Preliminary Analysis

Initial Correlation Check

corrs <- brm(mvbind(ethicalPreference, financialPreference, socialPreference, healthAndSafetyPreference, recreationalPreference) ~ 1, data = Experiment_2_demographics, family = student(), cores = parallel::detectCores(), prior = c(
    prior(gamma(2, 0.1), class = "nu"), prior(normal(0, 1), class = "Intercept"), 
    prior(normal(0.56, 1.56), class = "sigma", resp = "ethicalPreference"),
    prior(normal(0.21, 1.59), class = "sigma", resp = "financialPreference"),
    prior(normal(0.31, 2.49), class = "sigma", resp = "healthAndSafetyPreference"),
    prior(normal(0.63, 1.86), class = "sigma", resp = "recreationalPreference"),
    prior(normal(0.83, 1.83), class = "sigma", resp = "socialPreference")
), iter = 5000, warmup = 500, backend = "cmdstanr")
saveRDS(corrs, "DOSPERT_Correlation.rds")
summary(corrs)
##  Family: MV(student, student, student, student, student) 
##   Links: mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity 
## Formula: ethicalPreference ~ 1 
##          financialPreference ~ 1 
##          socialPreference ~ 1 
##          healthAndSafetyPreference ~ 1 
##          recreationalPreference ~ 1 
##    Data: Experiment_2_demographics (Number of observations: 289) 
##   Draws: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
##          total post-warmup draws = 18000
## 
## Population-Level Effects: 
##                                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## ethicalPreference_Intercept             2.71      0.87     0.99     4.39 1.00    10092    12383
## financialPreference_Intercept           6.09      0.96     4.24     7.97 1.00    16969    13580
## socialPreference_Intercept              5.58      0.94     3.76     7.44 1.00    16878    12604
## healthAndSafetyPreference_Intercept     3.35      0.87     1.64     5.04 1.00    16430    12296
## recreationalPreference_Intercept        2.82      0.89     1.06     4.55 1.00    16362    13344
## 
## Family Specific Parameters: 
##                                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_ethicalPreference            11.66      0.64    10.39    12.93 1.00     7892     9282
## sigma_financialPreference          19.66      0.89    17.90    21.40 1.00     7568     8352
## sigma_socialPreference             16.49      0.81    14.90    18.07 1.00     7631     9817
## sigma_healthAndSafetyPreference    11.94      0.70    10.57    13.31 1.00     7885     9336
## sigma_recreationalPreference       14.65      0.75    13.18    16.11 1.00     7687     9300
## nu                                  2.82      0.51     1.98     3.93 1.00     7086     9550
## nu_ethicalPreference                1.00      0.00     1.00     1.00   NA       NA       NA
## nu_financialPreference              1.00      0.00     1.00     1.00   NA       NA       NA
## nu_socialPreference                 1.00      0.00     1.00     1.00   NA       NA       NA
## nu_healthAndSafetyPreference        1.00      0.00     1.00     1.00   NA       NA       NA
## nu_recreationalPreference           1.00      0.00     1.00     1.00   NA       NA       NA
## 
## Residual Correlations: 
##                                                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(ethicalPreference,financialPreference)                0.87      0.01     0.84     0.90 1.00     8977    11238
## rescor(ethicalPreference,socialPreference)                   0.83      0.02     0.78     0.86 1.00     8380    11562
## rescor(financialPreference,socialPreference)                 0.90      0.01     0.87     0.92 1.00    13983    13499
## rescor(ethicalPreference,healthAndSafetyPreference)          0.90      0.01     0.87     0.92 1.00     8930    11130
## rescor(financialPreference,healthAndSafetyPreference)        0.88      0.01     0.85     0.90 1.00    14638    13958
## rescor(socialPreference,healthAndSafetyPreference)           0.89      0.01     0.86     0.91 1.00    16794    14338
## rescor(ethicalPreference,recreationalPreference)             0.84      0.02     0.81     0.88 1.00     8883    12483
## rescor(financialPreference,recreationalPreference)           0.89      0.01     0.86     0.91 1.00    14360    14876
## rescor(socialPreference,recreationalPreference)              0.90      0.01     0.88     0.92 1.00    15907    14065
## rescor(healthAndSafetyPreference,recreationalPreference)     0.91      0.01     0.89     0.93 1.00    17032    14397
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Demographics Section

Experiment_2_demographics$Gender <- as.factor(Experiment_2_demographics$Gender)
ggplot(Experiment_2_demographics, aes(x = Gender, fill = Gender)) +
    geom_histogram(stat = "count") +
    labs(x = "Gender") +
    scale_x_discrete(labels = c("Female", "Male", "Gender \nNon-Binary", "Prefer not \nto respond")) +
    scale_y_continuous(breaks = seq(0, 250, 20)) + 
    theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Experiment_2_demographics_Gender$Gender <- as.factor(Experiment_2_demographics_Gender$Gender)
d2 <- Experiment_2_demographics_Gender %>%
  mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Gender")), ~as.factor(recode(., "1" = "Female", "2" = "Male")))
ggplot(d2, aes(x = Age, fill = Gender)) +
        geom_bar(data = subset(d2, Gender == "Female")) + 
        geom_bar(data = subset(d2, Gender == "Male"), aes(y = ..count..*(-1))) +
        scale_y_continuous(breaks = seq(-30, 30, 1), labels = abs(seq(-30, 30, 1))) + 
        scale_x_continuous(breaks = seq(20, 80, 5)) + 
        ylab("Number of Participants") + 
        xlab("Age of Participants (In years)") + 
        geom_hline(yintercept = 0) + 
        coord_flip()

Experiment_2_demographics$Ethnicity <- as.factor(Experiment_2_demographics$Ethnicity)
ggplot(Experiment_2_demographics, aes(x = Ethnicity, fill = Ethnicity)) +
    geom_histogram(stat = "count") +
    scale_x_discrete(labels = c("White ", "Mixed \nor \nMulti-ethnic ", "Asian \nor \nAsian Scottish \nor \nAsian British", "African", "Caribbean \nor \nBlack", "Arab ", "Other ethnicity", "Prefer not \nto respond")) + 
    scale_y_continuous(breaks = seq(0, 250, 20)) + 
    theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Experiment_2_demographics$Ethnic_Origin <- as.factor(Experiment_2_demographics$Ethnic_Origin)
ggplot(Experiment_2_demographics, aes(x = Ethnic_Origin, fill = Ethnic_Origin)) +
    geom_histogram(stat = "count") +
    scale_x_discrete(labels = c("Scottish", "English", "European", "Latin \nAmerican", "Asian", "Arab", "African", "Other", "Prefer not \nto respond")) + 
    scale_y_continuous(breaks = seq(0, 250, 20)) + 
    theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Experiment_2_demographics$Education <- as.factor(Experiment_2_demographics$Education)
ggplot(Experiment_2_demographics, aes(x = Education, fill = Education)) +
    geom_histogram(stat = "count") +
    scale_x_discrete(labels = c("Primary School ", "GCSEs \nor \nEquivalent", "A-Levels \nor \nEquivalent", "University \nUndergraduate \nProgram", "University \nPost-Graduate \nProgram", "Doctoral \nDegree", "Prefer not \nto respond")) + 
    scale_y_continuous(breaks = seq(0, 250, 20)) + 
    theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

## B-PNI distribution

B_PNI_1 <- ggplot(Experiment_2_demographics, aes(x = Age, y = PNI_Sum)) +
    geom_point(size = 0.7, alpha = 0.8, position = "jitter") +
    geom_smooth(method = "lm", se = FALSE, size = 2, alpha = 0.8)
ggplotly(B_PNI_1)
## brms SEM attempt
riska <- lm(riskBenefitSum ~ riskSum, data = Experiment_2_demographics)
riskb <- lm(riskBenefitSum ~ riskPerceptionSum, data = Experiment_2_demographics)
Experiment_2_demographics$generalRiskPreference <- (Experiment_2_J_Analysis[, "riskBenefitSum"] * riska$coefficients[2]) + (Experiment_2_J_Analysis[, "riskPerceptionSum"] * riskb$coefficients[2])

Experiment_2_demographics$generalExpectedBenefits <- (Experiment_2_J_Analysis[, "riskBenefitSum"] * riska$coefficients[2])
Experiment_2_demographics$generalPerceievedRisk <- (Experiment_2_J_Analysis[, "riskPerceptionSum"] * riskb$coefficients[2])

Experiment_2_demographics$generalRiskPreference_z <- scale(Experiment_2_demographics$generalRiskPreference)
Experiment_2_demographics$generalExpectedBenefits_z <- scale(Experiment_2_demographics$generalExpectedBenefits)
Experiment_2_demographics$generalPerceievedRisk_z <- scale(Experiment_2_demographics$generalPerceievedRisk)

Experiment_2_demographics$UMSSum_z <- scale(Experiment_2_demographics$UMSSum)
Experiment_2_demographics$UMSAffiliationSum_z <- scale(Experiment_2_demographics$UMSAffiliationSum)
Experiment_2_demographics$UMSIntimacySum_z <- scale(Experiment_2_demographics$UMSIntimacySum)


Experiment_2_demographics_Gender <- Experiment_2_demographics[!(Experiment_2_demographics$Gender == "3" | Experiment_2_demographics$Gender == "6"), ]

B-PNI distribution: DoPL

B_PNI_1 <- ggplot(Experiment_2_demographics, aes(x = Age, y = PNI_Sum)) +
    geom_point(size = 0.7, alpha = 0.8, position = "jitter") +
    geom_smooth(method = "lm", se = FALSE, size = 2, alpha = 0.8) +
    labs(x = "Age of Participant (in Years)", y = "Brief-Pathological Narcissism Inventory") +
    scale_x_continuous(breaks = seq(20, 80, 5)) + 
    scale_y_continuous(breaks = seq(50, 150, 10)) 
    
ggplotly(B_PNI_1)
## `geom_smooth()` using formula 'y ~ x'

Gender Interaction

gen_mod_1 <- brm(generalRiskPreference ~ prestige_Sum + leadership_Sum + dominance_Sum + Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, backend = "cmdstanr", cores = parallel::detectCores(), 
prior = c(prior(normal(0, 1), class = "Intercept"), 
prior(normal(1.04, 4.92), class = "b", coef = "dominance_Sum"), 
prior(normal(-1.86, 2.04), class = "b", coef = "prestige_Sum"), 
prior(normal(-3.87, 0.04), class = "b", coef = "leadership_Sum"), 
prior(normal(-3, 1), class = "b", coef = "Gender"), 
prior(normal(-3, 1), class = "b", coef = "Age")))

saveRDS(gen_mod_1, "gen_mod_1.rds") 
summary(gen_mod_1)

gen_mod_2 <- brm(generalRiskPreference ~ prestige_Sum + PNI_Sum_z + leadership_Sum + dominance_Sum + Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, backend = "cmdstanr", cores = parallel::detectCores(), 
prior = c(prior(normal(0, 1), class = "Intercept"), 
prior(normal(1.04, 4.92), class = "b", coef = "dominance_Sum"), 
prior(normal(-1.86, 2.04), class = "b", coef = "prestige_Sum"), 
prior(normal(-3.87, 0.04), class = "b", coef = "leadership_Sum"), 
prior(normal(0, 1), class = "b", coef = "PNI_Sum_z"), 
prior(normal(-3, 1), class = "b", coef = "Gender"), 
prior(normal(-3, 1), class = "b", coef = "Age")))

saveRDS(gen_mod_2, "gen_mod_2.rds")
summary(gen_mod_2)

correlation_df <- Experiment_2_demographics[, grepl("_z", names(Experiment_2_demographics))]

correlation_df$dominance_Sum_z <- Experiment_2_demographics$dominance_Sum_z
correlation_df$prestige_Sum_z <- Experiment_2_demographics$prestige_Sum_z
correlation_df$leadership_Sum_z <- Experiment_2_demographics$leadership_Sum_z

corr_1 <- cor(correlation_df)

corrplot(corr_1, method = "circle", type = "lower")
summary(gen_mod_1)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ prestige_Sum + leadership_Sum + dominance_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept         20.38      2.62    15.26    25.52 1.00    54118    28545
## prestige_Sum       0.17      0.72    -1.25     1.59 1.00    53626    28977
## leadership_Sum    -3.86      0.04    -3.94    -3.78 1.00    55580    27077
## dominance_Sum      4.23      0.77     2.72     5.75 1.00    46681    28401
## Gender            -1.48      0.85    -3.15     0.17 1.00    54172    28064
## Age               -0.23      0.08    -0.38    -0.08 1.00    52138    26433
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    12.28      0.65    11.09    13.63 1.00    40157    28565
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
summary(gen_mod_2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ prestige_Sum + PNI_Sum_z + leadership_Sum + dominance_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept         20.34      2.65    15.06    25.53 1.00    58238    28374
## prestige_Sum       0.16      0.74    -1.30     1.62 1.00    53961    27838
## PNI_Sum_z          0.06      0.68    -1.28     1.40 1.00    53306    28647
## leadership_Sum    -3.86      0.04    -3.94    -3.78 1.00    63199    26162
## dominance_Sum      4.20      0.80     2.63     5.77 1.00    55688    28140
## Gender            -1.48      0.84    -3.15     0.18 1.00    59491    27235
## Age               -0.23      0.08    -0.38    -0.08 1.00    55069    27740
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    12.29      0.65    11.11    13.65 1.00    40954    29097
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
ggcorrplot(corr_1, type = "lower") + 
scale_x_discrete(labels = c(seq(1, 26, 1))) + 
scale_y_discrete(labels = corr_labels) 

