Summary

Script to load, clean and code data downloaded from data service FAME (https://fame.bvdinfo.com) (data not included) in preparation for further analysis.

Data cleaning

library(lubridate)
## Warning: package 'lubridate' was built under R version 3.1.3
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.1.3
#Read data extracted from FAME, with accounting info for 581 FTSE companies.

file <- "FTSEall.txt"
companies <- read.csv(file, header = TRUE, sep = ";")

#Codebook
str(companies)
## 'data.frame':    581 obs. of  1562 variables:
##  $ Mark                                                           : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Company.name                                                   : Factor w/ 581 levels "3I Group PLC",..: 439 77 210 509 246 319 61 562 553 52 ...
##  $ R.O.Full.Postcode                                              : Factor w/ 459 levels "","AB10 1YG",..: 311 360 203 158 68 134 350 287 50 67 ...
##  $ Registered.number                                              : Factor w/ 581 levels "#0049580","#0053787",..: 362 47 515 103 119 560 296 181 30 31 ...
##  $ Primary.UK.SIC..2007..code                                     : int  6100 6100 8990 47110 64110 64110 8990 61200 70100 64110 ...
##  $ Latest.accounts.date                                           : Factor w/ 21 levels "28/02/2014","28/02/2015",..: 21 21 20 2 21 21 5 11 21 21 ...
##  $ Ticker.symbol                                                  : Factor w/ 579 levels "888","AA","AAL",..: 432 72 219 541 251 321 65 561 551 47 ...
##  $ Full.overview                                                  : Factor w/ 574 levels "","A company engaged in advertising activities. It was incorporated in March of 2007 and has its registered head office in Ewloe, "| __truncated__,..: 189 399 311 44 408 58 413 236 443 122 ...
##  $ History                                                        : Factor w/ 286 levels "","Began in Asia as the Nahalma Tea Estate Company Limited",..: 1 1 1 266 1 62 6 1 41 76 ...
##  $ Primary.business.line                                          : Factor w/ 521 levels "","A closed-ended investment company",..: 166 14 502 308 395 479 462 252 20 317 ...
##  $ Main.activity                                                  : Factor w/ 15 levels "","Manufacturing",..: 8 8 4 6 8 8 2 8 2 8 ...
##  $ Size.estimate                                                  : Factor w/ 260 levels "","A global cruise company operating a fleet of 75 ships",..: 1 156 1 233 1 15 225 178 154 17 ...
##  $ Strategy..organization.and.policy                              : Factor w/ 267 levels "","Aims for high long-term performance by seeking out the best small-capital companies as they emerge",..: 266 1 1 1 1 1 1 1 117 1 ...
##  $ Strategic.alliances                                            : Factor w/ 48 levels "","3D PartStream",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Membership.of.a.network                                        : Factor w/ 17 levels "","Association for the Conservation of Energy",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Main.brand.names                                               : Factor w/ 41 levels "","Aguila; Blue Moon; Castle Lager; Club Colombia; Coors Light; Dreher Classic; Gambrinus; Grolsch; Haywards 5000; Imperial",..: 1 3 1 1 1 1 1 1 8 1 ...
##  $ Main.domestic.country                                          : Factor w/ 5 levels "","Canada","Hong Kong",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ Main.foreign.countries.or.regions                              : Factor w/ 199 levels "","Abu Dhabi, UAE; Saudi Arabia",..: 1 75 1 1 1 156 17 189 1 175 ...
##  $ Main.production.sites                                          : Factor w/ 51 levels "","Abingdon, United Kingdom",..: 1 1 41 1 1 1 5 1 1 1 ...
