#Data
library(readxl)
DataSittie <- read_excel("D:/stat 50/DataSittie.xlsx")
## New names:
## * `` -> ...63
## * `` -> ...64
View(DataSittie)
library(DescTools)
## Warning: package 'DescTools' was built under R version 4.1.3
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
LC<- DataSittie %>%
mutate(Agegroup = ifelse(Age <= 2,"at most 35 years old","More than 35 years old"))%>%
mutate(EducationCode = ifelse(Education <= 3,"at most High School Level","at least High School Graduate"))%>%
mutate(Incomecode =ifelse(Income<=2, "at most Php10,000", "More than Php10,000"))
##Over-all and Perceived Effectiveness
table(LC$OverallLevel)
##
## High Low Medium Very High
## 59 6 19 12
prop.table(table(LC$OverallLevel))
##
## High Low Medium Very High
## 0.6145833 0.0625000 0.1979167 0.1250000
##Overall and Effectiveness
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.1.3
## Registered S3 method overwritten by 'gdata':
## method from
## reorder.factor DescTools
Crosstabdata<-CrossTable(LC$OverallLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$OverallLevel | 1 | 2 | Row Total |
## ----------------|-----------|-----------|-----------|
## High | 46 | 13 | 59 |
## | 0.729 | 1.604 | |
## | 0.780 | 0.220 | 0.615 |
## | 0.697 | 0.433 | |
## | 0.479 | 0.135 | |
## ----------------|-----------|-----------|-----------|
## Low | 2 | 4 | 6 |
## | 1.095 | 2.408 | |
## | 0.333 | 0.667 | 0.062 |
## | 0.030 | 0.133 | |
## | 0.021 | 0.042 | |
## ----------------|-----------|-----------|-----------|
## Medium | 6 | 13 | 19 |
## | 3.818 | 8.401 | |
## | 0.316 | 0.684 | 0.198 |
## | 0.091 | 0.433 | |
## | 0.062 | 0.135 | |
## ----------------|-----------|-----------|-----------|
## Very High | 12 | 0 | 12 |
## | 1.705 | 3.750 | |
## | 1.000 | 0.000 | 0.125 |
## | 0.182 | 0.000 | |
## | 0.125 | 0.000 | |
## ----------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## ----------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 46 13
## Low 2 4
## Medium 6 13
## Very High 12 0
##
## $prop.row
## y
## x 1 2
## High 0.7796610 0.2203390
## Low 0.3333333 0.6666667
## Medium 0.3157895 0.6842105
## Very High 1.0000000 0.0000000
##
## $prop.col
## y
## x 1 2
## High 0.69696970 0.43333333
## Low 0.03030303 0.13333333
## Medium 0.09090909 0.43333333
## Very High 0.18181818 0.00000000
##
## $prop.tbl
## y
## x 1 2
## High 0.47916667 0.13541667
## Low 0.02083333 0.04166667
## Medium 0.06250000 0.13541667
## Very High 0.12500000 0.00000000
table2=matrix(c(8,17,58,15) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 8 58
## High and Very High 17 15
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 16.971, df = 1, p-value = 3.795e-05
CramerV(table2)
## [1] 0.4411025
##Public Market
library(gmodels)
Crosstabdata<-CrossTable(LC$PubLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$PubLevel | 1 | 2 | Row Total |
## -------------|-----------|-----------|-----------|
## High | 26 | 7 | 33 |
## | 0.484 | 1.064 | |
## | 0.788 | 0.212 | 0.344 |
## | 0.394 | 0.233 | |
## | 0.271 | 0.073 | |
## -------------|-----------|-----------|-----------|
## Low | 14 | 11 | 25 |
## | 0.591 | 1.300 | |
## | 0.560 | 0.440 | 0.260 |
## | 0.212 | 0.367 | |
## | 0.146 | 0.115 | |
## -------------|-----------|-----------|-----------|
## Medium | 19 | 12 | 31 |
## | 0.251 | 0.552 | |
## | 0.613 | 0.387 | 0.323 |
## | 0.288 | 0.400 | |
## | 0.198 | 0.125 | |
## -------------|-----------|-----------|-----------|
## Very High | 7 | 0 | 7 |
## | 0.994 | 2.188 | |
## | 1.000 | 0.000 | 0.073 |
## | 0.106 | 0.000 | |
## | 0.073 | 0.000 | |
## -------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## -------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 26 7
## Low 14 11
## Medium 19 12
## Very High 7 0
##
## $prop.row
## y
## x 1 2
## High 0.7878788 0.2121212
## Low 0.5600000 0.4400000
## Medium 0.6129032 0.3870968
## Very High 1.0000000 0.0000000
##
## $prop.col
## y
## x 1 2
## High 0.3939394 0.2333333
## Low 0.2121212 0.3666667
## Medium 0.2878788 0.4000000
## Very High 0.1060606 0.0000000
##
## $prop.tbl
## y
## x 1 2
## High 0.27083333 0.07291667
## Low 0.14583333 0.11458333
## Medium 0.19791667 0.12500000
## Very High 0.07291667 0.00000000
table2=matrix(c(33,23,33,7) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 33 33