Gender Interaction: DOSPERT

m1_int <- brm(generalRiskPreference ~ dominance_Sum * Gender + leadership_Sum * Gender + prestige_Sum * Gender + Age,
    data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000,
    prior = c(
        prior(normal(0, 1), class = "Intercept"),
        prior(normal(1.04, 4.92), class = "b", coef = "dominanceSum"),
        prior(normal(-1.86, 2.04), class = "b", coef = "prestigeSum"),
        prior(normal(-3.87, 0.04), class = "b", coef = "leadershipSum"),
        prior(normal(-1.93, 1.91), class = "b", coef = "dominance_Sum:Gender"),
        prior(normal(-1.85, 1.98), class = "b", coef = "Gender:prestigeSum"),
        prior(normal(-1.88, 1.98), class = "b", coef = "Gender:leadershipSum"),
        prior(normal(-4.74, 1), class = "b", coef = "Age")
    ), save_pars = save_pars(all = T)
)
summary(m1_int)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##          financialPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##          socialPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##          recreationalPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 40000; warmup = 1000; thin = 1;
##          total post-warmup draws = 156000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept                         0.15      0.23    -0.30     0.61 1.00   194459   133021
## financialPreferencez_Intercept                       0.03      0.26    -0.48     0.53 1.00   201934   125331
## socialPreferencez_Intercept                          1.23      0.24     0.77     1.70 1.00   195841   131654
## healthAndSafetyPreferencez_Intercept                 0.53      0.25     0.05     1.01 1.00   180945   132435
## recreationalPreferencez_Intercept                    0.55      0.25     0.07     1.04 1.00   191576   133042
## ethicalPreferencez_dominance_Sum                     0.07      0.19    -0.31     0.45 1.00   106102   112402
## ethicalPreferencez_Gender                            0.28      0.11     0.07     0.49 1.00   175818   129147
## ethicalPreferencez_prestige_Sum                     -0.26      0.17    -0.60     0.08 1.00   112995   115323
## ethicalPreferencez_leadership_Sum                   -0.18      0.18    -0.54     0.18 1.00   110249   113394
## ethicalPreferencez_Age                              -0.02      0.01    -0.03    -0.01 1.00   202193   134791
## ethicalPreferencez_dominance_Sum:Gender              0.16      0.12    -0.06     0.39 1.00   107999   112689
## ethicalPreferencez_Gender:prestige_Sum               0.16      0.11    -0.05     0.37 1.00   116062   115157
## ethicalPreferencez_Gender:leadership_Sum             0.00      0.11    -0.21     0.22 1.00   111469   115388
## financialPreferencez_dominance_Sum                   0.02      0.22    -0.40     0.44 1.00   115275   112622
## financialPreferencez_Gender                          0.19      0.12    -0.05     0.42 1.00   191208   126977
## financialPreferencez_prestige_Sum                   -0.29      0.21    -0.70     0.12 1.00   115007   118113
## financialPreferencez_leadership_Sum                 -0.03      0.21    -0.43     0.38 1.00   114356   114775
## financialPreferencez_Age                            -0.01      0.01    -0.02     0.00 1.00   209762   128368
## financialPreferencez_dominance_Sum:Gender            0.04      0.13    -0.21     0.29 1.00   115737   113097
## financialPreferencez_Gender:prestige_Sum             0.17      0.13    -0.08     0.42 1.00   116996   116728
## financialPreferencez_Gender:leadership_Sum           0.08      0.12    -0.17     0.32 1.00   116532   114675
## socialPreferencez_dominance_Sum                      0.00      0.20    -0.39     0.40 1.00   117390   117165
## socialPreferencez_Gender                            -0.45      0.11    -0.67    -0.23 1.00   193249   132341
## socialPreferencez_prestige_Sum                       0.10      0.19    -0.29     0.48 1.00   120181   114678
## socialPreferencez_leadership_Sum                     0.15      0.20    -0.24     0.55 1.00   115822   116967
## socialPreferencez_Age                               -0.02      0.01    -0.03    -0.01 1.00   206330   131871
## socialPreferencez_dominance_Sum:Gender               0.00      0.12    -0.23     0.23 1.00   117661   117365
## socialPreferencez_Gender:prestige_Sum               -0.04      0.12    -0.27     0.19 1.00   122383   112483
## socialPreferencez_Gender:leadership_Sum              0.07      0.12    -0.17     0.31 1.00   116076   117168
## healthAndSafetyPreferencez_dominance_Sum             0.30      0.20    -0.10     0.71 1.00    97150   109277
## healthAndSafetyPreferencez_Gender                    0.01      0.12    -0.21     0.24 1.00   164143   127545
## healthAndSafetyPreferencez_prestige_Sum             -0.58      0.18    -0.93    -0.23 1.00   110940   116552
## healthAndSafetyPreferencez_leadership_Sum            0.04      0.19    -0.34     0.41 1.00   101058   113423
## healthAndSafetyPreferencez_Age                      -0.02      0.01    -0.03    -0.01 1.00   188671   131843
## healthAndSafetyPreferencez_dominance_Sum:Gender      0.00      0.12    -0.24     0.24 1.00    96407   107331
## healthAndSafetyPreferencez_Gender:prestige_Sum       0.24      0.11     0.02     0.46 1.00   112858   117222
## healthAndSafetyPreferencez_Gender:leadership_Sum    -0.02      0.11    -0.24     0.20 1.00   100709   113013
## recreationalPreferencez_dominance_Sum                0.49      0.20     0.09     0.88 1.00   109723   116207
## recreationalPreferencez_Gender                       0.21      0.12    -0.02     0.44 1.00   177524   130251
## recreationalPreferencez_prestige_Sum                -0.50      0.12    -0.73    -0.27 1.00   135431   118997
## recreationalPreferencez_leadership_Sum               0.16      0.17    -0.18     0.49 1.00   113098   114740
## recreationalPreferencez_Age                         -0.03      0.01    -0.04    -0.02 1.00   195400   131867
## recreationalPreferencez_dominance_Sum:Gender        -0.21      0.12    -0.44     0.03 1.00   110342   116372
## recreationalPreferencez_Gender:prestige_Sum          0.18      0.08     0.02     0.33 1.00   138852   118756
## recreationalPreferencez_Gender:leadership_Sum        0.00      0.11    -0.21     0.21 1.00   113755   115728
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez             0.88      0.04     0.81     0.96 1.00   179581   123546
## sigma_financialPreferencez           0.98      0.04     0.90     1.07 1.00   201653   123283
## sigma_socialPreferencez              0.90      0.04     0.83     0.98 1.00   195350   124743
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.03 1.00   173147   129171
## sigma_recreationalPreferencez        0.94      0.04     0.87     1.03 1.00   182457   126634
## 
## Residual Correlations: 
##                                                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)                0.35      0.05     0.25     0.45 1.00   187097   125639
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06     0.02     0.25 1.00   183560   128837
## rescor(financialPreferencez,socialPreferencez)                 0.24      0.06     0.12     0.35 1.00   181861   127590
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05     0.40     0.58 1.00   163628   128023
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06     0.09     0.32 1.00   168893   126323
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.32      0.05     0.21     0.42 1.00   184028   127125
## rescor(ethicalPreferencez,recreationalPreferencez)             0.21      0.06     0.09     0.32 1.00   168023   128043
## rescor(financialPreferencez,recreationalPreferencez)           0.23      0.06     0.11     0.34 1.00   169702   129008
## rescor(socialPreferencez,recreationalPreferencez)              0.39      0.05     0.28     0.48 1.00   170766   126967
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.46      0.05     0.36     0.55 1.00   179814   129305
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

m1 <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
    prior = prior_test_1, warmup = 1000, iter = 40000, save_pars = save_pars(all = TRUE)
)
summary(m1)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          financialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          socialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          recreationalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 40000; warmup = 1000; thin = 1;
##          total post-warmup draws = 156000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept                  0.19      0.23    -0.26     0.64 1.00   212551   133987
## financialPreferencez_Intercept                0.01      0.25    -0.48     0.51 1.00   228435   131270
## socialPreferencez_Intercept                   1.24      0.23     0.78     1.69 1.00   220488   135807
## healthAndSafetyPreferencez_Intercept          0.52      0.24     0.04     1.00 1.00   207755   137383
## recreationalPreferencez_Intercept             0.51      0.24     0.03     0.99 1.00   219477   135665
## ethicalPreferencez_dominance_Sum              0.33      0.06     0.21     0.45 1.00   184984   130137
## ethicalPreferencez_prestige_Sum              -0.05      0.06    -0.17     0.07 1.00   177533   129800
## ethicalPreferencez_leadership_Sum            -0.18      0.06    -0.30    -0.06 1.00   179079   133837
## ethicalPreferencez_Gender                     0.27      0.11     0.05     0.48 1.00   197403   131456
## ethicalPreferencez_Age                       -0.02      0.01    -0.03    -0.01 1.00   204831   134759
## financialPreferencez_dominance_Sum            0.09      0.06    -0.04     0.21 1.00   197536   129809
## financialPreferencez_prestige_Sum            -0.05      0.07    -0.18     0.08 1.00   196888   131918
## financialPreferencez_leadership_Sum           0.09      0.07    -0.04     0.22 1.00   193177   130283
## financialPreferencez_Gender                   0.19      0.12    -0.05     0.42 1.00   211525   132426
## financialPreferencez_Age                     -0.01      0.01    -0.02     0.00 1.00   223451   130857
## socialPreferencez_dominance_Sum               0.01      0.06    -0.11     0.13 1.00   200558   135972
## socialPreferencez_prestige_Sum                0.01      0.06    -0.11     0.13 1.00   192297   130284
## socialPreferencez_leadership_Sum              0.28      0.06     0.15     0.40 1.00   188379   130679
## socialPreferencez_Gender                     -0.45      0.11    -0.67    -0.24 1.00   204118   132949
## socialPreferencez_Age                        -0.02      0.01    -0.03    -0.01 1.00   209135   136084
## healthAndSafetyPreferencez_dominance_Sum      0.30      0.06     0.18     0.42 1.00   164714   130272
## healthAndSafetyPreferencez_prestige_Sum      -0.24      0.06    -0.36    -0.11 1.00   166704   130732
## healthAndSafetyPreferencez_leadership_Sum     0.00      0.06    -0.12     0.13 1.00   163164   133531
## healthAndSafetyPreferencez_Gender             0.01      0.12    -0.21     0.24 1.00   179963   134646
## healthAndSafetyPreferencez_Age               -0.02      0.01    -0.03    -0.01 1.00   193445   132048
## recreationalPreferencez_dominance_Sum         0.16      0.06     0.04     0.28 1.00   183480   134769
## recreationalPreferencez_prestige_Sum         -0.27      0.06    -0.39    -0.16 1.00   190445   134418
## recreationalPreferencez_leadership_Sum        0.18      0.06     0.05     0.30 1.00   179093   130894
## recreationalPreferencez_Gender                0.23      0.12    -0.00     0.45 1.00   194446   130133
## recreationalPreferencez_Age                  -0.03      0.01    -0.04    -0.02 1.00   203011   133743
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez             0.89      0.04     0.82     0.97 1.00   215952   127953
## sigma_financialPreferencez           0.98      0.04     0.90     1.06 1.00   240264   126716
## sigma_socialPreferencez              0.90      0.04     0.83     0.98 1.00   238825   122865
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.02 1.00   202093   133684
## sigma_recreationalPreferencez        0.94      0.04     0.86     1.02 1.00   223714   129971
## 
## Residual Correlations: 
##                                                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)                0.36      0.05     0.25     0.46 1.00   225531   126597
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06     0.01     0.24 1.00   215552   132800
## rescor(financialPreferencez,socialPreferencez)                 0.23      0.06     0.12     0.34 1.00   216115   128669
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05     0.41     0.58 1.00   193681   135547
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06     0.09     0.32 1.00   206857   132917
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05     0.20     0.42 1.00   212954   127137
## rescor(ethicalPreferencez,recreationalPreferencez)             0.19      0.06     0.07     0.30 1.00   196279   134270
## rescor(financialPreferencez,recreationalPreferencez)           0.21      0.06     0.10     0.32 1.00   203114   131793
## rescor(socialPreferencez,recreationalPreferencez)              0.38      0.05     0.28     0.48 1.00   199639   130658
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05     0.35     0.54 1.00   201961   130657
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m1_hdi <- bayestestR::hdi(m1, effects = "fixed", component = "conditional", ci = .95)
kable(m1_hdi[
    sign(m1_hdi$CI_low) == sign(m1_hdi$CI_high),
    c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
    kable_styling(full_width = T) %>%
    remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_dominance_Sum 0.95 0.21 0.44
b_ethicalPreferencez_leadership_Sum 0.95 -0.30 -0.06
b_ethicalPreferencez_Gender 0.95 0.05 0.48
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.78 1.69
b_socialPreferencez_leadership_Sum 0.95 0.15 0.40
b_socialPreferencez_Gender 0.95 -0.67 -0.23
b_socialPreferencez_Age 0.95 -0.03 -0.01
b_healthAndSafetyPreferencez_Intercept 0.95 0.04 1.00
b_healthAndSafetyPreferencez_dominance_Sum 0.95 0.18 0.43
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -0.36 -0.11
b_healthAndSafetyPreferencez_Age 0.95 -0.03 -0.01
b_recreationalPreferencez_Intercept 0.95 0.04 0.99
b_recreationalPreferencez_dominance_Sum 0.95 0.04 0.28
b_recreationalPreferencez_prestige_Sum 0.95 -0.39 -0.16
b_recreationalPreferencez_leadership_Sum 0.95 0.05 0.30
b_recreationalPreferencez_Age 0.95 -0.04 -0.02