##  $ Main.distribution.sites                                        : Factor w/ 13 levels "","America; Asia Pacific; Europe; the Middle East; Africa",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Main.sales.representation.sites                                : Factor w/ 7 levels "","Belgium; Denmark; Finland; France; Germany; Holland; Ireland; Italy; Norway; Spain; Sweden; Switzerland; Australia; China; Hong"| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Main.customers                                                 : Factor w/ 84 levels "","A.T. Kearney, DaimlerChrysler, Department for Work and Pensions, Murray International, Land Rover UK, Panasonic, Universal Pict"| __truncated__,..: 1 1 17 1 1 1 1 1 1 1 ...
##  $ Turnover.th.GBP.Last.avail..yr                                 : int  270060000 226748000 140490000 62284000 60560000 40154000 39304000 38346000 37588000 32713000 ...
##  $ Turnover.th.GBP.Year...1                                       : int  277485000 228905000 131920000 63557000 48213000 53195000 43329000 44445000 41428000 36907000 ...
##  $ Turnover.th.GBP.Year...2                                       : int  296340000 231055000 119781000 64826000 51641000 54804000 46048000 46417000 41625000 34337000 ...
##  $ Turnover.th.GBP.Year...3                                       : int  311749000 241630000 92596000 64539000 71336000 42189000 44708000 45884000 38813000 43007000 ...
##  $ Turnover.th.GBP.Year...4                                       : int  241523000 189760000 NA 60931000 NA NA 34761000 44472000 37925000 NA ...
##  $ Turnover.th.GBP.Year...5                                       : int  176561000 148165000 NA 56910000 NA NA 30401000 41017000 35382000 NA ...
##  $ Turnover.th.GBP.Year...6                                       : int  316046000 253088000 NA 54327000 NA NA 29862000 35478000 38934000 NA ...
##  $ Turnover.th.GBP.Year...7                                       : int  178525000 146238000 NA 47298000 NA NA 19686000 31104000 29652000 NA ...
##  $ Turnover.th.GBP.Year...8                                       : int  162909000 140157000 NA 42641000 NA NA 17384000 29350000 26709000 NA ...
##  $ Turnover.th.GBP.Year...9                                       : int  178664000 147729000 NA 39454000 NA NA 16703000 34133000 27258000 NA ...
##  $ Profit..Loss..before.Taxation.th.GBP.Last.avail..yr            : int  18158000 3175000 -4253000 -6376000 11980000 1762000 13004000 -5270000 5934000 2256000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...1                  : int  20281000 18246000 662000 2259000 13624000 415000 11739000 3255000 5918000 2868000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...2                  : int  30938000 11571000 2576000 1960000 12703000 -570000 14678000 9549000 5420000 99000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...3                  : int  35815000 24988000 2772000 3835000 14074000 -3542000 19478000 9498000 5216000 5879000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...4                  : int  22574000 -3082000 NA 3535000 12159000 281000 12886000 8674000 5254000 6065000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...5                  : int  13016000 15558000 NA 3176000 4384000 1042000 7034000 4189000 4368000 4585000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...6                  : int  35041000 23639000 NA 2954000 6417000 807000 11791000 9001000 6850000 6077000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...7                  : int  25378000 15862000 NA 2803000 12149000 4000000 8977000 -2383000 3825000 7076000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...8                  : int  22802000 17700000 NA 2653000 11284000 4248000 7659000 -14853000 3255000 7136000 ...
