AR",
"AS", "AT", "AU", "AV", "AW", "AX", "AY", "AZ", "BA", "BB", "BC", "BD", "BE", "BF",
"BG", "BH", "BI", "BJ", "BK", "BL", "BM", "BN", "BO", "BP", "BQ", "BR", "BS", "BT",
"BU", "BV", "BW", "BX", "BY", "BZ", "CA", "CB", "CC", "CD", "CE", "CF", "CG", "CH",
"CI", "CJ", "CK", "CL", "CM", "CN", "CO", "CP", "CQ", "CR", "CS")
cts <- c(620, 343, 165, 121, 107, 106, 104, 88, 83, 59, 57, 56, 49, 45, 44, 37, 37,
37, 37, 35, 31, 31, 29, 27, 24, 23, 23, 22, 21, 21, 20, 20, 17, 17, 16, 16, 15, 15,
15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 7, 6, 5, 5, 5, 5, 5,
4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1)
testdat <- data.frame(names, cts)
testdat %>%
mutate(x = rep(1:10, each = 10)[seq(nrow(.))],
y = rep(1:10, 10)[seq(nrow(.))]) %>%
ggplot(aes(x, y, fill = log(cts))) +
geom_tile(width = 0.8, height = 0.8) +
geom_text(aes(label = names), color = "white") +
scale_fill_viridis_c(option = "E") +
coord_equal() +
theme_void()testdat <- cbind(testdat, circleRepelLayout(testdat$cts)$layout)
ggplot(testdat, aes(x0 = x, y0 = y, fill = radius)) +
geom_circle(aes(r = radius)) +
geom_text(aes(x, y, label = names, size = order(radius))) +
coord_equal() +
theme_void() +
scale_fill_distiller(palette = "Pastel1") +
theme(legend.position = "none")# https://stackoverflow.com/questions/71504649/ggvenndiagram-values-inside-circles-by-changing-data-do-not-change
dd<-read.table (text=" Out1 Out2
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes Yes
Yes Yes
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes NO
Yes Yes
Yes Yes
Yes Yes
", header=TRUE)
library(ggVennDiagram)## Warning: Paket 'ggVennDiagram' wurde unter R Version 4.1.3 erstellt
my_list <- list(Out1 = which(dd$Out1 == "Yes"),
Out2 = which(dd$Out2 == "Yes"))
ggVennDiagram(my_list, label_alpha = 0) +
ggplot2::scale_fill_gradient(low = "white", high = "green")df <- data.frame(concentratie_G6P = c(0, 1.88, 3.75, 7.5, 15, 30),
Inhibitor_Cu_ionen = c(0.0019, 0.0448, 0.0134, 0.047, 0.0285, 0.0324),
Inhibitor_glucosamine = c(0, 0.0362, 0.0467, 0.0397, 0.0532, 0.0433),
Zonder_inhibitor = c(0, 0.0185, 0.0175, 0.0796, 0.0541, 0.0217))
df %>%
ggplot() +
geom_line(aes(x = concentratie_G6P, y = Inhibitor_Cu_ionen, color = "blue")) +
geom_line(aes(x = concentratie_G6P, y = Inhibitor_glucosamine, color = "red")) +
geom_line(aes(x = concentratie_G6P, y = Zonder_inhibitor, color = "green")) +
scale_color_manual(labels = c("Inhibitor Cu-ionen", "Inhibtor glucosamine", "Zonder inhibtor"), values=c("blue", "red", "green")) +
xlab("Concetratie") +
ylab("Value") +
ggtitle("Your plot") +
theme_minimal()Date = c("2010-01", "2010-02", "2010-03","2010-04", "2011-01", "2011-02", "2011-03", "2011-04")
year = c(2010, 2010, 2010, 2010, 2011, 2011, 2011, 2011)
month = c(01, 02, 03, 04, 01, 02, 03, 04)
tmean = c(15, 20, 30, 25, 18, 23, 33, 28)
df = data.frame(tmean, Date, year, month)
ggplot(df, aes(month, tmean, color = as.character(year))) +
geom_line() +
labs(color = "Year")# https://stackoverflow.com/questions/71803504/how-to-reduce-space-when-using-geom-text-paste-and-n
library(tidyverse)
Plot_DF.2.2 <- structure(list(V = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L
), .Label = c("Unvaccinated", "Vaccinated"), class = "factor"),
SN = structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), .Label = c("0",
"1", "2", "3"), class = "factor"), Freq = c(323L, 221L, 144L,
84L, 101L, 222L, 398L, 976L), Total = c(772L, 772L, 772L,
772L, 1697L, 1697L, 1697L, 1697L), Percent = c(41.839378238342,
28.6269430051813, 18.6528497409326, 10.880829015544, 5.95167943429582,
13.0819092516205, 23.4531526222746, 57.5132586918091), Proportion = c(0.41839378238342,
0.286269430051813, 0.186528497409326, 0.10880829015544, 0.0595167943429582,
0.130819092516205, 0.234531526222746, 0.575132586918091),
SE = c(0.0177540926189768, 0.0162684428410836, 0.0140195836873372,
0.0112074784287869, 0.00574320564141126, 0.00818558521265792,
0.0102854512025968, 0.0119996831224857), margin.error = c(0.0348520936473382,