m1_int <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
    prior = prior_gender_int, warmup = 1000, iter = 40000, save_pars = save_pars(all = TRUE)
)
summary(m1)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          financialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          socialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          recreationalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 40000; warmup = 1000; thin = 1;
##          total post-warmup draws = 156000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept                  0.19      0.23    -0.26     0.64 1.00   212551   133987
## financialPreferencez_Intercept                0.01      0.25    -0.48     0.51 1.00   228435   131270
## socialPreferencez_Intercept                   1.24      0.23     0.78     1.69 1.00   220488   135807
## healthAndSafetyPreferencez_Intercept          0.52      0.24     0.04     1.00 1.00   207755   137383
## recreationalPreferencez_Intercept             0.51      0.24     0.03     0.99 1.00   219477   135665
## ethicalPreferencez_dominance_Sum              0.33      0.06     0.21     0.45 1.00   184984   130137
## ethicalPreferencez_prestige_Sum              -0.05      0.06    -0.17     0.07 1.00   177533   129800
## ethicalPreferencez_leadership_Sum            -0.18      0.06    -0.30    -0.06 1.00   179079   133837
## ethicalPreferencez_Gender                     0.27      0.11     0.05     0.48 1.00   197403   131456
## ethicalPreferencez_Age                       -0.02      0.01    -0.03    -0.01 1.00   204831   134759
## financialPreferencez_dominance_Sum            0.09      0.06    -0.04     0.21 1.00   197536   129809
## financialPreferencez_prestige_Sum            -0.05      0.07    -0.18     0.08 1.00   196888   131918
## financialPreferencez_leadership_Sum           0.09      0.07    -0.04     0.22 1.00   193177   130283
## financialPreferencez_Gender                   0.19      0.12    -0.05     0.42 1.00   211525   132426
## financialPreferencez_Age                     -0.01      0.01    -0.02     0.00 1.00   223451   130857
## socialPreferencez_dominance_Sum               0.01      0.06    -0.11     0.13 1.00   200558   135972
## socialPreferencez_prestige_Sum                0.01      0.06    -0.11     0.13 1.00   192297   130284
## socialPreferencez_leadership_Sum              0.28      0.06     0.15     0.40 1.00   188379   130679
## socialPreferencez_Gender                     -0.45      0.11    -0.67    -0.24 1.00   204118   132949
## socialPreferencez_Age                        -0.02      0.01    -0.03    -0.01 1.00   209135   136084
## healthAndSafetyPreferencez_dominance_Sum      0.30      0.06     0.18     0.42 1.00   164714   130272
## healthAndSafetyPreferencez_prestige_Sum      -0.24      0.06    -0.36    -0.11 1.00   166704   130732
## healthAndSafetyPreferencez_leadership_Sum     0.00      0.06    -0.12     0.13 1.00   163164   133531
## healthAndSafetyPreferencez_Gender             0.01      0.12    -0.21     0.24 1.00   179963   134646
## healthAndSafetyPreferencez_Age               -0.02      0.01    -0.03    -0.01 1.00   193445   132048
## recreationalPreferencez_dominance_Sum         0.16      0.06     0.04     0.28 1.00   183480   134769
## recreationalPreferencez_prestige_Sum         -0.27      0.06    -0.39    -0.16 1.00   190445   134418
## recreationalPreferencez_leadership_Sum        0.18      0.06     0.05     0.30 1.00   179093   130894
## recreationalPreferencez_Gender                0.23      0.12    -0.00     0.45 1.00   194446   130133
## recreationalPreferencez_Age                  -0.03      0.01    -0.04    -0.02 1.00   203011   133743
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez             0.89      0.04     0.82     0.97 1.00   215952   127953
## sigma_financialPreferencez           0.98      0.04     0.90     1.06 1.00   240264   126716
## sigma_socialPreferencez              0.90      0.04     0.83     0.98 1.00   238825   122865
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.02 1.00   202093   133684
## sigma_recreationalPreferencez        0.94      0.04     0.86     1.02 1.00   223714   129971
## 
## Residual Correlations: 
##                                                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)                0.36      0.05     0.25     0.46 1.00   225531   126597
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06     0.01     0.24 1.00   215552   132800
## rescor(financialPreferencez,socialPreferencez)                 0.23      0.06     0.12     0.34 1.00   216115   128669
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05     0.41     0.58 1.00   193681   135547
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06     0.09     0.32 1.00   206857   132917
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05     0.20     0.42 1.00   212954   127137
## rescor(ethicalPreferencez,recreationalPreferencez)             0.19      0.06     0.07     0.30 1.00   196279   134270
## rescor(financialPreferencez,recreationalPreferencez)           0.21      0.06     0.10     0.32 1.00   203114   131793
## rescor(socialPreferencez,recreationalPreferencez)              0.38      0.05     0.28     0.48 1.00   199639   130658
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05     0.35     0.54 1.00   201961   130657
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m1_int_hdi <- bayestestR::hdi(m1_int, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_hdi[
    sign(m1_int_hdi$CI_low) == sign(m1_int_hdi$CI_high),
    c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
    kable_styling(full_width = T) %>%
    remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_Gender 0.95 0.06 0.49
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.77 1.69
b_socialPreferencez_Gender 0.95 -0.67 -0.23
b_socialPreferencez_Age 0.95 -0.03 -0.01
b_healthAndSafetyPreferencez_Intercept 0.95 0.04 1.01
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -0.94 -0.23
b_healthAndSafetyPreferencez_Age 0.95 -0.03 -0.01
b_healthAndSafetyPreferencez_Gender:prestige_Sum 0.95 0.02 0.46
b_recreationalPreferencez_Intercept 0.95 0.07 1.03
b_recreationalPreferencez_dominance_Sum 0.95 0.09 0.88
b_recreationalPreferencez_prestige_Sum 0.95 -0.73 -0.27
b_recreationalPreferencez_Age 0.95 -0.04 -0.02
b_recreationalPreferencez_Gender:prestige_Sum 0.95 0.02 0.33
mod_pni <- brm(generalRiskPreference ~ dominance_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Age + Gender,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
    warmup = 1000, iter = 10000,
    prior = prior_int_mod, save_pars = save_pars(all = TRUE)
)
summary(mod_pni)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ dominance_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Age + Gender 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              17.87      2.49    12.98    22.69 1.00    50781    28450
## dominance_Sum           3.05      0.74     1.61     4.49 1.00    48860    28576
## grandiosity_Sum_z       0.14      0.62    -1.07     1.35 1.00    53440    28354
## vulnerability_Sum_z    -0.50      0.64    -1.75     0.75 1.00    45932    27990
## Age                    -0.26      0.07    -0.40    -0.11 1.00    48955    27280
## Gender                  1.03      0.82    -0.58     2.63 1.00    50314    26042
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    11.24      0.59    10.17    12.46 1.00    40098    29140
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
mod_pni_gen <- brm(generalRiskPreference ~ dominance_Sum * Gender + grandiosity_Sum_z * Gender + vulnerability_Sum_z * Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
    warmup = 1000, iter = 10000,
    prior = prior_int_gen_mod, save_pars = save_pars(all = TRUE)
)
m3 <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m3,
    save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)
saveRDS(m3, "m3.rds")
summary(m3)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          prestige_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          leadership_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                        0.06      0.26    -0.43     0.57 1.00    43108    30289
## prestigeSum_Intercept                         1.00      0.28     0.47     1.55 1.00    46976    30549
## leadershipSum_Intercept                       0.30      0.26    -0.21     0.82 1.00    43748    30563
## dominanceSum_ethicalPreference_z              0.29      0.07     0.16     0.42 1.00    41604    28252
## dominanceSum_financialPreference_z           -0.18      0.02    -0.21    -0.15 1.00    49934    25993
## dominanceSum_socialPreference_z              -0.06      0.07    -0.19     0.07 1.00    38332    28424
## dominanceSum_healthAndSafetyPreference_z      0.05      0.05    -0.05     0.14 1.00    46005    29959
## dominanceSum_recreationalPreference_z         0.03      0.06    -0.09     0.14 1.00    42718    27766
## dominanceSum_Gender                           0.27      0.12     0.03     0.51 1.00    40142    29811
## dominanceSum_Age                             -0.02      0.01    -0.03    -0.00 1.00    42386    30528
## prestigeSum_ethicalPreference_z               0.02      0.08    -0.13     0.17 1.00    38609    29534
## prestigeSum_financialPreference_z             0.02      0.06    -0.10     0.14 1.00    46280    29297
## prestigeSum_socialPreference_z               -0.24      0.01    -0.26    -0.21 1.00    53317    27882
## prestigeSum_healthAndSafetyPreference_z      -0.05      0.06    -0.18     0.08 1.00    42732    29870
## prestigeSum_recreationalPreference_z         -0.08      0.06    -0.20     0.04 1.00    43773    29034
## prestigeSum_Gender                           -0.15      0.13    -0.41     0.11 1.00    40388    29559
## prestigeSum_Age                              -0.03      0.01    -0.04    -0.01 1.00    44319    31444
## leadershipSum_ethicalPreference_z            -0.14      0.07    -0.28     0.00 1.00    38352    30119
## leadershipSum_financialPreference_z           0.03      0.05    -0.07     0.14 1.00    46189    29843
## leadershipSum_socialPreference_z              0.03      0.05    -0.08     0.13 1.00    43874    30655
## leadershipSum_healthAndSafetyPreference_z     0.05      0.06    -0.07     0.16 1.00    42668    29996
## leadershipSum_recreationalPreference_z       -0.05      0.05    -0.14     0.04 1.00    44470    29437
## leadershipSum_Gender                         -0.09      0.13    -0.34     0.16 1.00    38622    28561
## leadershipSum_Age                            -0.01      0.01    -0.02     0.01 1.00    41458    30285
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.96      0.04     0.88     1.05 1.00    43621    29634
## sigma_prestigeSum       1.07      0.05     0.98     1.17 1.00    43522    30237
## sigma_leadershipSum     1.00      0.05     0.92     1.10 1.00    38264    29259
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)       0.34      0.06     0.22     0.45 1.00    35973    30300
## rescor(dominanceSum,leadershipSum)     0.38      0.05     0.27     0.48 1.00    34850    29072
## rescor(prestigeSum,leadershipSum)      0.51      0.05     0.41     0.60 1.00    38731    29413
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m7_fixef <- fixef(m7_DoPL_DOSPERT)