## High and Very High 23 7
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 4.987, df = 1, p-value = 0.02554
CramerV(table2)
## [1] 0.2507133
library(gmodels)
Crosstabdata<-CrossTable(LC$BusLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$BusLevel | 1 | 2 | Row Total |
## -------------|-----------|-----------|-----------|
## High | 28 | 11 | 39 |
## | 0.053 | 0.116 | |
## | 0.718 | 0.282 | 0.406 |
## | 0.424 | 0.367 | |
## | 0.292 | 0.115 | |
## -------------|-----------|-----------|-----------|
## Low | 7 | 6 | 13 |
## | 0.420 | 0.924 | |
## | 0.538 | 0.462 | 0.135 |
## | 0.106 | 0.200 | |
## | 0.073 | 0.062 | |
## -------------|-----------|-----------|-----------|
## Medium | 16 | 12 | 28 |
## | 0.549 | 1.207 | |
## | 0.571 | 0.429 | 0.292 |
## | 0.242 | 0.400 | |
## | 0.167 | 0.125 | |
## -------------|-----------|-----------|-----------|
## Very High | 15 | 1 | 16 |
## | 1.455 | 3.200 | |
## | 0.938 | 0.062 | 0.167 |
## | 0.227 | 0.033 | |
## | 0.156 | 0.010 | |
## -------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## -------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 28 11
## Low 7 6
## Medium 16 12
## Very High 15 1
##
## $prop.row
## y
## x 1 2
## High 0.7179487 0.2820513
## Low 0.5384615 0.4615385
## Medium 0.5714286 0.4285714
## Very High 0.9375000 0.0625000
##
## $prop.col
## y
## x 1 2
## High 0.42424242 0.36666667
## Low 0.10606061 0.20000000
## Medium 0.24242424 0.40000000
## Very High 0.22727273 0.03333333
##
## $prop.tbl
## y
## x 1 2
## High 0.29166667 0.11458333
## Low 0.07291667 0.06250000
## Medium 0.16666667 0.12500000
## Very High 0.15625000 0.01041667
table2=matrix(c(23,18,58,13) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 23 58
## High and Very High 18 13
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 7.2739, df = 1, p-value = 0.006996
CramerV(table2)
## [1] 0.2755572
library(gmodels)
Crosstabdata<-CrossTable(LC$BusLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$BusLevel | 1 | 2 | Row Total |
## -------------|-----------|-----------|-----------|
## High | 28 | 11 | 39 |
## | 0.053 | 0.116 | |
## | 0.718 | 0.282 | 0.406 |
## | 0.424 | 0.367 | |
## | 0.292 | 0.115 | |
## -------------|-----------|-----------|-----------|
## Low | 7 | 6 | 13 |
## | 0.420 | 0.924 | |
## | 0.538 | 0.462 | 0.135 |
## | 0.106 | 0.200 | |
## | 0.073 | 0.062 | |
## -------------|-----------|-----------|-----------|
## Medium | 16 | 12 | 28 |
## | 0.549 | 1.207 | |
## | 0.571 | 0.429 | 0.292 |
## | 0.242 | 0.400 | |
## | 0.167 | 0.125 | |
## -------------|-----------|-----------|-----------|
## Very High | 15 | 1 | 16 |
## | 1.455 | 3.200 | |
## | 0.938 | 0.062 | 0.167 |
## | 0.227 | 0.033 | |
## | 0.156 | 0.010 | |
## -------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## -------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 28 11
## Low 7 6
## Medium 16 12
## Very High 15 1
##
## $prop.row
## y
## x 1 2
## High 0.7179487 0.2820513
## Low 0.5384615 0.4615385
## Medium 0.5714286 0.4285714
## Very High 0.9375000 0.0625000
##
## $prop.col
## y
## x 1 2
## High 0.42424242 0.36666667
## Low 0.10606061 0.20000000
## Medium 0.24242424 0.40000000
## Very High 0.22727273 0.03333333
##
## $prop.tbl
## y
## x 1 2
## High 0.29166667 0.11458333
## Low 0.07291667 0.06250000
## Medium 0.16666667 0.12500000
## Very High 0.15625000 0.01041667
table2=matrix(c(23,18,43,12) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 23 43