0.0319356953668124, 0.0275210822684065, 0.0220007913743278,
0.0112645151307286, 0.0160549097906227, 0.0201735107415641,
0.023535743021727), lower = c(0.383541688736081, 0.254333734685001,
0.15900741514092, 0.0868074987811126, 0.0482522792122296,
0.114764182725582, 0.214358015481182, 0.551596843896364),
upper = c(0.453245876030758, 0.318205125418626, 0.214049579677733,
0.130809081529768, 0.0707813094736867, 0.146874002306828,
0.25470503696431, 0.598668329939818)), row.names = c(NA,
8L), class = "data.frame")
ggplot(Plot_DF.2.2, aes(x = SN, y = Proportion, fill = SN)) +
facet_wrap(V ~ .) +
geom_col() +
labs(x = "Number of Vaccinated Discussants in Respondents' Social Network",
title = "Distribution of Vaccination in Social Networks",
subtitle = "Conditional on Vaccination Status",
caption = paste("Note: Numbers represent estimated percentage with",
"estimates' standard errors in parentheses.",
"\nError bar represents confidence interval",
"around the estimate.")) +
theme_minimal() +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(legend.position = "none",
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption= element_text(hjust = 0),
axis.title.y=element_blank()) +
geom_text(aes(label = paste0(round(Percent,0), "%", "\n(", round(SE*100, 2), ")")),
position = position_dodge(width = 0.9), vjust = -0.25,
lineheight = 0.9)library(tidyverse)
library(ggpubr)
df <- structure(list(Gender = c("male", "male", "male", "male", "female",
"female", "female", "female"), Season = c("fall", "spring", "summer",
"winter", "fall", "spring", "winter", "summer"), count = c(300L,
350L, 320L, 305L, 120L, 350L, 320L, 500L)), class = "data.frame", row.names = c(NA,
-8L))
stack <- ggplot(df, aes(x = factor(Season), y=count, fill=Gender))+
geom_col()+
geom_text(aes(x = Season, y = count, label = count, group = Gender),
position = position_stack(vjust = .5), size=4, color="yellow")+
xlab('Season') +
scale_fill_manual(values = c("maroon", "blue"))+
theme_pubr()
dodge <- ggplot(df) +
geom_col(aes(x = factor(Season), y=count, fill=Gender),
position = 'dodge') +
geom_text(aes(x = Season, y = count, label = count, group = Gender),
position = position_dodge(width = 0.9),
vjust=1.5, size=4, color="yellow")+
xlab('Season') +
scale_fill_manual(values = c("maroon", "blue"))+
theme_pubr()
figure <- ggarrange(stack, dodge,
labels = c("A", "B"),
common.legend = TRUE,
legend = "bottom")
figure#ggexport(figure, filename = "figure1.png")library(ggplot2)
library(ggpubr)
data.test <- data.frame(x = LETTERS[1:5],
y = c(-4, 2, 7, 3, -5),
z = c("Negative","Positive","Positive","Positive","Negative"))
data.test## x y z
## 1 A -4 Negative
## 2 B 2 Positive
## 3 C 7 Positive
## 4 D 3 Positive
## 5 E -5 Negative
ggplot(data.test, aes(x, y, fill = y)) +
geom_col() +
scale_fill_gradient(low = "red", high = "green")+
theme_pubr()#https://stackoverflow.com/questions/71915599/grid-table-export-multiple-tables-into-one-pdf
tbl <- matrix(1:100,nrow=10)
tbl2 <- matrix(100:1,nrow=10)
require("gridExtra")## Lade nötiges Paket: gridExtra
##
## Attache Paket: 'gridExtra'
## Das folgende Objekt ist maskiert 'package:dplyr':
##
## combine
pdf("test.pdf")
grid.table(tbl)
grid::grid.newpage()
grid.table(tbl2)
dev.off()## png
## 2
#https://stackoverflow.com/questions/34096162/dplyr-mutate-replace-several-columns-on-a-subset-of-rows
set.seed(1)
library(data.table)##
## Attache Paket: 'data.table'
## Die folgenden Objekte sind maskiert von 'package:dplyr':
##
## between, first, last
## Das folgende Objekt ist maskiert 'package:purrr':
##
## transpose
dt <- data.table(site = sample(1:6, 50, replace=T),
space = sample(1:4, 50, replace=T),
measure = sample(c('cfl', 'led', 'linear', 'exit'), 50,
replace=T),
qty = round(runif(50) * 30),
qty.exit = 0,
delta.watts = sample(10.5:100.5, 50, replace=T),
cf = runif(50))
dt## site space measure qty qty.exit delta.watts cf