m3_int_gender <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m3_int_gender,
    save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)
saveRDS(m3_int_gender, "m3_int_gender.rds")
summary(m3_int_gender)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          prestige_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          leadership_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                              -0.13      0.26    -0.63     0.38 1.00    60311    28813
## prestigeSum_Intercept                                0.54      0.27     0.02     1.06 1.00    55460    30671
## leadershipSum_Intercept                              0.04      0.26    -0.47     0.55 1.00    54450    29788
## dominanceSum_ethicalPreference_z                     0.02      0.16    -0.30     0.34 1.00    39555    28419
## dominanceSum_Gender                                  0.34      0.12     0.10     0.58 1.00    60987    29332
## dominanceSum_financialPreference_z                  -0.19      0.02    -0.22    -0.16 1.00    81451    28314
## dominanceSum_socialPreference_z                     -0.08      0.15    -0.38     0.21 1.00    38003    27738
## dominanceSum_healthAndSafetyPreference_z            -0.04      0.06    -0.16     0.09 1.00    51911    30155
## dominanceSum_recreationalPreference_z               -0.05      0.10    -0.25     0.15 1.00    40757    28528
## dominanceSum_Age                                    -0.01      0.01    -0.03    -0.00 1.00    62665    31245
## dominanceSum_ethicalPreference_z:Gender              0.11      0.10    -0.08     0.31 1.00    37779    28381
## dominanceSum_Gender:financialPreference_z            0.10      0.04     0.02     0.18 1.00    64844    27567
## dominanceSum_Gender:socialPreference_z               0.09      0.10    -0.10     0.29 1.00    36694    27615
## dominanceSum_Gender:healthAndSafetyPreference_z      0.09      0.06    -0.03     0.21 1.00    48764    29800
## dominanceSum_Gender:recreationalPreference_z         0.03      0.07    -0.11     0.17 1.00    38005    28942
## prestigeSum_ethicalPreference_z                     -0.04      0.16    -0.35     0.28 1.00    38355    29070
## prestigeSum_Gender                                   0.08      0.13    -0.17     0.34 1.00    50359    31078
## prestigeSum_financialPreference_z                   -0.08      0.13    -0.33     0.17 1.00    39406    28808
## prestigeSum_socialPreference_z                      -0.25      0.01    -0.28    -0.22 1.00    84103    25983
## prestigeSum_healthAndSafetyPreference_z             -0.06      0.10    -0.25     0.14 1.00    42767    31207
## prestigeSum_recreationalPreference_z                -0.10      0.10    -0.30     0.10 1.00    42002    28485
## prestigeSum_Age                                     -0.02      0.01    -0.03    -0.01 1.00    59756    30700
## prestigeSum_ethicalPreference_z:Gender               0.04      0.10    -0.15     0.24 1.00    36641    29442
## prestigeSum_Gender:financialPreference_z             0.07      0.08    -0.08     0.23 1.00    37583    27891
## prestigeSum_Gender:socialPreference_z                0.31      0.05     0.22     0.40 1.00    59282    27962
## prestigeSum_Gender:healthAndSafetyPreference_z      -0.05      0.08    -0.20     0.10 1.00    38228    29619
## prestigeSum_Gender:recreationalPreference_z         -0.02      0.07    -0.16     0.12 1.00    38638    28723
## leadershipSum_ethicalPreference_z                   -0.08      0.17    -0.42     0.25 1.00    35587    28717
## leadershipSum_Gender                                 0.04      0.13    -0.21     0.28 1.00    49559    30301
## leadershipSum_financialPreference_z                 -0.08      0.09    -0.26     0.09 1.00    45054    29233
## leadershipSum_socialPreference_z                    -0.14      0.07    -0.29     0.01 1.00    45591    30501
## leadershipSum_healthAndSafetyPreference_z            0.06      0.10    -0.13     0.25 1.00    45420    29998
## leadershipSum_recreationalPreference_z              -0.15      0.06    -0.27    -0.03 1.00    52884    29553
## leadershipSum_Age                                   -0.00      0.01    -0.01     0.01 1.00    56744    29487
## leadershipSum_ethicalPreference_z:Gender            -0.04      0.10    -0.24     0.17 1.00    34003    28880
## leadershipSum_Gender:financialPreference_z           0.11      0.06    -0.02     0.23 1.00    42619    29489
## leadershipSum_Gender:socialPreference_z              0.30      0.06     0.18     0.42 1.00    39614    29267
## leadershipSum_Gender:healthAndSafetyPreference_z    -0.06      0.07    -0.21     0.08 1.00    42070    29980
## leadershipSum_Gender:recreationalPreference_z        0.09      0.06    -0.01     0.20 1.00    46407    29432
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.94      0.04     0.87     1.03 1.00    64838    29300
## sigma_prestigeSum       0.99      0.04     0.91     1.08 1.00    60362    28418
## sigma_leadershipSum     0.97      0.04     0.89     1.06 1.00    58382    27522
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)       0.31      0.06     0.20     0.42 1.00    47676    30279
## rescor(dominanceSum,leadershipSum)     0.37      0.05     0.26     0.47 1.00    50068    30104
## rescor(prestigeSum,leadershipSum)      0.46      0.05     0.37     0.55 1.00    53187    29608
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m3_int_gender_hdi <- bayestestR::hdi(m3_int_gender, effects = "fixed", component = "conditional", ci = .95)
kable(m3_int_gender_hdi[sign(m3_int_gender_hdi$CI_low) == sign(m3_int_gender_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% 
            kable_styling(full_width = T) %>% 
            remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_Gender 0.95 0.11 0.59
b_dominanceSum_financialPreference_z 0.95 -0.22 -0.16
b_dominanceSum_Age 0.95 -0.03 0.00
b_dominanceSum_Gender:financialPreference_z 0.95 0.02 0.18
b_prestigeSum_Intercept 0.95 0.01 1.06
b_prestigeSum_socialPreference_z 0.95 -0.28 -0.22
b_prestigeSum_Age 0.95 -0.03 -0.01
b_prestigeSum_Gender:socialPreference_z 0.95 0.22 0.40
b_leadershipSum_recreationalPreference_z 0.95 -0.28 -0.04
b_leadershipSum_Gender:socialPreference_z 0.95 0.17 0.42
future::plan("multicore")
bla_mod_1 <- "general_Preference =~ generalRiskPreference + prestige_Sum + leadership_Sum + dominance_Sum
general_2Preference =~ generalRiskPreference + PNI_Sum + dominance_Sum + Gender"

fit <- blavaan(bla_mod_1, data = Experiment_2_demographics_Gender, n.chains = 4, auto.var = TRUE, auto.fix.first = TRUE, auto.cov.lv.x = TRUE, target = "cmdstanr", bcontrol = list(cores = parallel::detectCores()))

fit_1 <- bcfa(bla_mod_1, data = Experiment_2_demographics_Gender, n.chains = 4, auto.var = TRUE, auto.fix.first = TRUE, auto.cov.lv.x = TRUE, target = "cmdstanr", sample = 5000, bcontrol = list(cores = parallel::detectCores()))

fit <- readRDS("./fit.rds")

summary(fit)
plot(fit)
m2 <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE),backend = "cmdstanr", 
prior = prior_m2)

# saveRDS(m2, "m2.rds")
summary(m2)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          financialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          socialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          recreationalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept                  0.15      0.24    -0.32     0.60 1.00    54673    34250
## financialPreferencez_Intercept                0.05      0.26    -0.46     0.56 1.00    60246    32970
## socialPreferencez_Intercept                   1.10      0.24     0.64     1.57 1.00    56841    33878
## healthAndSafetyPreferencez_Intercept          0.45      0.25    -0.03     0.94 1.00    46787    32743
## recreationalPreferencez_Intercept             0.48      0.25    -0.01     0.97 1.00    52103    32851
## ethicalPreferencez_dominance_Sum              0.31      0.06     0.19     0.44 1.00    40213    30188
## ethicalPreferencez_prestige_Sum              -0.06      0.06    -0.19     0.06 1.00    41426    31689
## ethicalPreferencez_leadership_Sum            -0.18      0.06    -0.30    -0.06 1.00    42127    30759
## ethicalPreferencez_PNI_Sum_z                  0.05      0.07    -0.08     0.18 1.00    39790    32358
## ethicalPreferencez_Gender                     0.27      0.11     0.06     0.49 1.00    43322    32738
## ethicalPreferencez_Age                       -0.02      0.01    -0.03    -0.01 1.00    55860    34714
## financialPreferencez_dominance_Sum            0.10      0.07    -0.04     0.24 1.00    45368    33218
## financialPreferencez_prestige_Sum            -0.04      0.07    -0.18     0.10 1.00    43982    29172
## financialPreferencez_leadership_Sum           0.09      0.07    -0.04     0.22 1.00    45624    32746
## financialPreferencez_PNI_Sum_z               -0.04      0.07    -0.19     0.11 1.00    43309    30814
## financialPreferencez_Gender                   0.18      0.12    -0.06     0.42 1.00    54850    32356
## financialPreferencez_Age                     -0.01      0.01    -0.02     0.00 1.00    60588    31630
## socialPreferencez_dominance_Sum              -0.05      0.06    -0.17     0.08 1.00    45028    31569
## socialPreferencez_prestige_Sum               -0.04      0.06    -0.17     0.08 1.00    45758    30651
## socialPreferencez_leadership_Sum              0.27      0.06     0.15     0.39 1.00    47740    31812
## socialPreferencez_PNI_Sum_z                   0.17      0.07     0.04     0.30 1.00    45033    28346
## socialPreferencez_Gender                     -0.44      0.11    -0.65    -0.22 1.00    53622    33107
## socialPreferencez_Age                        -0.02      0.01    -0.03    -0.00 1.00    56789    33083
## healthAndSafetyPreferencez_dominance_Sum      0.27      0.07     0.14     0.40 1.00    35351    31847
## healthAndSafetyPreferencez_prestige_Sum      -0.26      0.07    -0.39    -0.13 1.00    38610    31925
## healthAndSafetyPreferencez_leadership_Sum    -0.00      0.06    -0.13     0.12 1.00    38466    31378
## healthAndSafetyPreferencez_PNI_Sum_z          0.08      0.07    -0.05     0.22 1.00    35490    32069
## healthAndSafetyPreferencez_Gender             0.02      0.12    -0.20     0.25 1.00    39999    32548
## healthAndSafetyPreferencez_Age               -0.02      0.01    -0.03    -0.01 1.00    52445    33051
## recreationalPreferencez_dominance_Sum         0.15      0.07     0.02     0.28 1.00    40269    32133
## recreationalPreferencez_prestige_Sum         -0.28      0.06    -0.40    -0.16 1.00    43384    32425
## recreationalPreferencez_leadership_Sum        0.17      0.06     0.05     0.30 1.00    42374    31417
## recreationalPreferencez_PNI_Sum_z             0.04      0.07    -0.10     0.18 1.00    37806    32382
## recreationalPreferencez_Gender                0.23      0.12     0.00     0.46 1.00    44778    32154
## recreationalPreferencez_Age                  -0.03      0.01    -0.04    -0.02 1.00    57096    33349
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez             0.89      0.04     0.82     0.97 1.00    54933    30189
## sigma_financialPreferencez           0.98      0.04     0.90     1.07 1.00    65172    31155
## sigma_socialPreferencez              0.89      0.04     0.82     0.97 1.00    65666    30737
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.02 1.00    49238    31382
## sigma_recreationalPreferencez        0.94      0.04     0.86     1.02 1.00    53058    29291
## 
## Residual Correlations: 
##                                                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)                0.36      0.05     0.26     0.46 1.00    61009    30619
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06     0.01     0.24 1.00    52397    31150
## rescor(financialPreferencez,socialPreferencez)                 0.24      0.06     0.13     0.35 1.00    57277    31658
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05     0.41     0.58 1.00    45262    32204
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06     0.10     0.32 1.00    53229    31709
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05     0.20     0.41 1.00    51886    31049
## rescor(ethicalPreferencez,recreationalPreferencez)             0.19      0.06     0.07     0.30 1.00    48161    33864
## rescor(financialPreferencez,recreationalPreferencez)           0.21      0.06     0.10     0.33 1.00    50776    31854
## rescor(socialPreferencez,recreationalPreferencez)              0.39      0.05     0.28     0.48 1.00    51372    32830
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05     0.35     0.54 1.00    53175    32239
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m2_hdi <- bayestestR::hdi(m2, effects = "fixed", component = "conditional", ci = .95)
kable(m2_hdi[sign(m2_hdi$CI_low) == sign(m2_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_dominance_Sum 0.95 0.19 0.44
b_ethicalPreferencez_leadership_Sum 0.95 -0.30 -0.06
b_ethicalPreferencez_Gender 0.95 0.06 0.49
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.63 1.56
b_socialPreferencez_leadership_Sum 0.95 0.15 0.39
b_socialPreferencez_PNI_Sum_z 0.95 0.04 0.30
b_socialPreferencez_Gender 0.95 -0.65 -0.22
b_socialPreferencez_Age 0.95 -0.03 0.00
b_healthAndSafetyPreferencez_dominance_Sum 0.95 0.14 0.40
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -0.39 -0.13
b_healthAndSafetyPreferencez_Age 0.95 -0.03 -0.01
b_recreationalPreferencez_dominance_Sum 0.95 0.01 0.27
b_recreationalPreferencez_prestige_Sum 0.95 -0.40 -0.16
b_recreationalPreferencez_leadership_Sum 0.95 0.05 0.30
b_recreationalPreferencez_Gender 0.95 0.00 0.46
b_recreationalPreferencez_Age 0.95 -0.04 -0.02
# plot(m2, ask = FALSE)
m2_int <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum*Gender + prestige_Sum*Gender + leadership_Sum*Gender + PNI_Sum_z*Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE),backend = "cmdstanr", 
prior = prior_m2_int_gen)