## High and Very High 18 12
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 4.354, df = 1, p-value = 0.03692
CramerV(table2)
## [1] 0.2356804
library(gmodels)
Crosstabdata<-CrossTable(LC$EatLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$EatLevel | 1 | 2 | Row Total |
## -------------|-----------|-----------|-----------|
## High | 34 | 18 | 52 |
## | 0.086 | 0.188 | |
## | 0.654 | 0.346 | 0.542 |
## | 0.515 | 0.600 | |
## | 0.354 | 0.188 | |
## -------------|-----------|-----------|-----------|
## Low | 3 | 3 | 6 |
## | 0.307 | 0.675 | |
## | 0.500 | 0.500 | 0.062 |
## | 0.045 | 0.100 | |
## | 0.031 | 0.031 | |
## -------------|-----------|-----------|-----------|
## Medium | 8 | 8 | 16 |
## | 0.818 | 1.800 | |
## | 0.500 | 0.500 | 0.167 |
## | 0.121 | 0.267 | |
## | 0.083 | 0.083 | |
## -------------|-----------|-----------|-----------|
## Very High | 21 | 1 | 22 |
## | 2.282 | 5.020 | |
## | 0.955 | 0.045 | 0.229 |
## | 0.318 | 0.033 | |
## | 0.219 | 0.010 | |
## -------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## -------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 34 18
## Low 3 3
## Medium 8 8
## Very High 21 1
##
## $prop.row
## y
## x 1 2
## High 0.65384615 0.34615385
## Low 0.50000000 0.50000000
## Medium 0.50000000 0.50000000
## Very High 0.95454545 0.04545455
##
## $prop.col
## y
## x 1 2
## High 0.51515152 0.60000000
## Low 0.04545455 0.10000000
## Medium 0.12121212 0.26666667
## Very High 0.31818182 0.03333333
##
## $prop.tbl
## y
## x 1 2
## High 0.35416667 0.18750000
## Low 0.03125000 0.03125000
## Medium 0.08333333 0.08333333
## Very High 0.21875000 0.01041667
table2=matrix(c(11,11,55,19) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 11 55
## High and Very High 11 19
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 3.6067, df = 1, p-value = 0.05755
CramerV(table2)
## [1] 0.2205644
library(gmodels)
Crosstabdata<-CrossTable(LC$MallLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$MallLevel | 1 | 2 | Row Total |
## -------------|-----------|-----------|-----------|
## High | 33 | 14 | 47 |
## | 0.015 | 0.032 | |
## | 0.702 | 0.298 | 0.490 |
## | 0.500 | 0.467 | |
## | 0.344 | 0.146 | |
## -------------|-----------|-----------|-----------|
## Low | 4 | 4 | 8 |
## | 0.409 | 0.900 | |
## | 0.500 | 0.500 | 0.083 |
## | 0.061 | 0.133 | |
## | 0.042 | 0.042 | |
## -------------|-----------|-----------|-----------|
## Medium | 13 | 10 | 23 |
## | 0.500 | 1.101 | |
## | 0.565 | 0.435 | 0.240 |
## | 0.197 | 0.333 | |
## | 0.135 | 0.104 | |
## -------------|-----------|-----------|-----------|
## Very High | 16 | 2 | 18 |
## | 1.062 | 2.336 | |
## | 0.889 | 0.111 | 0.188 |
## | 0.242 | 0.067 | |
## | 0.167 | 0.021 | |
## -------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## -------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 33 14
## Low 4 4
## Medium 13 10
## Very High 16 2
##
## $prop.row
## y
## x 1 2
## High 0.7021277 0.2978723
## Low 0.5000000 0.5000000
## Medium 0.5652174 0.4347826
## Very High 0.8888889 0.1111111
##
## $prop.col
## y
## x 1 2
## High 0.50000000 0.46666667
## Low 0.06060606 0.13333333
## Medium 0.19696970 0.33333333
## Very High 0.24242424 0.06666667
##
## $prop.tbl
## y
## x 1 2
## High 0.34375000 0.14583333
## Low 0.04166667 0.04166667
## Medium 0.13541667 0.10416667
## Very High 0.16666667 0.02083333
table2=matrix(c(17,14,49,16) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 17 49
## High and Very High 14 16
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 3.2232, df = 1, p-value = 0.0726
CramerV(table2)