## 1: 1 2 linear 27 0 44.5 0.22130593
## 2: 4 2 linear 13 0 55.5 0.22638080
## 3: 1 4 led 23 0 28.5 0.13141653
## 4: 2 4 led 26 0 84.5 0.98156346
## 5: 5 2 led 12 0 25.5 0.32701373
## 6: 3 2 exit 2 0 49.5 0.50693950
## 7: 6 1 linear 10 0 18.5 0.68144251
## 8: 2 2 exit 22 0 59.5 0.09916910
## 9: 3 2 led 10 0 33.5 0.11890256
## 10: 3 2 led 19 0 19.5 0.05043966
## 11: 1 2 exit 25 0 88.5 0.92925392
## 12: 5 1 linear 26 0 41.5 0.67371223
## 13: 5 3 linear 12 0 48.5 0.09485786
## 14: 2 3 exit 11 0 46.5 0.49259612
## 15: 6 4 linear 27 0 21.5 0.46155184
## 16: 6 2 cfl 19 0 23.5 0.37521653
## 17: 2 3 led 22 0 25.5 0.99109922
## 18: 1 3 led 18 0 24.5 0.17635071
## 19: 5 4 cfl 27 0 11.5 0.81343521
## 20: 5 2 linear 9 0 74.5 0.06844664
## 21: 1 4 linear 6 0 76.5 0.40044975
## 22: 1 3 led 27 0 82.5 0.14114433
## 23: 6 3 linear 15 0 26.5 0.19330986
## 24: 5 1 led 26 0 93.5 0.84135172
## 25: 5 4 cfl 6 0 14.5 0.71991399
## 26: 2 1 exit 23 0 50.5 0.26721208
## 27: 2 4 led 22 0 100.5 0.49500164
## 28: 6 1 exit 28 0 40.5 0.08311390
## 29: 1 4 cfl 16 0 81.5 0.35388424
## 30: 4 1 exit 21 0 45.5 0.96920881
## 31: 1 3 linear 12 0 58.5 0.62471419
## 32: 4 2 linear 3 0 50.5 0.66461825
## 33: 3 4 exit 28 0 38.5 0.31248966
## 34: 6 3 cfl 8 0 94.5 0.40568961
## 35: 2 1 exit 18 0 73.5 0.99607737
## 36: 2 1 led 3 0 10.5 0.85508236
## 37: 6 4 exit 25 0 62.5 0.95354840
## 38: 4 2 cfl 10 0 93.5 0.81230509
## 39: 4 1 linear 23 0 66.5 0.78218212
## 40: 4 4 led 8 0 97.5 0.26787813
## 41: 2 4 linear 7 0 62.5 0.76215153
## 42: 4 4 linear 16 0 95.5 0.98631159
## 43: 1 1 cfl 8 0 59.5 0.29360555
## 44: 6 1 cfl 5 0 89.5 0.39935111
## 45: 1 1 led 16 0 39.5 0.81213152
## 46: 4 3 led 17 0 11.5 0.07715167
## 47: 1 2 led 4 0 81.5 0.36369681
## 48: 6 1 exit 8 0 87.5 0.44259247
## 49: 2 1 exit 22 0 45.5 0.15671413
## 50: 3 3 cfl 29 0 99.5 0.58220527
## site space measure qty qty.exit delta.watts cf
library(tidyverse)
dt %>%
as_tibble() %>%
group_split(measure == "exit", keep=FALSE) %>% # or `split(.$measure == "exit")`
modify_at(2,~mutate(.,qty.exit = qty, cf = 0, delta.watts = 13)) %>%
bind_rows()## Warning: The `keep` argument of `group_split()` is deprecated as of dplyr 1.0.0.
## Please use the `.keep` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
## # A tibble: 50 x 7
## site space measure qty qty.exit delta.watts cf
## <int> <int> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 2 linear 27 0 44.5 0.221
## 2 4 2 linear 13 0 55.5 0.226
## 3 1 4 led 23 0 28.5 0.131
## 4 2 4 led 26 0 84.5 0.982
## 5 5 2 led 12 0 25.5 0.327
## 6 6 1 linear 10 0 18.5 0.681
## 7 3 2 led 10 0 33.5 0.119
## 8 3 2 led 19 0 19.5 0.0504
## 9 5 1 linear 26 0 41.5 0.674
## 10 5 3 linear 12 0 48.5 0.0949
## # ... with 40 more rows
library(tidyverse)
d <- sample_n(diamonds, 500)
plot_something <- function(data, x, y, x_axis_name = NULL) {
x_lab <- if (!is.null(x_axis_name)) xlab(x_axis_name)
p <- ggplot(d, aes_string(x = x, y = y)) +
geom_point() +
x_lab
return(p)
}
plot_something(data = d, x = "depth", y = "price", x_axis_name = "random_name")#https://stackoverflow.com/questions/71929949/how-can-i-make-time-series-plot
library(tidyverse)
library(lubridate)##
## Attache Paket: 'lubridate'
## Die folgenden Objekte sind maskiert von 'package:data.table':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
## Die folgenden Objekte sind maskiert von 'package:base':
##
## date, intersect, setdiff, union
a <- 1
b <- 3
c <- 0
Date <- c(1:128)
Wheat <- rnorm(128, mean = a, sd = b)
Hazelnut <- runif(128, a ,b)
Corn <- rnorm(128, mean = c, sd = b)
Date <- seq(ymd("2022-01-01"), ymd("2022-01-01")+127, by=1)
df <- as.data.frame(cbind(Date, Wheat, Hazelnut, Corn))
df <- df %>%
pivot_longer(c("Wheat", "Hazelnut", "Corn"),
names_to="crop",
values_to="vals")
df %>% ggplot(aes(x=Date, y=vals)) +
geom_line() +
facet_wrap(~crop, ncol=1) +
theme_classic()df %>% filter(Date <= ymd("2022-02-28")) %>%
ggplot(aes(x=Date, y=vals)) +
geom_line() +
facet_wrap(~crop, ncol=1) +
theme_classic()library(ggplot2)
library(tidyverse)
library(dplyr)