saveRDS(m2_int, "m2_int.rds")
summary(m2_int)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          financialPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          socialPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          recreationalPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept                         0.12      0.24    -0.34     0.59 1.00    52492    33108
## financialPreferencez_Intercept                       0.08      0.26    -0.44     0.59 1.00    55105    32962
## socialPreferencez_Intercept                          1.07      0.24     0.60     1.54 1.00    51318    31206
## healthAndSafetyPreferencez_Intercept                 0.40      0.25    -0.09     0.89 1.00    50621    33395
## recreationalPreferencez_Intercept                    0.44      0.25    -0.05     0.94 1.00    48983    31303
## ethicalPreferencez_dominance_Sum                     0.11      0.21    -0.31     0.53 1.00    23996    27939
## ethicalPreferencez_Gender                            0.28      0.11     0.07     0.50 1.00    52356    33081
## ethicalPreferencez_prestige_Sum                     -0.20      0.18    -0.56     0.16 1.00    27237    28465
## ethicalPreferencez_leadership_Sum                   -0.18      0.18    -0.54     0.18 1.00    29683    29889
## ethicalPreferencez_PNI_Sum_z                        -0.14      0.22    -0.57     0.28 1.00    23178    28772
## ethicalPreferencez_Age                              -0.02      0.01    -0.03    -0.01 1.00    61087    33624
## ethicalPreferencez_dominance_Sum:Gender              0.12      0.13    -0.12     0.37 1.00    24396    27585
## ethicalPreferencez_Gender:prestige_Sum               0.11      0.11    -0.11     0.33 1.00    27414    27876
## ethicalPreferencez_Gender:leadership_Sum             0.01      0.11    -0.21     0.22 1.00    29752    29847
## ethicalPreferencez_Gender:PNI_Sum_z                  0.13      0.13    -0.12     0.38 1.00    24001    28281
## financialPreferencez_dominance_Sum                   0.13      0.24    -0.34     0.59 1.00    25342    27434
## financialPreferencez_Gender                          0.18      0.12    -0.06     0.42 1.00    56320    30228
## financialPreferencez_prestige_Sum                   -0.17      0.22    -0.60     0.27 1.00    28562    28234
## financialPreferencez_leadership_Sum                 -0.02      0.21    -0.43     0.39 1.00    30043    29752
## financialPreferencez_PNI_Sum_z                      -0.28      0.25    -0.76     0.20 1.00    25462    28029
## financialPreferencez_Age                            -0.01      0.01    -0.02     0.00 1.00    62719    31456
## financialPreferencez_dominance_Sum:Gender           -0.02      0.14    -0.29     0.26 1.00    25368    28052
## financialPreferencez_Gender:prestige_Sum             0.11      0.13    -0.16     0.37 1.00    28983    29150
## financialPreferencez_Gender:leadership_Sum           0.08      0.13    -0.17     0.32 1.00    30287    29104
## financialPreferencez_Gender:PNI_Sum_z                0.15      0.14    -0.13     0.44 1.00    26165    28360
## socialPreferencez_dominance_Sum                     -0.17      0.22    -0.61     0.26 1.00    26294    28607
## socialPreferencez_Gender                            -0.43      0.11    -0.65    -0.22 1.00    54933    31329
## socialPreferencez_prestige_Sum                       0.02      0.20    -0.38     0.43 1.00    31487    29270
## socialPreferencez_leadership_Sum                     0.11      0.20    -0.29     0.51 1.00    31078    28562
## socialPreferencez_PNI_Sum_z                          0.35      0.22    -0.08     0.80 1.00    27048    28240
## socialPreferencez_Age                               -0.02      0.01    -0.03    -0.00 1.00    55851    32738
## socialPreferencez_dominance_Sum:Gender               0.08      0.13    -0.18     0.33 1.00    26386    28865
## socialPreferencez_Gender:prestige_Sum               -0.02      0.12    -0.26     0.22 1.00    31165    29394
## socialPreferencez_Gender:leadership_Sum              0.09      0.12    -0.15     0.33 1.00    31305    28655
## socialPreferencez_Gender:PNI_Sum_z                  -0.12      0.13    -0.38     0.14 1.00    27416    28236
## healthAndSafetyPreferencez_dominance_Sum             0.05      0.23    -0.39     0.50 1.00    22569    27928
## healthAndSafetyPreferencez_Gender                    0.03      0.12    -0.20     0.26 1.00    46644    33102
## healthAndSafetyPreferencez_prestige_Sum             -0.69      0.19    -1.06    -0.31 1.00    28303    29483
## healthAndSafetyPreferencez_leadership_Sum           -0.01      0.19    -0.38     0.36 1.00    28415    29521
## healthAndSafetyPreferencez_PNI_Sum_z                 0.53      0.23     0.08     0.97 1.00    21733    28118
## healthAndSafetyPreferencez_Age                      -0.02      0.01    -0.03    -0.00 1.00    58853    32114
## healthAndSafetyPreferencez_dominance_Sum:Gender      0.13      0.13    -0.13     0.39 1.00    22517    27795
## healthAndSafetyPreferencez_Gender:prestige_Sum       0.29      0.12     0.06     0.52 1.00    28422    28235
## healthAndSafetyPreferencez_Gender:leadership_Sum    -0.00      0.11    -0.22     0.23 1.00    28509    29207
## healthAndSafetyPreferencez_Gender:PNI_Sum_z         -0.28      0.13    -0.54    -0.01 1.00    22229    28399
## recreationalPreferencez_dominance_Sum                0.13      0.23    -0.32     0.57 1.00    22680    26939
## recreationalPreferencez_Gender                       0.23      0.12     0.00     0.45 1.00    48724    31190
## recreationalPreferencez_prestige_Sum                -0.58      0.12    -0.81    -0.35 1.00    37539    31225
## recreationalPreferencez_leadership_Sum               0.08      0.17    -0.26     0.41 1.00    29966    29259
## recreationalPreferencez_PNI_Sum_z                    0.76      0.22     0.33     1.20 1.00    23144    28599
## recreationalPreferencez_Age                         -0.03      0.01    -0.04    -0.02 1.00    54308    32619
## recreationalPreferencez_dominance_Sum:Gender         0.01      0.13    -0.25     0.27 1.00    22446    26737
## recreationalPreferencez_Gender:prestige_Sum          0.22      0.08     0.07     0.38 1.00    38926    31219
## recreationalPreferencez_Gender:leadership_Sum        0.04      0.11    -0.17     0.25 1.00    30199    28029
## recreationalPreferencez_Gender:PNI_Sum_z            -0.47      0.13    -0.72    -0.21 1.00    23733    27154
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez             0.88      0.04     0.81     0.96 1.00    56456    30027
## sigma_financialPreferencez           0.98      0.04     0.90     1.07 1.00    63236    29337
## sigma_socialPreferencez              0.89      0.04     0.82     0.97 1.00    64818    29922
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.86     1.02 1.00    52515    32043
## sigma_recreationalPreferencez        0.93      0.04     0.85     1.01 1.00    55925    30355
## 
## Residual Correlations: 
##                                                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)                0.35      0.05     0.24     0.45 1.00    53344    30176
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06     0.01     0.24 1.00    53336    31439
## rescor(financialPreferencez,socialPreferencez)                 0.25      0.06     0.14     0.36 1.00    52329    32127
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.51      0.05     0.41     0.59 1.00    45629    32340
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.22      0.06     0.10     0.33 1.00    48588    32710
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05     0.20     0.42 1.00    60431    31514
## rescor(ethicalPreferencez,recreationalPreferencez)             0.22      0.06     0.10     0.33 1.00    47563    32921
## rescor(financialPreferencez,recreationalPreferencez)           0.24      0.06     0.13     0.35 1.00    48568    31643
## rescor(socialPreferencez,recreationalPreferencez)              0.39      0.05     0.28     0.49 1.00    52835    31501
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05     0.35     0.54 1.00    54843    30774
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m2_int_hdi <- bayestestR::hdi(m2_int, effects = "fixed", component = "conditional", ci = .95)
kable(m2_int_hdi[sign(m2_int_hdi$CI_low) == sign(m2_int_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_Gender 0.95 0.08 0.50
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.59 1.54
b_socialPreferencez_Gender 0.95 -0.65 -0.22
b_socialPreferencez_Age 0.95 -0.03 0.00
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -1.06 -0.32
b_healthAndSafetyPreferencez_PNI_Sum_z 0.95 0.10 0.99
b_healthAndSafetyPreferencez_Age 0.95 -0.03 0.00
b_healthAndSafetyPreferencez_Gender:prestige_Sum 0.95 0.07 0.53
b_healthAndSafetyPreferencez_Gender:PNI_Sum_z 0.95 -0.53 0.00
b_recreationalPreferencez_Gender 0.95 0.00 0.45
b_recreationalPreferencez_prestige_Sum 0.95 -0.82 -0.36
b_recreationalPreferencez_PNI_Sum_z 0.95 0.33 1.19
b_recreationalPreferencez_Age 0.95 -0.04 -0.02
b_recreationalPreferencez_Gender:prestige_Sum 0.95 0.07 0.38
b_recreationalPreferencez_Gender:PNI_Sum_z 0.95 -0.72 -0.21
# plot(m2_int, ask = FALSE)
m4 <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m4,
    save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)

saveRDS(m4, "m4.rds")
m7_fixef <- fixef(m7_DoPL_DOSPERT)