##  $ Profit..Loss..before.Taxation.th.GBP.Year...9                  : int  25959000 18593000 NA 2235000 12212000 3820000 4935000 -4702000 3264000 5280000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Last.avail..yr              : int  165552000 120492000 60277000 20633000 131845000 50524000 74804000 50078000 4528000 98017000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...1                    : int  154733000 119108000 34280000 24970000 119890000 40477000 73898000 59025000 5188000 62481000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...2                    : int  151523000 114853000 35055000 26782000 118746000 78556000 65112000 56006000 6456000 58717000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...3                    : int  145852000 112947000 27432000 27214000 113361000 45243000 51262000 55490000 5568000 59895000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...4                    : int  131955000 104305000 NA 25137000 203178000 122789000 49460000 54077000 7173000 83890000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...5                    : int  118909000 96037000 NA 25831000 124232000 39196000 40117000 49806000 6762000 534136000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...6                    : int  114220000 94167000 NA 23986000 105814000 26503000 29576000 34966000 5599000 1098745000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...7                    : int  82373000 66373000 NA 17565000 66236000 25177000 23575000 34399000 3674000 45552000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...8                    : int  76533000 61041000 NA 14610000 43943000 13129000 21072000 39565000 2886000 42688000 ...
##  $ Net.Tangible.Assets..Liab...th.GBP.Year...9                    : int  74391000 68145000 NA 13520000 41858000 9720000 18594000 35605000 4175000 409947000 ...
##  $ Shareholders.Funds.th.GBP.Last.avail..yr                       : int  110284000 71469000 30162000 7071000 122136000 48690000 46285000 70802000 10594000 59567000 ...
##  $ Shareholders.Funds.th.GBP.Year...1                             : int  108704000 78734000 19234000 14715000 109806000 38989000 46414000 71477000 11933000 55385000 ...
##  $ Shareholders.Funds.th.GBP.Year...2                             : int  115960000 72848000 18831000 16643000 107808000 43999000 41995000 76935000 12294000 60038000 ...
##  $ Shareholders.Funds.th.GBP.Year...3                             : int  109077000 71724000 12527000 17775000 102133000 45920000 35374000 87555000 11938000 55589000 ...
##  $ Shareholders.Funds.th.GBP.Year...4                             : int  94534000 60668000 NA 16535000 94314000 46061000 31948000 90381000 12411000 50858000 ...
##  $ Shareholders.Funds.th.GBP.Year...5                             : int  84483000 62922000 NA 14596000 79447000 43278000 24191000 86162000 10720000 47277000 ...
##  $ Shareholders.Funds.th.GBP.Year...6                             : int  87765000 62954000 NA 12938000 66877000 11260000 19249000 78043000 9558000 36618000 ...
##  $ Shareholders.Funds.th.GBP.Year...7                             : int  62200000 47012000 NA 11815000 66689000 12141000 14786000 67067000 9139000 23291000 ...
##  $ Shareholders.Funds.th.GBP.Year...8                             : int  54019000 43237000 NA 10506000 55361000 11155000 13094000 85425000 7566000 19799000 ...
##  $ Shareholders.Funds.th.GBP.Year...9                             : int  52962000 46584000 NA 9380000 53840000 10195000 9683000 99317000 5744000 17426000 ...
##  $ Profit.Margin...Last.avail..yr                                 : num  6.72 1.4 -3.03 -10.24 19.78 ...
##  $ Profit.Margin...Year...1                                       : num  7.31 7.97 0.5 3.55 28.26 ...
##  $ Profit.Margin...Year...2                                       : num  10.44 5.01 2.15 3.02 24.6 ...
