Inspeção dos dados

Tabela descritiva
Descritives analyses. P-values calculated with ANOVA.
| n |
28382 |
8780 |
19602 |
|
|
| peso_rake (mean (SD)) |
3346.81 (3601.68) |
3584.90 (4058.25) |
3240.17 (3371.89) |
<0.001 |
|
| idade_cat (%) |
|
|
|
<0.001 |
|
| [15,32] |
968 (3.4) |
199 (2.3) |
769 (3.9) |
|
|
| (32,46] |
3420 (12.0) |
816 (9.3) |
2604 (13.3) |
|
|
| (46,60] |
8367 (29.5) |
2463 (28.1) |
5904 (30.1) |
|
|
| (60,99] |
15627 (55.1) |
5302 (60.4) |
10325 (52.7) |
|
|
| imc (mean (SD)) |
27.22 (7.62) |
27.10 (11.22) |
27.27 (5.27) |
0.079 |
|
| quant_doe_cron (mean (SD)) |
2.22 (1.36) |
2.05 (1.30) |
2.30 (1.38) |
<0.001 |
|
| multimorbidade (mean (SD)) |
0.65 (0.48) |
0.60 (0.49) |
0.67 (0.47) |
<0.001 |
|
| quant_med_cron (mean (SD)) |
2.24 (1.31) |
2.10 (1.28) |
2.30 (1.32) |
<0.001 |
|
| regiao (%) |
|
|
|
<0.001 |
|
| North |
3838 (13.5) |
1310 (14.9) |
2528 (12.9) |
|
|
| Northeast |
5889 (20.7) |
1577 (18.0) |
4312 (22.0) |
|
|
| Southeast |
6711 (23.6) |
2093 (23.8) |
4618 (23.6) |
|
|
| South |
7119 (25.1) |
2220 (25.3) |
4899 (25.0) |
|
|
| Central-West |
4825 (17.0) |
1580 (18.0) |
3245 (16.6) |
|
|
| medic_psi (mean (SD)) |
0.01 (0.09) |
0.00 (0.06) |
0.01 (0.10) |
<0.001 |
|
| tempo_uso_medicamento (mean (SD)) |
6.79 (7.42) |
6.83 (7.55) |
6.78 (7.36) |
0.629 |
|
| numero_vezes_medic (mean (SD)) |
1.53 (1.17) |
1.53 (1.12) |
1.53 (1.18) |
0.598 |
|
Modelo SEM considerando dados de pesquisa complexos e imputação
Warning message:
The closing backticks on line 163 ("````") in luis-attempt.Rmd do not match the opening backticks "```" on line 113. You are recommended to fix either the opening or closing delimiter of the code chunk to use exactly the same numbers of backticks and same level of indentation (or blockquote).
lavaan 0.6-9 ended normally after 89 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 20
Number of observations 28382
Model Test User Model:
Test statistic 613.517
Degrees of freedom 7
P-value (Chi-square) 0.000
Model Test Baseline Model:
Test statistic 27672.009
Degrees of freedom 15
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.978
Tucker-Lewis Index (TLI) 0.953
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -358161.052
Loglikelihood unrestricted model (H1) -357854.293
Akaike (AIC) 716362.103
Bayesian (BIC) 716527.174
Sample-size adjusted Bayesian (BIC) 716463.614
Root Mean Square Error of Approximation:
RMSEA 0.055
90 Percent confidence interval - lower 0.052
90 Percent confidence interval - upper 0.059
P-value RMSEA <= 0.05 0.009
Standardized Root Mean Square Residual:
SRMR 0.033
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
morbidity =~
quant_doe_cron 1.000 1.063 0.803
multimorbidade 0.409 0.003 118.695 0.000 0.435 0.921
psy_med =~
medic_psi 1.000 1.000 10.139
tempo_s_mdcmnt 0.007 0.004 1.671 0.095 0.007 0.001