m4_int_gender <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z*Gender + Age,
    data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m4_int_gender,
    save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)
saveRDS(m4_int_gender, "m4_int_gender.rds")
summary(m4)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          prestige_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          leadership_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                       -0.38      0.24    -0.85     0.09 1.00    53318    29544
## prestigeSum_Intercept                         0.49      0.25    -0.01     0.99 1.00    53433    29684
## leadershipSum_Intercept                      -0.04      0.26    -0.54     0.47 1.00    50007    30074
## dominanceSum_ethicalPreference_z              0.25      0.06     0.13     0.37 1.00    53819    29932
## dominanceSum_financialPreference_z           -0.18      0.02    -0.21    -0.14 1.00    64165    27283
## dominanceSum_socialPreference_z              -0.07      0.06    -0.19     0.05 1.00    47382    30378
## dominanceSum_healthAndSafetyPreference_z      0.04      0.05    -0.06     0.13 1.00    53320    28843
## dominanceSum_recreationalPreference_z         0.05      0.06    -0.06     0.16 1.00    54941    28500
## dominanceSum_PNI_Sum_z                        0.44      0.06     0.33     0.56 1.00    51802    29625
## dominanceSum_Gender                           0.27      0.11     0.05     0.50 1.00    49194    30708
## dominanceSum_Age                             -0.00      0.01    -0.01     0.01 1.00    53189    30116
## prestigeSum_ethicalPreference_z              -0.03      0.07    -0.17     0.10 1.00    47042    30439
## prestigeSum_financialPreference_z             0.06      0.06    -0.05     0.18 1.00    54571    28624
## prestigeSum_socialPreference_z               -0.24      0.01    -0.27    -0.21 1.00    63867    26771
## prestigeSum_healthAndSafetyPreference_z      -0.06      0.06    -0.18     0.06 1.00    50923    29456
## prestigeSum_recreationalPreference_z         -0.07      0.06    -0.18     0.05 1.00    54568    29650
## prestigeSum_PNI_Sum_z                         0.51      0.06     0.39     0.63 1.00    51650    29241
## prestigeSum_Gender                           -0.14      0.12    -0.38     0.09 1.00    51286    29551
## prestigeSum_Age                              -0.01      0.01    -0.02     0.00 1.00    50262    31360
## leadershipSum_ethicalPreference_z            -0.17      0.07    -0.30    -0.03 1.00    47061    29654
## leadershipSum_financialPreference_z           0.05      0.05    -0.06     0.15 1.00    54406    27849
## leadershipSum_socialPreference_z              0.03      0.05    -0.08     0.13 1.00    51457    28381
## leadershipSum_healthAndSafetyPreference_z     0.04      0.06    -0.07     0.16 1.00    51853    30577
## leadershipSum_recreationalPreference_z       -0.04      0.05    -0.13     0.05 1.00    55486    28298
## leadershipSum_PNI_Sum_z                       0.33      0.06     0.21     0.45 1.00    47641    29268
## leadershipSum_Gender                         -0.09      0.12    -0.32     0.15 1.00    48322    29732
## leadershipSum_Age                             0.01      0.01    -0.01     0.02 1.00    49673    30120
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.87      0.04     0.80     0.95 1.00    55680    27361
## sigma_prestigeSum       0.95      0.04     0.88     1.04 1.00    51474    28543
## sigma_leadershipSum     0.95      0.04     0.87     1.04 1.00    49241    30098
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)       0.17      0.06     0.04     0.29 1.00    44587    30591
## rescor(dominanceSum,leadershipSum)     0.29      0.06     0.17     0.40 1.00    44324    30158
## rescor(prestigeSum,leadershipSum)      0.43      0.05     0.32     0.52 1.00    46035    28957
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
summary(m4_int_gender)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age 
##          prestige_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age 
##          leadership_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                              -0.48      0.23    -0.94    -0.03 1.00    67805    28486
## prestigeSum_Intercept                                0.16      0.24    -0.31     0.64 1.00    59904    27068
## leadershipSum_Intercept                             -0.22      0.25    -0.71     0.27 1.00    61014    30136
## dominanceSum_ethicalPreference_z                     0.05      0.16    -0.26     0.36 1.00    35155    28773
## dominanceSum_Gender                                  0.30      0.11     0.08     0.52 1.00    57737    28527
## dominanceSum_financialPreference_z                  -0.19      0.02    -0.22    -0.16 1.00    70210    28124
## dominanceSum_socialPreference_z                     -0.11      0.14    -0.39     0.18 1.00    32281    28617
## dominanceSum_healthAndSafetyPreference_z            -0.05      0.06    -0.17     0.07 1.00    41923    30574
## dominanceSum_recreationalPreference_z               -0.10      0.10    -0.30     0.10 1.00    33948    28463
## dominanceSum_PNI_Sum_z                               0.73      0.17     0.39     1.06 1.00    28180    27644
## dominanceSum_Age                                     0.00      0.01    -0.01     0.01 1.00    67383    27434
## dominanceSum_ethicalPreference_z:Gender              0.08      0.10    -0.11     0.27 1.00    34063    27880
## dominanceSum_Gender:financialPreference_z            0.11      0.04     0.04     0.18 1.00    67186    26517
## dominanceSum_Gender:socialPreference_z               0.04      0.10    -0.15     0.23 1.00    31272    28385
## dominanceSum_Gender:healthAndSafetyPreference_z      0.10      0.06    -0.01     0.21 1.00    40919    31285
## dominanceSum_Gender:recreationalPreference_z         0.08      0.07    -0.06     0.21 1.00    33233    28701
## dominanceSum_Gender:PNI_Sum_z                       -0.19      0.11    -0.40     0.02 1.00    28221    27421
## prestigeSum_ethicalPreference_z                     -0.04      0.15    -0.34     0.26 1.00    30409    28755
## prestigeSum_Gender                                   0.04      0.11    -0.19     0.26 1.00    46722    29554
## prestigeSum_financialPreference_z                   -0.02      0.12    -0.26     0.22 1.00    34113    29108
## prestigeSum_socialPreference_z                      -0.25      0.01    -0.28    -0.22 1.00    69063    27704
## prestigeSum_healthAndSafetyPreference_z             -0.10      0.10    -0.30     0.10 1.00    37200    30174
## prestigeSum_recreationalPreference_z                -0.16      0.10    -0.35     0.03 1.00    34624    28837
## prestigeSum_PNI_Sum_z                                1.02      0.17     0.68     1.36 1.00    24610    26951
## prestigeSum_Age                                     -0.01      0.01    -0.02     0.00 1.00    67893    28833
## prestigeSum_ethicalPreference_z:Gender               0.04      0.09    -0.15     0.22 1.00    29008    27913
## prestigeSum_Gender:financialPreference_z             0.05      0.08    -0.10     0.21 1.00    33236    28956
## prestigeSum_Gender:socialPreference_z                0.25      0.04     0.17     0.33 1.00    55379    28801
## prestigeSum_Gender:healthAndSafetyPreference_z      -0.03      0.07    -0.17     0.12 1.00    36128    29883
## prestigeSum_Gender:recreationalPreference_z          0.02      0.07    -0.11     0.15 1.00    32912    28138
## prestigeSum_Gender:PNI_Sum_z                        -0.39      0.11    -0.60    -0.17 1.00    24205    27215
## leadershipSum_ethicalPreference_z                   -0.09      0.17    -0.43     0.24 1.00    32042    28923
## leadershipSum_Gender                                 0.00      0.12    -0.23     0.24 1.00    50626    29030
## leadershipSum_financialPreference_z                 -0.08      0.09    -0.25     0.10 1.00    35559    28104
## leadershipSum_socialPreference_z                    -0.15      0.07    -0.30    -0.01 1.00    38242    29965
## leadershipSum_healthAndSafetyPreference_z            0.04      0.10    -0.14     0.23 1.00    33978    28757
## leadershipSum_recreationalPreference_z              -0.16      0.06    -0.28    -0.04 1.00    47799    30766
## leadershipSum_PNI_Sum_z                              0.73      0.18     0.37     1.08 1.00    26329    27324
## leadershipSum_Age                                    0.01      0.01    -0.00     0.02 1.00    61372    29159
## leadershipSum_ethicalPreference_z:Gender            -0.04      0.10    -0.24     0.17 1.00    30378    28243
## leadershipSum_Gender:financialPreference_z           0.11      0.06    -0.01     0.23 1.00    34759    28598
## leadershipSum_Gender:socialPreference_z              0.26      0.06     0.14     0.39 1.00    34480    29579
## leadershipSum_Gender:healthAndSafetyPreference_z    -0.06      0.07    -0.19     0.08 1.00    32256    29093
## leadershipSum_Gender:recreationalPreference_z        0.10      0.05    -0.00     0.21 1.00    40400    29995
## leadershipSum_Gender:PNI_Sum_z                      -0.28      0.11    -0.50    -0.06 1.00    26340    27398
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.85      0.04     0.78     0.92 1.00    63714    26427
## sigma_prestigeSum       0.89      0.04     0.81     0.96 1.00    56287    28101
## sigma_leadershipSum     0.92      0.04     0.85     1.00 1.00    60427    27782
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)       0.14      0.06     0.03     0.26 1.00    51867    28446
## rescor(dominanceSum,leadershipSum)     0.27      0.06     0.15     0.38 1.00    52577    29982
## rescor(prestigeSum,leadershipSum)      0.37      0.05     0.27     0.47 1.00    57139    29315
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m4_hdi <- bayestestR::hdi(m4, effects = "fixed", component = "conditional", ci = .95)
kable(m4_hdi[sign(m4_hdi$CI_low) == sign(m4_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_ethicalPreference_z 0.95 0.13 0.37
b_dominanceSum_financialPreference_z 0.95 -0.21 -0.14
b_dominanceSum_PNI_Sum_z 0.95 0.33 0.56
b_dominanceSum_Gender 0.95 0.06 0.50
b_prestigeSum_socialPreference_z 0.95 -0.27 -0.21
b_prestigeSum_PNI_Sum_z 0.95 0.39 0.63
b_leadershipSum_ethicalPreference_z 0.95 -0.30 -0.03
b_leadershipSum_PNI_Sum_z 0.95 0.21 0.45
m4_int_gender_hdi <- bayestestR::hdi(m4_int_gender, effects = "fixed", component = "conditional", ci = .95)
kable(m4_int_gender_hdi[sign(m4_int_gender_hdi$CI_low) == sign(m4_int_gender_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_Intercept 0.95 -0.95 -0.04
b_dominanceSum_Gender 0.95 0.08 0.51
b_dominanceSum_financialPreference_z 0.95 -0.22 -0.16
b_dominanceSum_PNI_Sum_z 0.95 0.39 1.05
b_dominanceSum_Gender:financialPreference_z 0.95 0.04 0.18
b_prestigeSum_socialPreference_z 0.95 -0.28 -0.22
b_prestigeSum_PNI_Sum_z 0.95 0.68 1.36
b_prestigeSum_Gender:socialPreference_z 0.95 0.17 0.33
b_prestigeSum_Gender:PNI_Sum_z 0.95 -0.60 -0.17
b_leadershipSum_socialPreference_z 0.95 -0.29 0.00
b_leadershipSum_recreationalPreference_z 0.95 -0.28 -0.05
b_leadershipSum_PNI_Sum_z 0.95 0.36 1.07
b_leadershipSum_Gender:socialPreference_z 0.95 0.14 0.38
b_leadershipSum_Gender:PNI_Sum_z 0.95 -0.50 -0.05
m1_model <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum)
m2_model <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum)
m3_model <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum)
mediation_model <- brm(m3_model + m1_model + m2_model + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model, "mediation_model.rds")

m1_model.1 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum)
m2_model.1 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum)
m3_model.1 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum)
mediation_model.1 <- brm(m3_model.1 + m1_model.1 + m2_model.1 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.1, "mediation_model.1.rds")
m1_model.2 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum)
m2_model.2 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum)
m3_model.2 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum)
mediation_model.2 <- brm(m3_model.2 + m1_model.2 + m2_model.2 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.2, "mediation_model.2.rds")
m1_model.3 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
m2_model.3 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
m3_model.3 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
mediation_model.3 <- brm(m3_model.3 + m1_model.3 + m2_model.3 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.3, "mediation_model.3.rds")
m1_model.4 <- bf(riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
m2_model.4 <- bf(riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
m3_model.4 <- bf(riskSum ~ dominance_Sum * Gender + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
mediation_model.4 <- brm(m3_model.4 + m1_model.4 + m2_model.4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))

m1_model.5 <- bf(riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum + Gender + PNI_Sum + Age)
m2_model.5 <- bf(riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum + Gender + PNI_Sum + Age)
m3_model.5 <- bf(riskSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum + Gender + PNI_Sum + Age)
mediation_model.5 <- brm(m3_model.5 + m1_model.5 + m2_model.5 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))

m1_model.6 <- bf(riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Gender + PNI_Sum + Age)
m2_model.6 <- bf(riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Gender + PNI_Sum + Age)
m3_model.6 <- bf(riskSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Gender + PNI_Sum + Age)
mediation_model.6 <- brm(m3_model.6 + m1_model.6 + m2_model.6 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.6, "mediation_model.6.rds")


m1_model.4 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
m2_model.4 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
m3_model.4 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum + Age)
mediation_model.4 <- brm(m3_model.4 + m1_model.4 + m2_model.4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.5, "mediation_model.5.rds")
mediation_test.2 <- loo(mediation_model.5, mediation_model.6)
mediation_comparison.2 <- bayesfactor_models(mediation_model.5, mediation_model.6, denominator = 2)
d1 <- Experiment_2_demographics_Gender[complete.cases(Experiment_2_demographics_Gender), ]

mediation_test.1 <- loo(mediation_model, mediation_model.1, mediation_model.2, mediation_model.3, mediation_model.4)

mediation_comparison <- bayesfactor_models(mediation_model, mediation_model.1, mediation_model.2, mediation_model.3, mediation_model.4, denominator = 5)
print(mediation_test.1)
## Output of model 'mediation_model':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3597.0 25.9
## p_loo        14.7  1.2
## looic      7193.9 51.7
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.1':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3595.2 25.7
## p_loo        17.4  1.3
## looic      7190.5 51.4
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.2':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3591.2 26.1
## p_loo        20.7  1.6
## looic      7182.4 52.1
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.3':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3581.0 26.6
## p_loo        23.2  1.7
## looic      7162.1 53.2
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.4':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3582.9 26.6
## p_loo        26.2  1.9
## looic      7165.9 53.2
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Model comparisons:
##                   elpd_diff se_diff
## mediation_model.3   0.0       0.0  
## mediation_model.4  -1.9       1.5  
## mediation_model.2 -10.1       6.3  
## mediation_model.1 -14.2       7.7  
## mediation_model   -15.9       8.1
print(mediation_comparison)
## Bayes Factors for Model Comparison
## 
##     Model       BF
## [1]       3.45e-12
## [2]       1.23e-12
## [3]       2.55e-07
## [4]          0.002
## 
## * Against Denominator: [5]
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
print(mediation_comparison.2)
## Bayes Factors for Model Comparison
## 
##     Model    BF
## [1]       0.002
## 
## * Against Denominator: [2]
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
library(blavaan)

model.1 <- "Perception =~ prestige_Sum + leadership_Sum + dominance_Sum
            Preference =~ ethicalPreference_z + financialPreference_z + socialPreference_z + recreationalPreference_z + healthAndSafetyPreference_z
            Perception ~ Preference"
model.2 <- "PNI_2 =~ exploitativeness_Sum_z + grandiose_fantasy_Sum_z + ssse_Sum_z
            PNI_3 =~ cse_Sum_z + devaluing_Sum_z + entitlement_rage_Sum_z + hts_Sum_z
            PNI_2 ~ PNI_3"
model.3 <- "Preferences =~ dominance_Sum + PNI_Sum_z + prestige_Sum + leadership_Sum"

model.4 <- "Preference =~ prestige_Sum + leadership_Sum + dominance_Sum
            Preference2 =~ exploitativeness_Sum_z + grandiose_fantasy_Sum_z + ssse_Sum_z
            Preference ~ Preference2"


fit_bayes <- blavaan(model = model.1, data = Experiment_2_demographics_Gender, target = "cmdstanr", auto.var=TRUE, auto.fix.first=TRUE,
auto.cov.lv.x=TRUE, bcontrol = list(cores = parallel::detectCores()))

fit_bayes.2 <- bsem(model = model.2, data = Experiment_2_demographics_Gender, n.chains = 4, seed = 1234, target = "cmdstanr", auto.var=TRUE, auto.fix.first=TRUE,
auto.cov.lv.x=TRUE, bcontrol = list(cores = parallel::detectCores()))

fit_bayes.3 <- bsem(model.1, data = Experiment_2_demographics_Gender, target = "cmdstanr", auto.var=TRUE, auto.fix.first=TRUE,
auto.cov.lv.x=TRUE, bcontrol = list(cores = parallel::detectCores()))