library(rstatix)##
## Attache Paket: 'rstatix'
## Das folgende Objekt ist maskiert 'package:stats':
##
## filter
library(ggpubr)
test <- iris
test$Species <- as.factor(test$Species)
test.aov <- test %>% anova_test(Sepal.Width ~ Species)## Coefficient covariances computed by hccm()
test.tukey <- test %>% tukey_hsd(Sepal.Width ~ Species)
test.tukey <- test.tukey %>% add_xy_position(x = "Species")
ggboxplot(test, x = "Species", y = "Sepal.Width", outlier.shape = NA) +
stat_pvalue_manual(test.tukey, hide.ns = TRUE, y.position = c(5,4.5,4),
label = "p = {scales::pvalue(p.adj)}") +
geom_jitter(shape=16, alpha = 0.4, size = 2, position=position_jitter(0.1)) +
labs(subtitle = get_test_label(test.aov, detailed = T)) +
scale_y_continuous(breaks = seq(0,5,1), limits = c(0,5)) +
xlab("Species") +
ylab("Sepal Length") +
theme_bw() +
theme(panel.grid = element_blank(),
plot.subtitle = element_text(vjust = -105, hjust = 0.05),
text = element_text(size = 14),
axis.text.x = element_text(size = 16, color = "black"),
axis.text.y = element_text(size = 16, color = "black"))# https://stackoverflow.com/questions/71969071/right-order-in-levels-likert-with-negative-and-positive-values-but-wrong-colo#71969327
likert_palette = c("#F58C7B","#F9B8AD","#A0DCB3","#67C785")
fivelevels <- c("Substantially less often",
"Somewhat less often",
"Unchanged",
"Somewhat more often",
"Substantially more often"
)
df <- cbind("activities"=c("Online lectures"),
"x"=c("Substantially less often",
"Somewhat less often",
"Somewhat more often",
"Substantially more often"),
"prosent" = c(-0.02,-0.05, 0.32,0.42)) %>%
as_tibble() %>%
mutate(prosent = as.double(prosent),
x = factor(x, levels = fivelevels[c(1:3, 5:4)]))
df %>%
ggplot(aes(y = activities, x = prosent, fill = x)) +
geom_col() +
geom_text(aes(x = prosent, label = scales::percent(prosent, accuracy = 1L)),
position = position_stack( reverse = T, vjust = 0.5), size = 2) +
scale_fill_manual(limits = fivelevels[c(1:2, 4:5)],
values = setNames(likert_palette, fivelevels[-3])) # https://stackoverflow.com/questions/50063362/how-to-color-bar-plots-when-using-prop-in-ggplot-
ggplot(diamonds, aes(x = color, y = ..prop.., fill = factor(..x..), group = 1)) +
geom_bar() +
facet_grid(~cut)+
scale_fill_manual(values = c("red", "green", "yellow", "blue", "pink", "purple", "black")) +
theme(axis.text.x = element_text(angle=90))positive <- c("21", "22", "33", "21", "27") ##Percentage
negative<- c("71", "77", "67", "79", "73") ##Precentage
sample <- c("Hr", "Fi", "We", "Pa", "Ki")
mydata <- data.frame(positive , negative, sample)
mydata %>%
pivot_longer(
cols = -sample,
names_to = "status",
values_to = "percentage",
values_transform = list(percentage = as.integer)
) %>%
ggplot(aes(x = sample, y=percentage, fill=status))+
geom_col(position = position_fill()) +
scale_y_continuous(labels = scales::percent) +
geom_text(aes(label = percentage),
position = position_fill(vjust = .5))Phonotactic_Probability <-structure(list(Word = c("Baby", "Bagel", "Bandage", "Banjo",
"Carriage", "Carrot", "Chicken", "Chipmunk", "City", "Cobra",
"Cocoa", "Fairy", "Ferret", "Garbage", "Garlic", "Letter", "Lettuce",
"Lobster", "Locker", "Marble", "Marker", "Muffin", "Mushroom",
"Pasta", "Peacock", "Peanut", "Possum", "Puppet", "Puppy", "Raccoon",
"Racket", "Rooster", "Ruler", "Sandal", "Sandwich", "Scissors",
"Turkey", "Turtle", "Whistle", "Wizard"), `Biphone Probability...5` = c(0.0029,
0.0023, 0.0274, 0.012, 0.025, 0.02, 0.0048, 0.0019, 0.0029, 0.0057,
4e-04, 2e-04, 0.0085, 0.0209, 0.0199, 0.0061, 0.0044, 0.0168,
0.0014, 0.0222, 0.0202, 0.0033, 0.004, 0.0265, 4e-04, 0.0044,
0.0045, 0.009, 0.0025, 0.0023, 0.0079, 0.0153, 0.0031, 0.0278,
0.0265, 0.008, 0.0042, 0.0107, 0.0163, 0.0064), `Biphone Probability` = c(0.0029,
0.0023, 0.0274, 0.012, 0.025, 0.02, 0.0048, 0.0019, 0.0029, 0.0057,
4e-04, 2e-04, 0.0085, 0.0209, 0.0199, 0.0061, 0.0044, 0.0168,
0.0014, 0.0222, 0.0202, 0.0033, 0.004, 0.0265, 4e-04, 0.0044,