##  $ Profit.Margin...Year...3                                       : num  11.49 10.34 2.99 5.94 19.73 ...
##  $ Profit.Margin...Year...4                                       : num  9.35 -1.62 NA 5.8 NA ...
##  $ Profit.Margin...Year...5                                       : num  7.37 10.5 NA 5.58 NA ...
##  $ Profit.Margin...Year...6                                       : num  11.09 9.34 NA 5.44 NA ...
##  $ Profit.Margin...Year...7                                       : num  14.22 10.85 NA 5.93 NA ...
##  $ Profit.Margin...Year...8                                       : num  14 12.63 NA 6.22 NA ...
##  $ Profit.Margin...Year...9                                       : num  14.53 12.59 NA 5.66 NA ...
##  $ Return.on.Shareholders.Funds...Last.avail..yr                  : num  16.46 4.44 -14.1 -90.17 9.81 ...
##  $ Return.on.Shareholders.Funds...Year...1                        : num  18.66 23.17 3.44 15.35 12.41 ...
##  $ Return.on.Shareholders.Funds...Year...2                        : num  26.7 15.9 13.7 11.8 11.8 ...
##  $ Return.on.Shareholders.Funds...Year...3                        : num  32.8 34.8 22.1 21.6 13.8 ...
##  $ Return.on.Shareholders.Funds...Year...4                        : num  23.88 -5.08 NA 21.38 12.89 ...
##  $ Return.on.Shareholders.Funds...Year...5                        : num  15.41 24.73 NA 21.76 5.52 ...
##  $ Return.on.Shareholders.Funds...Year...6                        : num  39.9 37.5 NA 22.8 9.6 ...
##  $ Return.on.Shareholders.Funds...Year...7                        : num  40.8 33.7 NA 23.7 18.2 ...
##  $ Return.on.Shareholders.Funds...Year...8                        : num  42.2 40.9 NA 25.2 20.4 ...
##  $ Return.on.Shareholders.Funds...Year...9                        : num  49 39.9 NA 23.8 22.7 ...
##  $ Return.on.Capital.Employed...Last.avail..yr                    : num  10.68 2.24 -6.47 -26.13 8.01 ...
##  $ Return.on.Capital.Employed...Year...1                          : num  12.89 13.05 1.84 7.85 9.88 ...
##  $ Return.on.Capital.Employed...Year...2                          : num  20.05 8.45 7.32 6.29 9.26 ...
##  $ Return.on.Capital.Employed...Year...3                          : num  24.1 18.6 10.1 12.1 10.7 ...
##  $ Return.on.Capital.Employed...Year...4                          : num  16.7 -2.59 NA 11.99 5.47 ...
##  $ Return.on.Capital.Employed...Year...5                          : num  10.65 14.34 NA 10.58 3.07 ...
##  $ Return.on.Capital.Employed...Year...6                          : num  29.78 21.88 NA 10.55 5.15 ...
##  $ Return.on.Capital.Employed...Year...7                          : num  29.8 21.1 NA 14.1 14.1 ...
##  $ Return.on.Capital.Employed...Year...8                          : num  28.9 25.6 NA 15.9 17.9 ...
##  $ Return.on.Capital.Employed...Year...9                          : num  33.8 24.2 NA 14.9 20 ...
##  $ Liquidity.Ratio..x..Last.avail..yr                             : num  0.93 1.08 0.78 0.45 0.91 1.03 0.9 0.97 0.42 1.06 ...
##  $ Liquidity.Ratio..x..Year...1                                   : num  0.79 0.93 0.71 0.44 0.9 1.03 0.69 0.73 0.47 1.04 ...
##  $ Liquidity.Ratio..x..Year...2                                   : num  0.87 1.07 0.91 0.49 1.06 1.07 0.65 0.81 0.49 1.03 ...
##  $ Liquidity.Ratio..x..Year...3                                   : num  0.88 0.85 0.73 0.49 0.96 1.02 0.97 0.61 0.54 1.03 ...
##  $ Liquidity.Ratio..x..Year...4                                   : num  0.83 0.84 NA 0.47 0.78 1.12 1.52 0.48 0.6 0.71 ...
##  $ Liquidity.Ratio..x..Year...5                                   : num  0.81 0.76 NA 0.56 0.77 0.27 1.49 0.45 0.62 0.11 ...
##  $ Liquidity.Ratio..x..Year...6                                   : num  0.92 0.71 NA 0.63 0.92 1.03 1.01 0.38 0.53 0.04 ...
##   [list output truncated]
#Split data
comp.info <- companies[ , c(2:5, 7:22)]
comp.data <- companies[ , c(6:7, 23:1562)]