## [1] 0.207267
library(gmodels)
Crosstabdata<-CrossTable(LC$ChurchLevel, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$ChurchLevel | 1 | 2 | Row Total |
## ---------------|-----------|-----------|-----------|
## High | 20 | 12 | 32 |
## | 0.182 | 0.400 | |
## | 0.625 | 0.375 | 0.333 |
## | 0.303 | 0.400 | |
## | 0.208 | 0.125 | |
## ---------------|-----------|-----------|-----------|
## Low | 1 | 2 | 3 |
## | 0.547 | 1.204 | |
## | 0.333 | 0.667 | 0.031 |
## | 0.015 | 0.067 | |
## | 0.010 | 0.021 | |
## ---------------|-----------|-----------|-----------|
## Medium | 2 | 4 | 6 |
## | 1.095 | 2.408 | |
## | 0.333 | 0.667 | 0.062 |
## | 0.030 | 0.133 | |
## | 0.021 | 0.042 | |
## ---------------|-----------|-----------|-----------|
## Very High | 43 | 12 | 55 |
## | 0.712 | 1.566 | |
## | 0.782 | 0.218 | 0.573 |
## | 0.652 | 0.400 | |
## | 0.448 | 0.125 | |
## ---------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## ---------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 20 12
## Low 1 2
## Medium 2 4
## Very High 43 12
##
## $prop.row
## y
## x 1 2
## High 0.6250000 0.3750000
## Low 0.3333333 0.6666667
## Medium 0.3333333 0.6666667
## Very High 0.7818182 0.2181818
##
## $prop.col
## y
## x 1 2
## High 0.30303030 0.40000000
## Low 0.01515152 0.06666667
## Medium 0.03030303 0.13333333
## Very High 0.65151515 0.40000000
##
## $prop.tbl
## y
## x 1 2
## High 0.20833333 0.12500000
## Low 0.01041667 0.02083333
## Medium 0.02083333 0.04166667
## Very High 0.44791667 0.12500000
table2=matrix(c(3,6,63,24) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 3 63
## High and Very High 6 24
chisq.test(table2)
## Warning in chisq.test(table2): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 4.1218, df = 1, p-value = 0.04233
CramerV(table2)
## [1] 0.2457582
library(gmodels)
Crosstabdata<-CrossTable(LC$`PlazaLevel`, LC$III)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 96
##
##
## | LC$III
## LC$PlazaLevel | 1 | 2 | Row Total |
## --------------|-----------|-----------|-----------|
## High | 14 | 3 | 17 |
## | 0.458 | 1.007 | |
## | 0.824 | 0.176 | 0.177 |
## | 0.212 | 0.100 | |
## | 0.146 | 0.031 | |
## --------------|-----------|-----------|-----------|
## Low | 25 | 16 | 41 |
## | 0.360 | 0.793 | |
## | 0.610 | 0.390 | 0.427 |
## | 0.379 | 0.533 | |
## | 0.260 | 0.167 | |
## --------------|-----------|-----------|-----------|
## Medium | 15 | 11 | 26 |
## | 0.462 | 1.017 | |
## | 0.577 | 0.423 | 0.271 |
## | 0.227 | 0.367 | |
## | 0.156 | 0.115 | |
## --------------|-----------|-----------|-----------|
## Very High | 12 | 0 | 12 |
## | 1.705 | 3.750 | |
## | 1.000 | 0.000 | 0.125 |
## | 0.182 | 0.000 | |
## | 0.125 | 0.000 | |
## --------------|-----------|-----------|-----------|
## Column Total | 66 | 30 | 96 |
## | 0.688 | 0.312 | |
## --------------|-----------|-----------|-----------|
##
##
Crosstabdata
## $t
## y
## x 1 2
## High 14 3
## Low 25 16
## Medium 15 11
## Very High 12 0
##
## $prop.row
## y
## x 1 2
## High 0.8235294 0.1764706
## Low 0.6097561 0.3902439
## Medium 0.5769231 0.4230769
## Very High 1.0000000 0.0000000
##
## $prop.col
## y
## x 1 2
## High 0.2121212 0.1000000
## Low 0.3787879 0.5333333
## Medium 0.2272727 0.3666667
## Very High 0.1818182 0.0000000
##
## $prop.tbl
## y
## x 1 2
## High 0.1458333 0.0312500
## Low 0.2604167 0.1666667
## Medium 0.1562500 0.1145833
## Very High 0.1250000 0.0000000
table2=matrix(c(40,27,26,3) ,ncol=2)
colnames(table2)=c("Yes", "No")
rownames(table2)=c("Low and Medium", "High and Very High")
table2
## Yes No
## Low and Medium 40 26
## High and Very High 27 3
chisq.test(table2)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table2
## X-squared = 7.1157, df = 1, p-value = 0.007641
CramerV(table2)
## [1] 0.2967249