0.0045, 0.009, 0.0025, 0.0023, 0.0079, 0.0153, 0.0031, 0.0278,
0.0265, 0.008, 0.0042, 0.0107, 0.0163, 0.0064)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -40L), groups = structure(list(
Word = c("Baby", "Bagel", "Bandage", "Banjo", "Carriage",
"Carrot", "Chicken", "Chipmunk", "City", "Cobra", "Cocoa",
"Fairy", "Ferret", "Garbage", "Garlic", "Letter", "Lettuce",
"Lobster", "Locker", "Marble", "Marker", "Muffin", "Mushroom",
"Pasta", "Peacock", "Peanut", "Possum", "Puppet", "Puppy",
"Raccoon", "Racket", "Rooster", "Ruler", "Sandal", "Sandwich",
"Scissors", "Turkey", "Turtle", "Whistle", "Wizard"), .rows = structure(list(
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L,
36L, 37L, 38L, 39L, 40L), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -40L), .drop = TRUE))
###Word Frequency df
Word_Frequency <- structure(list(Word = c("Baby", "Bagel", "Bandage", "Banjo",
"Carriage", "Carrot", "Chicken", "Chipmunk", "City", "Cobra",
"Cocoa", "Fairy", "Ferret", "Garbage", "Garlic", "Letter", "Lettuce",
"Lobster", "Locker", "Marble", "Marker", "Muffin", "Mushroom",
"Pasta", "Peacock", "Peanut", "Possum", "Puppet", "Puppy", "Raccoon",
"Racket", "Rooster", "Ruler", "Sandal", "Sandwich", "Scissors",
"Turkey", "Turtle", "Whistle", "Wizard"), `Frequency (Google Books)` = c(6127799,
29335, 428865, 125242, 2505730, 215525, 1724136, 30591, 30586130,
69450, 382604, 1082454, 115446, 674079, 651590, 20168453, 353798,
256454, 271988, 1996235, 769873, 81982, 270867, 238173, 149644,
277100, 76104, 384574, 316058, 73050, 268584, 136815, 1659585,
81154, 430627, 511265, 1763068, 396105, 778168, 309233), Freq10k = c(612.7799,
2.9335, 42.8865, 12.5242, 250.573, 21.5525, 172.4136, 3.0591,
3058.613, 6.945, 38.2604, 108.2454, 11.5446, 67.4079, 65.159,
2016.8453, 35.3798, 25.6454, 27.1988, 199.6235, 76.9873, 8.1982,
27.0867, 23.8173, 14.9644, 27.71, 7.6104, 38.4574, 31.6058, 7.305,
26.8584, 13.6815, 165.9585, 8.1154, 43.0627, 51.1265, 176.3068,
39.6105, 77.8168, 30.9233)), class = c("grouped_df", "tbl_df",
"tbl", "data.frame"), row.names = c(NA, -40L), groups = structure(list(
Word = c("Baby", "Bagel", "Bandage", "Banjo", "Carriage",
"Carrot", "Chicken", "Chipmunk", "City", "Cobra", "Cocoa",
"Fairy", "Ferret", "Garbage", "Garlic", "Letter", "Lettuce",
"Lobster", "Locker", "Marble", "Marker", "Muffin", "Mushroom",
"Pasta", "Peacock", "Peanut", "Possum", "Puppet", "Puppy",
"Raccoon", "Racket", "Rooster", "Ruler", "Sandal", "Sandwich",
"Scissors", "Turkey", "Turtle", "Whistle", "Wizard"), .rows = structure(list(
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L,
36L, 37L, 38L, 39L, 40L), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -40L), .drop = TRUE))
library(tidyverse)
df <- left_join(Phonotactic_Probability, Word_Frequency, by="Word")
coeff <- 100000
ggplot(df, aes(x = reorder(Word,`Biphone Probability`))) +
geom_point(aes(y = `Biphone Probability`), size = 4, color = "red")+
geom_point(aes(y = Freq10k / coeff), shape=23, fill="blue", size=4) +
scale_y_continuous(
name = "Biphone Probability",
sec.axis = sec_axis(~.*coeff, name = "Word frequency per 10k")
) +
xlab("\nTarget word")+
theme_bw(14)+
theme(
axis.title.y = element_text(color = "red", size=13, face="bold"),
axis.title.y.right = element_text(color = "blue", size=13, face="bold"),
axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1)
) +
ggtitle("Biphone Probability and Word frequency per 10k")library(ggplot2)
ggplot(mtcars, aes(mpg)) +
geom_point(aes(y = hp, color = "hp")) +
geom_point(aes(y = cyl, color = "cyl")) +
scale_color_manual(values = c(hp = "blue", cyl = "green"), labels = c(hp = "Horse Power", cyl = "Cylinders"))df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3),
dose=rep(c("D0.5", "D1", "D2"),2),
len=c(6.8, 15, 33, 4.2, 10, 29.5))
myPalette <- c("#05eb92", "#119da4", "#ffc857")
myPalette_with_black <- setNames(c(myPalette, "black"),
c(as.character(seq_along(myPalette)), "-999"))
df2 <- df2 %>%
group_by(supp) %>%