fit_bayes.4 <- bsem(model.4, data = Experiment_2_demographics_Gender, target = "cmdstanr", auto.var=TRUE, auto.fix.first=TRUE,
auto.cov.lv.x=TRUE, bcontrol = list(cores = parallel::detectCores()))
summary(fit_bayes)
## blavaan (0.4-4.996) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception =~                                                                
##     prestige_Sum      1.000                                                    
##     leadership_Sum    1.089    0.272    0.686    1.778    1.026    normal(0,10)
##     dominance_Sum     0.717    0.159    0.421    1.052    1.000    normal(0,10)
##   Preference =~                                                                
##     ethiclPrfrnc_z    1.000                                                    
##     finnclPrfrnc_z    0.674    0.133    0.434    0.958    1.000    normal(0,10)
##     socialPrfrnc_z    0.640    0.141    0.388    0.948    1.001    normal(0,10)
##     rcrtnlPrfrnc_z    1.044    0.162    0.772    1.410    1.002    normal(0,10)
##     hlthAndSftyPr_    1.387    0.172    1.095    1.774    1.001    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception ~                                                                 
##     Preference        0.161    0.105   -0.034    0.369    1.003    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.000                                                    
##    .leadership_Sum    0.000                                                    
##    .dominance_Sum     0.000                                                    
##    .ethiclPrfrnc_z    0.000                                                    
##    .finnclPrfrnc_z    0.000                                                    
##    .socialPrfrnc_z    0.000                                                    
##    .rcrtnlPrfrnc_z    0.000                                                    
##    .hlthAndSftyPr_    0.000                                                    
##    .Perception        0.000                                                    
##     Preference        0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.588    0.111    0.351    0.798    1.007 gamma(1,.5)[sd]
##    .leadership_Sum    0.524    0.130    0.180    0.728    1.025 gamma(1,.5)[sd]
##    .dominance_Sum     0.810    0.088    0.649    0.997    1.006 gamma(1,.5)[sd]
##    .ethiclPrfrnc_z    0.605    0.066    0.483    0.746    1.001 gamma(1,.5)[sd]
##    .finnclPrfrnc_z    0.819    0.077    0.682    0.980    1.000 gamma(1,.5)[sd]
##    .socialPrfrnc_z    0.834    0.078    0.694    0.997    1.000 gamma(1,.5)[sd]
##    .rcrtnlPrfrnc_z    0.624    0.068    0.500    0.762    1.001 gamma(1,.5)[sd]
##    .hlthAndSftyPr_    0.327    0.079    0.172    0.483    0.999 gamma(1,.5)[sd]
##    .Perception        0.430    0.121    0.228    0.707    1.004 gamma(1,.5)[sd]
##     Preference        0.359    0.078    0.221    0.526    1.001 gamma(1,.5)[sd]
summary(fit_bayes.2)
## blavaan (0.4-4.996) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.259
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   PNI_2 =~                                                                     
##     explttvnss_Sm_    1.000                                                    
##     grnds_fntsy_S_    1.786    0.445    1.155    2.835    1.005    normal(0,10)
##     ssse_Sum_z        2.002    0.489    1.305    3.130    1.007    normal(0,10)
##   PNI_3 =~                                                                     
##     cse_Sum_z         1.000                                                    
##     devaluing_Sm_z    1.047    0.090    0.880    1.235    1.000    normal(0,10)
##     enttlmnt_rg_S_    1.059    0.090    0.891    1.250    1.000    normal(0,10)
##     hts_Sum_z         0.966    0.089    0.804    1.149    1.001    normal(0,10)
## 
## Covariances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   PNI_2 ~~                                                                     
##     PNI_3             0.195    0.047    0.111    0.295    1.003     lkj_corr(1)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .explttvnss_Sm_    0.000                                                    
##    .grnds_fntsy_S_    0.000                                                    
##    .ssse_Sum_z        0.000                                                    
##    .cse_Sum_z         0.000                                                    
##    .devaluing_Sm_z    0.000                                                    
##    .enttlmnt_rg_S_    0.000                                                    
##    .hts_Sum_z         0.000                                                    
##     PNI_2             0.000                                                    
##     PNI_3             0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .explttvnss_Sm_    0.861    0.075    0.720    1.015    0.999 gamma(1,.5)[sd]
##    .grnds_fntsy_S_    0.610    0.074    0.475    0.760    0.999 gamma(1,.5)[sd]
##    .ssse_Sum_z        0.486    0.074    0.346    0.645    1.001 gamma(1,.5)[sd]
##    .cse_Sum_z         0.451    0.051    0.356    0.555    1.001 gamma(1,.5)[sd]
##    .devaluing_Sm_z    0.409    0.047    0.324    0.510    0.999 gamma(1,.5)[sd]
##    .enttlmnt_rg_S_    0.395    0.047    0.310    0.494    1.000 gamma(1,.5)[sd]
##    .hts_Sum_z         0.492    0.052    0.398    0.598    1.000 gamma(1,.5)[sd]
##     PNI_2             0.139    0.054    0.052    0.264    1.001 gamma(1,.5)[sd]
##     PNI_3             0.563    0.084    0.412    0.743    1.001 gamma(1,.5)[sd]
summary(fit_bayes.3)
## blavaan (0.4-4.996) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception =~                                                                
##     prestige_Sum      1.000                                                    
##     leadership_Sum    1.080    0.220    0.716    1.566    1.002    normal(0,10)
##     dominance_Sum     0.723    0.155    0.453    1.054    1.001    normal(0,10)
##   Preference =~                                                                
##     ethiclPrfrnc_z    1.000                                                    
##     finnclPrfrnc_z    0.668    0.130    0.428    0.948    1.000    normal(0,10)
##     socialPrfrnc_z    0.635    0.134    0.399    0.924    1.001    normal(0,10)
##     rcrtnlPrfrnc_z    1.038    0.153    0.774    1.388    1.002    normal(0,10)
##     hlthAndSftyPr_    1.385    0.169    1.095    1.766    1.000    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception ~                                                                 
##     Preference        0.160    0.104   -0.041    0.372    1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum     -0.000    0.062   -0.118    0.121    1.000    normal(0,32)
##    .leadership_Sum    0.001    0.061   -0.118    0.117    1.000    normal(0,32)
##    .dominance_Sum     0.002    0.061   -0.116    0.127    1.000    normal(0,32)
##    .ethiclPrfrnc_z   -0.019    0.058   -0.134    0.095    1.001    normal(0,32)
##    .finnclPrfrnc_z   -0.004    0.059   -0.119    0.110    1.000    normal(0,32)
##    .socialPrfrnc_z   -0.037    0.060   -0.152    0.078    1.000    normal(0,32)
##    .rcrtnlPrfrnc_z   -0.013    0.060   -0.131    0.105    1.000    normal(0,32)
##    .hlthAndSftyPr_   -0.019    0.060   -0.137    0.098    0.999    normal(0,32)
##    .Perception        0.000                                                    
##     Preference        0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.593    0.100    0.383    0.778    1.002 gamma(1,.5)[sd]
##    .leadership_Sum    0.531    0.110    0.293    0.736    1.000 gamma(1,.5)[sd]
##    .dominance_Sum     0.811    0.085    0.658    0.985    1.001 gamma(1,.5)[sd]
##    .ethiclPrfrnc_z    0.604    0.067    0.488    0.742    1.001 gamma(1,.5)[sd]
##    .finnclPrfrnc_z    0.823    0.076    0.685    0.981    1.000 gamma(1,.5)[sd]
##    .socialPrfrnc_z    0.836    0.078    0.697    0.990    0.999 gamma(1,.5)[sd]
##    .rcrtnlPrfrnc_z    0.625    0.068    0.494    0.762    1.002 gamma(1,.5)[sd]
##    .hlthAndSftyPr_    0.326    0.077    0.172    0.474    1.002 gamma(1,.5)[sd]
##    .Perception        0.428    0.111    0.243    0.670    1.003 gamma(1,.5)[sd]
##     Preference        0.361    0.075    0.228    0.514    1.002 gamma(1,.5)[sd]
summary(fit_bayes.4)
## blavaan (0.4-4.996) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Preference =~                                                                
##     prestige_Sum      1.000                                                    
##     leadership_Sum    0.963    0.121    0.749    1.219    0.999    normal(0,10)
##     dominance_Sum     0.703    0.117    0.485    0.945    1.000    normal(0,10)
##   Preference2 =~                                                               
##     explttvnss_Sm_    1.000                                                    
##     grnds_fntsy_S_    0.828    0.153    0.562    1.162    1.001    normal(0,10)
##     ssse_Sum_z        0.925    0.160    0.646    1.284    1.002    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Preference ~                                                                 
##     Preference2       1.126    0.170    0.845    1.509    1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.002    0.061   -0.121    0.120    0.999    normal(0,32)
##    .leadership_Sum    0.002    0.060   -0.115    0.116    0.999    normal(0,32)
##    .dominance_Sum     0.005    0.061   -0.110    0.129    0.999    normal(0,32)
##    .explttvnss_Sm_    0.009    0.059   -0.106    0.126    1.000    normal(0,32)
##    .grnds_fntsy_S_   -0.011    0.061   -0.127    0.109    1.000    normal(0,32)
##    .ssse_Sum_z        0.010    0.059   -0.103    0.126    0.999    normal(0,32)
##    .Preference        0.000                                                    
##     Preference2       0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.538    0.069    0.411    0.681    1.001 gamma(1,.5)[sd]
##    .leadership_Sum    0.571    0.066    0.447    0.708    1.000 gamma(1,.5)[sd]
##    .dominance_Sum     0.792    0.077    0.653    0.952    0.999 gamma(1,.5)[sd]
##    .explttvnss_Sm_    0.618    0.071    0.483    0.771    1.001 gamma(1,.5)[sd]
##    .grnds_fntsy_S_    0.756    0.077    0.613    0.912    1.000 gamma(1,.5)[sd]
##    .ssse_Sum_z        0.666    0.070    0.537    0.814    0.999 gamma(1,.5)[sd]
##    .Preference        0.020    0.026    0.000    0.093    1.001 gamma(1,.5)[sd]
##     Preference2       0.384    0.086    0.231    0.566    1.000 gamma(1,.5)[sd]
graph_sem(fit_bayes)

graph_sem(fit_bayes.2)

graph_sem(fit_bayes.3)

graph_sem(fit_bayes.4)


Experiment_2_demographics_Gender$Gender <- as.numeric(Experiment_2_demographics_Gender$Gender)
model.5 <- "Risk_Benefit =~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age
            Risk_Sum =~ dominance_Sum*Gender + prestige_Sum*Gender + leadership_Sum*Gender + Age
            Risk_Benefit ~ Risk_Sum"



fit_bayes.5 <- bsem(model.5, data = Experiment_2_demographics_Gender, n.chains = 4, seed = 1234, target = "cmdstanr", auto.var=TRUE, auto.fix.first=TRUE,
auto.cov.lv.x=TRUE, bcontrol = list(cores = parallel::detectCores()))
summary(fit_bayes.5)
## ** WARNING ** blavaan (0.4-4.996) did NOT converge after 500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.588
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Risk_Benefit =~                                                              
##     dmnnc_S           1.000                                                    
##     prstg_S           2.239    0.661    1.263    3.577    1.174    normal(0,10)
##     ldrsh_S           1.763    0.424    1.086    2.527    1.213    normal(0,10)
##     Gender            0.149    0.425   -0.513    0.899    2.000    normal(0,10)
##     Age              -4.660    2.536  -10.108   -0.228    1.086    normal(0,10)
##   Risk_Sum =~                                                                  
##     Gender  (dm_S)    1.000                                                    
##     Age               2.521    8.196  -15.747   18.447    1.013    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Risk_Benefit ~                                                               
##     Risk_Sum          0.196    5.332  -11.198   12.991    1.006    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .dominance_Sum     0.008    0.051   -0.101    0.116    1.001    normal(0,32)
##    .prestige_Sum     -0.023    0.071   -0.126    0.110    1.354    normal(0,32)
##    .leadership_Sum   -0.000    0.056   -0.111    0.123    1.021    normal(0,32)
##    .Gender            1.562    0.029    1.499    1.613    1.083    normal(0,32)
##    .Age              29.533    0.528   28.402   30.572    1.018    normal(0,32)
##    .Risk_Benefit      0.000                                                    
##     Risk_Sum          0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .dominance_Sum     0.903    0.123    0.701    1.099    1.622 gamma(1,.5)[sd]
##    .prestige_Sum      0.408    0.140    0.078    0.668    1.076 gamma(1,.5)[sd]
##    .leadership_Sum    0.663    0.113    0.418    0.826    1.184 gamma(1,.5)[sd]
##    .Gender            0.220    0.045    0.144    0.287    1.839 gamma(1,.5)[sd]
##    .Age              93.033    7.439   78.710  109.827    1.002 gamma(1,.5)[sd]
##    .Risk_Benefit      0.085    0.065    0.001    0.241    1.069 gamma(1,.5)[sd]
##     Risk_Sum          0.052    0.071    0.000    0.206    2.391 gamma(1,.5)[sd]
graph_sem(fit_bayes.5)