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
morbidity ~
psy_med 0.001 0.001 2.040 0.041 0.001 0.001
idade 0.024 0.000 53.108 0.000 0.022 0.339
imc 0.005 0.000 9.463 0.000 0.004 0.057
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
idade ~~
imc -15.045 1.212 -12.413 0.000 -15.045 -0.074
psy_med ~~
idade -0.054 0.009 -6.057 0.000 -0.054 -0.004
imc -0.010 0.008 -1.278 0.201 -0.010 -0.001
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.quant_doe_cron 0.682 0.031 21.991 0.000 0.682 0.515
.multimorbidade 0.021 0.012 1.758 0.079 0.021 0.045
.medic_psi 0.010 0.001 16.780 0.000 0.010 0.100
.tempo_s_mdcmnt 6.900 0.044 157.289 0.000 6.900 0.934
idade 58.270 0.091 639.899 0.000 58.270 3.798
imc 27.627 0.079 350.654 0.000 27.627 2.081
.morbidity 0.000 0.000 0.000
psy_med 0.000 0.000 0.000
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.morbidity 1.000 0.885 0.885
psy_med 1.000 1.000 1.000
idade 235.350 1.976 119.126 0.000 235.350 1.000
imc 176.177 1.479 119.126 0.000 176.177 1.000
.quant_doe_cron 0.624 0.012 51.695 0.000 0.624 0.356
.multimorbidade 0.034 0.002 17.657 0.000 0.034 0.152
.medic_psi -0.990 0.000 -12126.759 0.000 -0.990 -101.798
.tempo_s_mdcmnt 54.615 0.458 119.126 0.000 54.615 1.000

LS0tCnRpdGxlOiAiTXkgYXR0ZW1wdCB3aXRoIGNvcnJlbGF0aW9ucyIKYXV0aG9yOiBsZi1hcmF1am8KZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJyApYCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIGhpZ2hsaWdodDogemVuYnVybgogICAgdGhlbWU6IGZsYXRseQogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICBkZl9wcmludDogcGFnZWQKICAgIGNvZGVfZG93bmxvYWRpbmc6IHllcwpudW1iZXItc2VjdGlvbnM6IHllcwpsYW5nOiBlbgotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQpjKAogICJtaWNlIiwgIm1pY2VhZGRzIiwgImRwbHlyIiwgIm1pdG9vbHMiLCAibGF2YWFuIiwgInN1cnZleSIsCiAgImtuaXRyIiwgImxhdmFhbi5zdXJ2ZXkiLCAic2VtUGxvdCIsICJQcm9qZWN0VGVtcGxhdGUiCikgfD4KICBsYXBwbHkoZnVuY3Rpb24oeCkgewogICAgaWYgKCFyZXF1aXJlKHgsIGNoYXJhY3Rlci5vbmx5ID0gVFJVRSkpIHsKICAgICAgaW5zdGFsbC5wYWNrYWdlcyh4LCBkZXBlbmRlbmNpZXMgPSBUUlVFKQogICAgICBsaWJyYXJ5KHgpCiAgICB9CiAgfSkKCgpzZXQuc2VlZCg0MikKc2V0d2QoaGVyZTo6aGVyZSgpKSAjIG5lZWRlZCBhcyB3ZSBhcmUgaW4gL3NyYywgaW4gbGludXggaGVyZSgpIHNob3VsZCBiZSB1c2VkCgojIExvYWRpbmcgdGhlIHByb2plY3QKUHJvamVjdFRlbXBsYXRlOjpsb2FkLnByb2plY3QoKQpwY2xlYW4oKQoKIyBSIG9wdGlvbnMKb3B0aW9ucygKICBkaWdpdHMgPSAyLCAjIE9ubHkgdHdvIGRlY2ltYWwgZGlnaXRzCiAgc2NpcGVuID0gOTk5ICMgUmVtb3ZlIHNjaWVudGlmaWMgbm90YXRpb24gZm9yIHByZXR0eSBwcmludGluZwopCgojIEtuaXRyIG9wdGlvbnMKa25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGVjaG8gPSBGLAogIGVycm9yID0gRiwKICBmaWcuaGVpZ2h0ID0gNywKICBmaWcucGF0aCA9ICIuLi9ncmFwaHMvIiwKICBmaWcud2lkdGggPSAxMCwKICB3YXJuaW5nID0gRkFMU0UsCiAgY2FjaGUgPSBGQUxTRSwKICBjYWNoZS5wYXRoID0gIi4uL2NhY2hlLyIsCiAgY29tbWVudCA9IE5BLAogIGRwaSA9IDMwMAopCmBgYAoKIyBJbnNwZcOnw6NvIGRvcyBkYWRvcwoKYGBge3J9CmRhdGEgJT4lIHZpc2RhdDo6dmlzX21pc3MoKQpgYGAKIyBUYWJlbGEgZGVzY3JpdGl2YSAKCmBgYHtyfQpUYWJsZU9uZSA8LSBkYXRhICU+JQogIG11dGF0ZSgKICAgIHNleG8gPSBmYWN0b3Ioc2V4bywKICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiTWFsZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkZlbWFsZSIKICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgKSksCiAgICByZWdpYW8gPSBmYWN0b3IocmVnaWFvLAogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoCiAgICAgICAgICAgICAgICAgICAgICAiTm9ydGgiLAogICAgICAgICAgICAgICAgICAgICAgIk5vcnRoZWFzdCIsCiAgICAgICAgICAgICAgICAgICAgICAiU291dGhlYXN0IiwKICAgICAgICAgICAgICAgICAgICAgICJTb3V0aCIsCiAgICAgICAgICAgICAgICAgICAgICAiQ2VudHJhbC1XZXN0IgogICAgICAgICAgICAgICAgICAgICkpCiAgKSAlPiUgCiAgdGFibGVvbmU6OkNyZWF0ZVRhYmxlT25lKAogICAgZGF0YSA9IC4sCiAgICB2YXJzID0gYygKICAicGVzb19yYWtlIiwKICAiaWRhZGVfY2F0IiwgCiAgImltYyIsIAogICJxdWFudF9kb2VfY3JvbiIsIAogICJtdWx0aW1vcmJpZGFkZSIsIAogICJxdWFudF9tZWRfY3JvbiIsICAKICAicmVnaWFvIiwgCiAgIm1lZGljX3BzaSIsIAogICJ0ZW1wb191c29fbWVkaWNhbWVudG8iLCAKICAibnVtZXJvX3ZlemVzX21lZGljIiksCiAgICBpbmNsdWRlTkEgPSBULAogICAgIHN0cmF0YSA9ICJzZXhvIiwKICAgIGFkZE92ZXJhbGwgPSBUCiAgKSAjJT4lCiAgI3RhYmxlb25lOjprYWJsZW9uZSgpCgprYWJsZUV4dHJhOjprYWJsZSgKIHByaW50KFRhYmxlT25lLCBwcmludFRvZ2dsZSA9IEZBTFNFLCBub1NwYWNlcyA9IFRSVUUpLAogIGZvcm1hdCA9ICJwYW5kb2MiLAogY2FwdGlvbiA9ICJEZXNjcml0aXZlcyBhbmFseXNlcy4gUC12YWx1ZXMgY2FsY3VsYXRlZCB3aXRoIEFOT1ZBLiIKKQpgYGAKCgoKIyBNb2RlbG8gU0VNIGNvbnNpZGVyYW5kbyBkYWRvcyBkZSBwZXNxdWlzYSBjb21wbGV4b3MgZSBpbXB1dGHDp8OjbwoKYGBge3J9CiMgSW1wdXRhw6fDo28gZG9zIGRhZG9zIG1pc3NpbmcKZGF0YV9pbXB1dCA8LSBkYXRhICU+JQogICMgZHBseXI6OnNlbGVjdCgtbWVkaWNhY2FvX3JlbGF0YWRhKSAlPiUKICBtaWNlKG1ldGhvZCA9ICJjYXJ0IiwgcGFyYWxsZWwgPSAic25vdyIsIHByaW50RmxhZyA9IEZBTFNFKQoKZGF0YV9saXN0IDwtIG1pZHMyZGF0bGlzdChkYXRhX2ltcHV0KQoKIyBNb2RlbCBkZXNpZ24KCm1vZGVsbyA8LSAiCiMgbGF0ZW50cwptb3JiaWRpdHkgPX4gcXVhbnRfZG9lX2Nyb24gKyBtdWx0aW1vcmJpZGFkZQpwc3lfbWVkID1+IG1lZGljX3BzaSAgKyB0ZW1wb191c29fbWVkaWNhbWVudG8gIyBtYXMgYXF1aSBzw7MgcGFyYSBtZWQgcHNpCiMgcmVncmVzc2lvbgptb3JiaWRpdHkgfiBwc3lfbWVkICsgaWRhZGUgKyBpbWMKIyBjb3JyZWxhdGlvbnMKaWRhZGUgfn4gaW1jCmlkYWRlIH5+IHBzeV9tZWQKaW1jIH5+IHBzeV9tZWQKIyB2YXJpYW5jZXMKbW9yYmlkaXR5IH5+IDEqbW9yYmlkaXR5CnBzeV9tZWQgfn4gMSpwc3lfbWVkCmlkYWRlIH5+IGlkYWRlCmltYyB+fiBpbWMKIgoKCiMgR2VyYXIgb2JqZXRvIGRlIGRlc2lnbiBkZSBwZXNxdWlzYQoKc3VydmV5LmRlc2lnbiA8LSBzdnlkZXNpZ24oCiAgaWRzID0gfjAsCiAgd2VpZ2h0cyA9IH5wZXNvX3Jha2UsCiAgZGF0YSA9IGltcHV0YXRpb25MaXN0KGRhdGFfbGlzdCkKKQoKIyBBanVzdGUgbyBtb2RlbG8gdXNhbmRvIGRhZG9zIHBvbmRlcmFkb3MgKHBhc3NhbmRvIG8gb2JqZXRvIGRlIGRlc2lnbiBkZSBwZXNxdWlzYSBxdWUgZ2VyYW1vcyBhY2ltYSkKCmxhdmFhbi5maXQuc3VydmV5IDwtIHNlbShtb2RlbG8sIG1lYW5zdHJ1Y3R1cmUgPSBUUlVFKQoKc3VydmV5LmZpdCA8LSBsYXZhYW4uc3VydmV5KGxhdmFhbi5maXQuc3VydmV5LAogIHN1cnZleS5kZXNpZ24sCiAgZXN0aW1hdG9yID0gIk1MIgopCgojIGluc3BlY3Qgb3V0cHV0CnN1bW1hcnkoc3VydmV5LmZpdCwKICBmaXQubWVhc3VyZXMgPSBUUlVFLAogIHN0YW5kYXJkaXplZCA9IFRSVUUsCikKCiMgcGxvdCBkbyBTRU0KZ3JhcGhfc2VtKG1vZGVsID0gc3VydmV5LmZpdCkKYGBgYAoKCg==