mutate(dummy = ifelse(supp == "VC", as.character(row_number()), "-999"))
ggplot(data=df2, aes(x=dose, y=len, fill = dummy)) +
geom_bar(stat="identity", position=position_dodge()) +
scale_fill_manual(values = myPalette_with_black) +
theme(legend.position = "none")library(ggplot2)
dat <- mtcars
ggplot(data = dat) +
geom_point(aes(x = wt, y = mpg)) +
theme(axis.line = element_line(color = "black", arrow = arrow(length = unit(0.3, "lines"), type = "closed")))library(magrittr) # for %>%## Warning: Paket 'magrittr' wurde unter R Version 4.1.3 erstellt
##
## Attache Paket: 'magrittr'
## Das folgende Objekt ist maskiert 'package:purrr':
##
## set_names
## Das folgende Objekt ist maskiert 'package:tidyr':
##
## extract
library(tidyr) # for pivot longer
library(ggplot2)
df <- CO2 %>% pivot_longer(cols = c("conc", "uptake"))
ggplot(data = df, aes(x = Type, y = value)) +
geom_boxplot() +
ggh4x::facet_grid2(Treatment ~ name, scales = "free_y", independent = "y")library(ggplot2)
plot_fun <- function(facet) {
ggplot(mtcars, aes(hp, mpg)) +
geom_point() +
facet_wrap(vars({{facet}}))
}
plot_fun(mtcars$cyl)library(tidyverse)
p <- ggplot(mtcars, aes(x=cyl, y=mpg, fill=am))+
geom_col(position = position_dodge())+
facet_wrap(.~gear)+
labs(fill="Land type", x="year", y="meff")+
theme_bw()
ggsave(filename = "test_ggsave.png",
plot = p,
#plot = last_plot(),
width = 6, height = 3, device = "png", dpi = 300 )
library(magick)## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, freetype, fftw, ghostscript, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fontconfig, x11
#> Linking to ImageMagick 7.0.10.26
#> Enabled features: cairo, fontconfig, freetype, lcms, pango, rsvg, webp, x11
#> Disabled features: fftw, ghostscript
#> Using 4 threads
# Assuming png package is installed.
filename <- "test_ggsave.png"
image_read(filename)# https://stackoverflow.com/questions/69305420/data-column-not-recognized-in-the-ggplot-geom-hline
set.seed(20)
n_groups <- 2
n_in_group <- 20
sd_e = 2
groups <- gl(n_groups, n_in_group, labels = c("T","C"))
age <-rnorm(length(groups), 25, 3)
betas <- c(5,0,0,2)
dat <- data.frame(groups=groups,age=age)
X <- model.matrix(~ groups * age, data = dat)
lin_pred <- as.vector(X %*% betas)
dat$y <- rnorm(nrow(X), lin_pred, sd_e)
dat %>% group_by(groups) %>% mutate(mean_y = mean(y)) %>%
ungroup() %>%
ggplot()+aes(x = age, y = y) +
geom_point(aes(color=groups)) +
geom_hline(aes(yintercept = mean_y)) #https://stackoverflow.com/a/72234744/13321647
TOUR <- structure(list(ISO3 = c("ARG", "AUS", "AUT", "BEL", "BRA", "CAN",
"CHE", "CHL", "CHN", "COK", "DEU", "DNK", "ESP", "FIN", "FJI",
"FRA", "GBR", "HKG", "IDN", "IND", "ITA", "JPN", "KOR", "LUX",
"MEX", "MYS", "NCL", "NLD", "NOR", "NZL", "PHL", "PRT", "RUS",
"SGP", "SWE", "THA", "TON", "USA", "WSM"), Total = c(1073L, 8204L,
818L, 1502L, 1871L, 7958L, 3524L, 2456L, 3345L, 456L, 5010L,
569L, 2775L, 184L, 75L, 60382L, 4424L, 415L, 146L, 405L, 8369L,
8176L, 1034L, 235L, 961L, 137L, 6522L, 667L, 309L, 7960L, 238L,
316L, 486L, 404L, 480L, 200L, 41L, 85225L, 46L), Size = c(16,
30, 14, 18, 19, 30, 24, 21, 23, 12, 26, 13, 22, 8, 5, 50, 25,
11, 7, 11, 30, 30, 16, 9, 15, 7, 28, 13, 10, 30, 9, 10, 12, 11,
12, 8, 3, 54, 4), Color = c(3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 4,
3, 3, 2, 2, 5, 4, 3, 2, 3, 4, 4, 3, 2, 3, 2, 4, 3, 2, 4, 2, 2,
3, 3, 3, 2, 2, 5, 2), ISO2 = c("AR", "AU", "AT", "BE", "BR",
"CA", "CH", "CL", "CN", "CK", "DE", "DK", "ES", "FI", "FJ", "FR",
"GB", "HK", "ID", "IN", "IT", "JP", "KR", "LU", "MX", "MY", "NC",
"NL", "NO", "NZ", "PH", "PT", "RU", "SG", "SE", "TH", "TO", "US",
"WS"), LABELFR = c("Argentine", "Australie", "Autriche", "Belgique",
"Brésil", "Canada", "Suisse", "Chili", "Chine", "Iles Cook",
"Allemagne", "Danemark", "Espagne", "Finlande", "Fidji", "France",
"Royaume-Uni", "Hong-kong, Chine", "Indonésie", "Inde", "Italie",
"Japon", "Corée, République de", "Luxembourg", "Mexique", "Malaisie",
"Nouvelle-Calédonie", "Pays-Bas", "Norvège", "Nouvelle-Zélande",