m5 <- brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE), backend = "cmdstanr", 
prior = prior_m5)
summary(m5)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          riskPerceptionSum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          riskBenefitSum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## riskSum_Intercept                                 9.88      1.26     7.44    12.32 1.00    74984    30877
## riskPerceptionSum_Intercept                      13.84      1.24    11.42    16.25 1.00    75705    29503
## riskBenefitSum_Intercept                          7.60      0.97     5.70     9.50 1.00    61831    29383
## riskSum_ethicalPreference_z                      -0.07      0.23    -0.52     0.39 1.00    87586    26762
## riskSum_financialPreference_z                    -0.13      0.07    -0.26     0.00 1.00    93732    26016
## riskSum_socialPreference_z                       -0.05      0.10    -0.24     0.13 1.00    90972    25986
## riskSum_healthAndSafetyPreference_z              -0.09      0.19    -0.48     0.29 1.00    90521    26870
## riskSum_recreationalPreference_z                 -0.15      0.14    -0.41     0.12 1.00    93795    27292
## riskSum_PNI_Sum_z                                 1.27      0.72    -0.16     2.70 1.00    69156    32057
## riskSum_Gender                                    0.29      0.50    -0.69     1.27 1.00    88152    27080
## riskSum_Age                                      -0.03      0.01    -0.04    -0.01 1.00    99502    26403
## riskPerceptionSum_ethicalPreference_z            -0.46      0.20    -0.85    -0.07 1.00    85921    27376
## riskPerceptionSum_financialPreference_z          -0.39      0.25    -0.89     0.11 1.00    92890    26681
## riskPerceptionSum_socialPreference_z             -0.03      0.10    -0.23     0.16 1.00    98535    27406
## riskPerceptionSum_healthAndSafetyPreference_z    -0.22      0.02    -0.26    -0.19 1.00    92754    25328
## riskPerceptionSum_recreationalPreference_z       -6.41      0.84    -8.04    -4.76 1.00    86262    29362
## riskPerceptionSum_PNI_Sum_z                      -0.76      0.83    -2.39     0.88 1.00    77605    31833
## riskPerceptionSum_Gender                         -0.63      0.34    -1.30     0.04 1.00    92810    26161
## riskPerceptionSum_Age                            -0.01      0.02    -0.05     0.02 1.00    94691    26082
## riskBenefitSum_ethicalPreference_z                0.33      0.12     0.09     0.56 1.00    94342    27225
## riskBenefitSum_financialPreference_z              0.34      0.12     0.10     0.58 1.00    98037    27324
## riskBenefitSum_socialPreference_z                 0.10      0.06    -0.02     0.22 1.00    95641    26451
## riskBenefitSum_healthAndSafetyPreference_z        0.18      0.09     0.01     0.35 1.00    84259    25464
## riskBenefitSum_recreationalPreference_z           0.14      0.08    -0.02     0.29 1.00    88677    26790
## riskBenefitSum_PNI_Sum_z                          0.82      0.65    -0.44     2.09 1.00    65544    32683
## riskBenefitSum_Gender                            -0.05      0.05    -0.13     0.04 1.00    97032    26230
## riskBenefitSum_Age                               -0.00      0.00    -0.01     0.00 1.00    38768    25210
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_riskSum              29.57      0.40    28.79    30.36 1.00    65122    30811
## sigma_riskPerceptionSum    38.23      0.45    37.35    39.10 1.00    62131    30184
## sigma_riskBenefitSum       25.74      0.37    25.01    26.48 1.00    57536    27683
## 
## Residual Correlations: 
##                                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(riskSum,riskPerceptionSum)            0.79      0.01     0.76     0.81 1.00    70236    29641
## rescor(riskSum,riskBenefitSum)               0.88      0.01     0.86     0.89 1.00    70664    31330
## rescor(riskPerceptionSum,riskBenefitSum)     0.82      0.01     0.80     0.84 1.00    70508    31384
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m5_hdi <- bayestestR::hdi(m5, effects = "fixed", component = "conditional", ci = .95)
kable(m5_hdi[sign(m5_hdi$CI_low) == sign(m5_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_riskSum_Intercept 0.95 7.44 12.32
b_riskSum_Age 0.95 -0.04 -0.01
b_riskPerceptionSum_Intercept 0.95 11.38 16.21
b_riskPerceptionSum_ethicalPreference_z 0.95 -0.84 -0.07
b_riskPerceptionSum_healthAndSafetyPreference_z 0.95 -0.26 -0.19
b_riskPerceptionSum_recreationalPreference_z 0.95 -8.06 -4.78
b_riskBenefitSum_Intercept 0.95 5.64 9.44
b_riskBenefitSum_ethicalPreference_z 0.95 0.10 0.57
b_riskBenefitSum_financialPreference_z 0.95 0.10 0.58
b_riskBenefitSum_healthAndSafetyPreference_z 0.95 0.01 0.35
m6 <- brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z +Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, backend = "cmdstanr", save_pars = save_pars(all = TRUE), prior = prior_m6)
summary(m6)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## riskSum_Intercept                    9.37      1.40     6.62    12.12 1.00    65537    28803
## riskPerceptionSum_Intercept         14.68      1.03    12.62    16.71 1.00    64628    29442
## riskBenefitSum_Intercept             9.07      1.56     6.01    12.14 1.00    70273    28908
## riskSum_dominance_Sum                1.04      0.51     0.03     2.05 1.00    74404    28973
## riskSum_prestige_Sum                 0.16      0.34    -0.49     0.82 1.00    90257    28481
## riskSum_leadership_Sum              -0.21      0.17    -0.56     0.13 1.00    84193    26475
## riskSum_PNI_Sum_z                    4.22      1.80     0.69     7.76 1.00    35309    30198
## riskSum_Gender                       0.37      0.52    -0.65     1.38 1.00    87426    27218
## riskSum_Age                         -0.02      0.02    -0.06     0.02 1.00    83454    27070
## riskPerceptionSum_dominance_Sum     -3.09      0.85    -4.76    -1.41 1.00    72761    29025
## riskPerceptionSum_prestige_Sum       0.06      0.40    -0.73     0.85 1.00    76901    26090
## riskPerceptionSum_leadership_Sum    -0.16      0.23    -0.61     0.30 1.00    85140    26885
## riskPerceptionSum_PNI_Sum_z          2.09      2.35    -2.55     6.67 1.00    36111    31818
## riskPerceptionSum_Gender            -0.64      0.20    -1.04    -0.24 1.00    73186    26642
## riskPerceptionSum_Age               -0.04      0.00    -0.05    -0.03 1.00    47711    24191
## riskBenefitSum_dominance_Sum         0.56      0.41    -0.24     1.35 1.00    71856    28518
## riskBenefitSum_prestige_Sum         -0.30      0.32    -0.93     0.32 1.00    73789    28329
## riskBenefitSum_leadership_Sum       -0.20      0.17    -0.54     0.14 1.00    76745    27710
## riskBenefitSum_PNI_Sum_z             3.50      1.58     0.39     6.61 1.00    35672    29118
## riskBenefitSum_Gender                0.17      0.62    -1.05     1.39 1.00    83654    26228
## riskBenefitSum_Age                  -0.06      0.03    -0.11    -0.00 1.00    82590    27147
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_riskSum              29.56      0.40    28.79    30.35 1.00    55553    30977
## sigma_riskPerceptionSum    38.41      0.45    37.55    39.29 1.00    59805    30672
## sigma_riskBenefitSum       26.00      0.38    25.26    26.74 1.00    51632    30961
## 
## Residual Correlations: 
##                                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(riskSum,riskPerceptionSum)            0.78      0.01     0.76     0.80 1.00    64266    29703
## rescor(riskSum,riskBenefitSum)               0.87      0.01     0.85     0.89 1.00    63802    29862
## rescor(riskPerceptionSum,riskBenefitSum)     0.78      0.01     0.76     0.81 1.00    79716    27954
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m6_hdi <- bayestestR::hdi(m6, effects = "fixed", component = "conditional", ci = .95)
kable(m6_hdi[sign(m6_hdi$CI_low) == sign(m6_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_riskSum_Intercept 0.95 6.64 12.13
b_riskSum_dominance_Sum 0.95 0.05 2.06
b_riskSum_PNI_Sum_z 0.95 0.62 7.67
b_riskPerceptionSum_Intercept 0.95 12.69 16.77
b_riskPerceptionSum_dominance_Sum 0.95 -4.78 -1.44
b_riskPerceptionSum_Gender 0.95 -1.05 -0.24
b_riskPerceptionSum_Age 0.95 -0.05 -0.03
b_riskBenefitSum_Intercept 0.95 6.11 12.24
b_riskBenefitSum_PNI_Sum_z 0.95 0.39 6.60
b_riskBenefitSum_Age 0.95 -0.11 0.00
m6_int <- brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominance_Sum*Gender + prestige_Sum*Gender + leadership_Sum*Gender + PNI_Sum_z*Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, backend = "cmdstanr", save_pars = save_pars(all = TRUE), prior = prior_m6_int)
summary(m6_int)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## riskSum_Intercept                           9.27      1.40     6.51    12.02 1.00    79816    30114
## riskPerceptionSum_Intercept                14.86      1.03    12.83    16.88 1.00    79813    29854
## riskBenefitSum_Intercept                    9.21      1.58     6.11    12.30 1.00    88599    28996
## riskSum_dominance_Sum                       0.56      0.48    -0.39     1.50 1.00    81841    28610
## riskSum_Gender                              0.33      0.52    -0.69     1.35 1.00    88437    28307
## riskSum_prestige_Sum                        0.22      0.41    -0.60     1.03 1.00    86514    29156
## riskSum_leadership_Sum                     -0.31      0.19    -0.68     0.06 1.00    96633    27059
## riskSum_PNI_Sum_z                           0.39      0.87    -1.32     2.08 1.00    71814    26064
## riskSum_Age                                -0.01      0.02    -0.05     0.03 1.00    87545    27136
## riskSum_dominance_Sum:Gender                1.00      0.50     0.03     1.96 1.00    70073    31385
## riskSum_Gender:prestige_Sum                -0.30      0.28    -0.85     0.25 1.00    84409    28314
## riskSum_Gender:leadership_Sum              -0.26      0.39    -1.02     0.51 1.00    71810    31232
## riskSum_Gender:PNI_Sum_z                    0.78      0.70    -0.59     2.13 1.00    67140    28759
## riskPerceptionSum_dominance_Sum            -2.22      0.89    -3.97    -0.47 1.00    81966    28053
## riskPerceptionSum_Gender                   -0.63      0.20    -1.02    -0.24 1.00    89928    25040
## riskPerceptionSum_prestige_Sum             -0.17      0.38    -0.91     0.57 1.00    82112    27342
## riskPerceptionSum_leadership_Sum           -0.03      0.54    -1.11     1.03 1.00    87639    27716
## riskPerceptionSum_PNI_Sum_z                -0.19      0.92    -1.98     1.61 1.00    80066    27422
## riskPerceptionSum_Age                      -0.04      0.00    -0.05    -0.03 1.00    37900    24531
## riskPerceptionSum_dominance_Sum:Gender     -1.39      0.54    -2.44    -0.33 1.00    82463    29611
## riskPerceptionSum_Gender:prestige_Sum      -0.10      0.52    -1.12     0.93 1.00    83997    27502
## riskPerceptionSum_Gender:leadership_Sum     0.29      0.71    -1.11     1.68 1.00    70132    31425
## riskPerceptionSum_Gender:PNI_Sum_z          0.25      0.79    -1.30     1.80 1.00    70717    28931
## riskBenefitSum_dominance_Sum                0.46      0.46    -0.44     1.37 1.00    79179    28525
## riskBenefitSum_Gender                       0.12      0.62    -1.10     1.34 1.00    93262    26738
## riskBenefitSum_prestige_Sum                -0.26      0.45    -1.13     0.62 1.00    78864    29496
## riskBenefitSum_leadership_Sum              -0.34      0.18    -0.69     0.02 1.00    90813    27569
## riskBenefitSum_PNI_Sum_z                    0.78      0.86    -0.90     2.46 1.00    72058    29749
## riskBenefitSum_Age                         -0.06      0.03    -0.11    -0.01 1.00    94536    26612
## riskBenefitSum_dominance_Sum:Gender         0.64      0.40    -0.14     1.43 1.00    70500    29744
## riskBenefitSum_Gender:prestige_Sum         -0.66      0.20    -1.05    -0.28 1.00    90314    28650
## riskBenefitSum_Gender:leadership_Sum        0.07      0.40    -0.70     0.85 1.00    72447    32062
## riskBenefitSum_Gender:PNI_Sum_z             0.27      0.66    -1.04     1.57 1.00    64901    30122
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_riskSum              29.54      0.40    28.77    30.33 1.00    70524    30397
## sigma_riskPerceptionSum    38.39      0.45    37.53    39.26 1.00    73529    30289
## sigma_riskBenefitSum       25.98      0.37    25.25    26.71 1.00    68381    30790
## 
## Residual Correlations: 
##                                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(riskSum,riskPerceptionSum)            0.78      0.01     0.76     0.80 1.00    73700    31465
## rescor(riskSum,riskBenefitSum)               0.87      0.01     0.85     0.89 1.00    76110    30993
## rescor(riskPerceptionSum,riskBenefitSum)     0.79      0.01     0.77     0.81 1.00    72276    29419
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m6_int_hdi <- bayestestR::hdi(m6_int, effects = "fixed", component = "conditional", ci = .95)
kable(m6_int_hdi[sign(m6_int_hdi$CI_low) == sign(m6_int_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T) %>% remove_column(1)
Parameter CI CI_low CI_high
b_riskSum_Intercept 0.95 6.49 11.99
b_riskSum_dominance_Sum:Gender 0.95 0.03 1.96
b_riskPerceptionSum_Intercept 0.95 12.83 16.88
b_riskPerceptionSum_dominance_Sum 0.95 -3.94 -0.45
b_riskPerceptionSum_Gender 0.95 -1.01 -0.23
b_riskPerceptionSum_Age 0.95 -0.05 -0.03
b_riskPerceptionSum_dominance_Sum:Gender 0.95 -2.44 -0.34
b_riskBenefitSum_Intercept 0.95 6.11 12.30
b_riskBenefitSum_Age 0.95 -0.11 -0.01
b_riskBenefitSum_Gender:prestige_Sum 0.95 -1.04 -0.27