"Philippines", "Portugal", "Russie, Fédération de", "Singapour",
"Suède", "Thaïlande", "Tonga", "Etats-Unis", "Samoa"), LABELEN = c("Argentina",
"Australia", "Austria", "Belgium", "Brazil", "Canada", "Switzerland",
"Chile", "China", "Cook Islands", "Germany", "Denmark", "Spain",
"Finland", "Fiji", "France", "United Kingdom", "Hong Kong", "Indonesia",
"India", "Italy", "Japan", "South Korea", "Luxembourg", "Mexico",
"Malaysia", "New Caledonia", "Netherlands", "Norway", "New Zealand",
"Philippines", "Portugal", "Russia", "Singapore", "Sweden", "Thailand",
"Tonga", "United States", "Samoa"), CAPITAL = c("Buenos Aires",
"Canberra", "Vienna", "Brussels", "Brasilia", "Ottawa", "Bern",
"Santiago", "Beijing", "Avarua", "Berlin", "Copenhagen", "Madrid",
"Helsinki", "Suva", "Paris", "London", "N/A", "Jakarta", "New Delhi",
"Rome", "Tokyo", "Seoul", "Luxembourg", "Mexico City", "Kuala Lumpur",
"Noumea", "Amsterdam", "Oslo", "Wellington", "Manila", "Lisbon",
"Moscow", "Singapore", "Stockholm", "Bangkok", "Nuku'alofa",
"Washington", "Apia"), LATITUDE = c("-34.583333333333336", "-35.266666666666666",
"48.2", "50.833333333333336", "-15.783333333333333", "45.416666666666664",
"46.916666666666664", "-33.45", "39.916666666666664", "-21.2",
"52.516666666666666", "55.666666666666664", "40.4", "60.166666666666664",
"-18.133333333333333", "48.86666666666667", "51.5", "0", "-6.166666666666667",
"28.6", "41.9", "35.68333333333333", "37.55", "49.6", "19.433333333333334",
"3.1666666666666665", "-22.266666666666666", "52.35", "59.916666666666664",
"-41.3", "14.6", "38.71666666666667", "55.75", "1.2833333333333332",
"59.333333333333336", "13.75", "-21.133333333333333", "38.883333",
"-13.816666666666666"), LONGITUDE = c("-58.666667", "149.133333",
"16.366667", "4.333333", "-47.916667", "-75.700000", "7.466667",
"-70.666667", "116.383333", "-159.766667", "13.400000", "12.583333",
"-3.683333", "24.933333", "178.416667", "2.333333", "-0.083333",
"0.000000", "106.816667", "77.200000", "12.483333", "139.750000",
"126.983333", "6.116667", "-99.133333", "101.700000", "166.450000",
"4.916667", "10.750000", "174.783333", "120.966667", "-9.133333",
"37.600000", "103.850000", "18.050000", "100.516667", "-175.200000",
"-77.000000", "-171.766667"), CONTINENT = c("South America",
"Australia", "Europe", "Europe", "South America", "Central America",
"Europe", "South America", "Asia", "Australia", "Europe", "Europe",
"Europe", "Europe", "Australia", "Europe", "Europe", "Asia",
"Asia", "Asia", "Europe", "Asia", "Asia", "Europe", "Central America",
"Asia", "Australia", "Europe", "Europe", "Australia", "Asia",
"Europe", "Europe", "Asia", "Europe", "Asia", "Australia", "Central America",
"Australia")), class = c("data.table", "data.frame"), row.names = c(NA,
-39L), sorted = "ISO3")
library(plotly)##
## Attache Paket: 'plotly'
## Das folgende Objekt ist maskiert 'package:ggplot2':
##
## last_plot
## Das folgende Objekt ist maskiert 'package:stats':
##
## filter
## Das folgende Objekt ist maskiert 'package:graphics':
##
## layout
fig <- plot_ly(
type = 'scattergeo',
showlegend=F,
mode='markers',
data=TOUR,
y=~LATITUDE,
x=~LONGITUDE,
text=sprintf("%s : %s",TOUR$LABELFR,TOUR$Total),
hovertemplate = "%{text}<extra></extra>",
colors = c("#1B98E0","black"),
# colors="YlOrRd",
color=~Color,
marker=list(
showscale=F,
size=~Size,
reversescale=F
)
)
fig# https://stackoverflow.com/a/54142976/13321647
library(tidyverse)
library(plotly)
library(RColorBrewer)## Warning: Paket 'RColorBrewer' wurde unter R Version 4.1.3 erstellt
sPalette <- c("Blues", "Greens", "Reds", "Purples", "Greys") %>%
sapply(., function(x) brewer.pal(8, name = x)) %>%
as.vector
diamonds %>%
count(cut, clarity) %>%
ggplot(., aes(x = cut, y = n, fill = interaction(clarity, cut, sep = " - "))) +
geom_bar(stat = "identity", position = "dodge") +
scale_fill_manual(values = sPalette, guide = "none") +
theme_minimal()p <- diamonds %>%
count(cut, clarity) %>%
ggplot(., aes(x = cut, y = n, fill = interaction(clarity, cut, sep = " - "))) +
geom_bar(stat = "identity", position = "dodge") +
# scale_fill_manual(values = sPalette, guide = "none") +
scale_fill_manual(values = sPalette) +
theme_minimal()
ggplotly(p) %>%
hide_legend()d <- data.frame(x = 1:3, y = 1:3, category = letters[1:3], p = c(TRUE, TRUE, FALSE))
ggplot(d, aes(x, y, color = category)) +
geom_point(aes(fill = after_scale(ifelse(d$p, color, "white"))),
shape = "circle filled", size = 10)cv<- rep(c("cv1","cv2"), each=5)
value<- c(50,40,30,20,10,45,38,26,22,17)
index<- rep(c(5,15,27,36,45), each=2)
dataA<- data.frame(cv, value, index)
ggplot(data=dataA, aes(x=index, y=value))+
geom_smooth(aes(fill=cv), method=lm, level=0.95, se=FALSE, linetype=1, size=0.5,
color="Black", formula=y~x) +
geom_point (aes(shape=cv, fill=cv), col="Black", size=3) +
scale_x_reverse(limits = c(60,0), breaks = seq(0, 60, 10)) +
scale_y_continuous(breaks = seq(0,70,10), limits = c(0,70)) +
labs(x="Environmental Index", y="Kernel number") +
theme_grey(base_size=15, base_family="serif")+
theme(legend.position= 'none',
axis.line= element_line(size=0.5, colour="black")) +
windows(width=5.5, height=5)library(ggplot2)
library(ggh4x)## Warning: Paket 'ggh4x' wurde unter R Version 4.1.2 erstellt
df <- structure(list(Exposure = c("Organic Carbon", "Organic Carbon",
"Organic Carbon", "Organic Carbon", "Black Carbon", "Black Carbon",
"Black Carbon", "Black Carbon", "Carbon Monoxide", "Carbon Monoxide",
"Carbon Monoxide", "Carbon Monoxide"), `Unit Increase` = c("1 µg/m3",
"1 µg/m3", "1 µg/m3", "1 µg/m3", "1 µg/m3", "1 µg/m3", "1 µg/m3",
"1 µg/m3", "10 ppbv", "10 ppbv", "10 ppbv", "10 ppbv"), Models = c("Model 1",
"Model 2", "Model 3", "Model 4", "Model 1", "Model 2", "Model 3",
"Model 4", "Model 1", "Model 2", "Model 3", "Model 4"), mean = c(1.00227974541066,
0.985112091974051, 0.983374917346068, 0.981911815085857, 1.05170784539884,
0.866397662179956, 0.852380008027597, 0.843141476496602, 1.0285956205419,
1.01469851838101, 1.01167376733896, 1.01112354142356), sd = c(0.009168606994035,
0.00941380294243673, 0.00930958569680644, 0.00931923969816641,
0.0923351388901415, 0.0926479017865309, 0.0923142930597128, 0.0916749212837342,
0.000753411222911813, 0.000758915467329065, 0.000747152757518728,
0.000748722745120326), lci = c(0.984429504585927, 0.967102723558839,
0.96559452133446, 0.964139630281724, 0.877605428442938, 0.722528919823888,
0.711303894242616, 0.704476676931527, 1.01351836592852, 0.999717112334597,
0.996966839004107, 0.996393951145291), uci = c(1.02045365704779,
1.00345683050333, 1.0014827204373, 1.00001159824068, 1.26034930530902,
1.03891330635438, 1.02143638459725, 1.00910019120188, 1.04389716670672,
1.02990443046443, 1.02659764746465, 1.02607087773444), estimates = c("1.002 (0.984 - 1.020)",
"0.985 (0.967 - 1.003)", "0.983 (0.966 - 1.001)", "0.982 (0.964 - 1.000)",
"1.052 (0.878 - 1.260)", "0.866 (0.723 - 1.039)", "0.852 (0.711 - 1.021)",
"0.843 (0.704 - 1.009)", "1.029 (1.014 - 1.044)", "1.015 (1.000 - 1.030)",
"1.012 (0.997 - 1.027)", "1.011 (0.996 - 1.026)")), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -12L))
ggplot(df, aes(x=mean, y = interaction(`Unit Increase`, Exposure, sep = "&"),
colour=Models)) +
scale_color_brewer(palette="Set1",
breaks=c("Model 1","Model 2","Model 3", "Model 4")) +
geom_vline(xintercept = 1) +
geom_point(position = position_dodge(width=.75)) +
geom_errorbarh(aes(xmin = lci, xmax=uci), position=position_dodge(width=.75), height=0) +
labs(x="Odds Ratio", y="Exposures (Unit of Increase)", colour="Models") +
guides(
y = guide_axis_nested(delim = "&", n.dodge = 1),
y.sec = guide_axis_manual(
breaks = as.vector(outer(c(-0.28125, -0.09375, 0.09375, 0.28125), 1:3, "+")),
labels = df$estimates
)
) +
theme_classic() +
theme(
axis.text.y.left = element_text(margin = margin(r = 5, l = 5)),
ggh4x.axis.nesttext.y = element_text(margin = margin(r = 6, l = 6)),
ggh4x.axis.nestline.y = element_blank())