rm(file, companies)

comp.data[ , 1] <- as.Date(comp.data[ , 1], "%d/%m/%Y")

# Create data frame for the analysis
df <- as.data.frame(comp.data[ , 2])
names(df) <- c("ticker")

# If accounts are filed after March, consider previous year.
df$year <- year(comp.data[ , 1])
keep <- month(comp.data[ , 1]) < 4
df$year[keep] <- df$year[keep] - 1
rm(keep)

df <- cbind(df, comp.data[ , c(3:1542)])
rm(comp.data)

# Remove unlisted companies
df <- df[!df$ticker == "Unlisted", ]

# Transform data into long form
comp.df <- melt(df, id = c("ticker", "year"))
rm(df)

change <- grepl('.Year...1', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 1
change <- grepl('.Year...2', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 2
change <- grepl('.Year...3', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 3
change <- grepl('.Year...4', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 4
change <- grepl('.Year...5', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 5
change <- grepl('.Year...6', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 6
change <- grepl('.Year...7', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 7
change <- grepl('.Year...8', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 8
change <- grepl('.Year...9', comp.df$variable)
comp.df$year[change] <- comp.df$year[change] - 9

rm(change)

# Standardise variable names removing year tag
comp.df$variable <- gsub('.Last.avail..yr', "", comp.df$variable)
comp.df$variable <- gsub('.Year...1', "", comp.df$variable)
comp.df$variable <- gsub('.Year...2', "", comp.df$variable)
comp.df$variable <- gsub('.Year...3', "", comp.df$variable)
comp.df$variable <- gsub('.Year...4', "", comp.df$variable)
comp.df$variable <- gsub('.Year...5', "", comp.df$variable)
comp.df$variable <- gsub('.Year...6', "", comp.df$variable)
comp.df$variable <- gsub('.Year...7', "", comp.df$variable)
comp.df$variable <- gsub('.Year...8', "", comp.df$variable)
comp.df$variable <- gsub('.Year...9', "", comp.df$variable)

# Remove NA
comp.df <- comp.df[!is.na(comp.df$value), ]

Some descriptives

library(plyr)
## 
## Attaching package: 'plyr'
## 
## The following object is masked from 'package:lubridate':
## 
##     here
unique(comp.df$ticker)
##   [1] RDSB BP   GLEN TSCO HSBA LLOY BLT  VOD  ULVR BARC PRU  SSE  RIO  CNA 
##  [15] RBS  SBRY GSK  AV   BT.A AAL  CPG  MRW  AZN  SL   STAN OML  BA   CRG 
##  [29] NG   DGE  BATS RR   IMT  SAB  WOS  ABF  BG   DCC  JMAT WPP  KGF  MKS 
##  [43] RMG  LGEN RB   TCG  EVR  VED  SKY  RSA  BBY  GKN  GFS  FGP  INCH BNZL
##  [57] HOME TPK  MNDI PSON BOK  CCL  EZJ  CPI  WG   SMDS PDG  NXT  AMFW SRP 
##  [71] REX  PFC  HAS  CLLN ANTO INVP BAB  BDEV TATE CCC  LOOK DLG  SHP  SN  
##  [85] KIE  SMIN DRTY SGC  IRV  EXPN DRX  SPD  GOG  TW   SHI  ITV  DC   PSN 
##  [99] WEIR BRBY DEB  WTB  MTO  MGNS AML  ITRK MAB  SDR  GFTU MNZS NEX  SVT 
## [113] SSPG CNCT COB  GFRD ATK  RTO  TALK UU   UDG  IMI  PIC  AHT  BKG  WMH 
## [127] KLR  AGK  MGGT RGU  JD   BWY  BBA  VSVS JRG  TLW  JDW  IAP  DCG  MRO 
## [141] BVIC PNN  COLT SGE  GNK  LSE  ECM  MERL STJ  IHG  TSB  QQ   LAD  SXS 
## [155] SMWH CWC  ADN  JLT  HFG  WIN  HWDN SVS  PFG  COST RPC  MPI  CRDA PMO 
## [169] BRSN POLY PLND CWK  GNC  AA   BRIT PFL  HIK  BGEO OCDO HFD  SYNT ADM 
## [183] MCLS MGAM FRES FXPO HTG  ESNT RDW  GMD  PZC  PFD  VM   MER  BWNG CBG 
## [197] MLC  ISAT SNR  MARS BVS  GRG  SPRT ARM  UBM  IPF  CSN  STHR MCB  EMG 
## [211] DNLM FENR MTC  BRAM LAND ULE  TLPR CIU  III  RRS  CWD  RWA  RNK  SPX 
## [225] HLMA XCH  PETS ENQ  LAM  TEP  ALNT SKS  TNI  CRST RTN  ETI  FLYB CINE
## [239] BOY  AFR  ACA  LMI  ROR  RPS  NTG  HSV  LRD  POG  KAZ  BPTY TTG  FDL 
## [253] DLAR UKM  ELM  NOG  BPI  CSR  INPP ESUR NVA  HILS PA   PUB  CPR  HTY 
## [267] FSJ  ICP  SGP  CARR IGG  NMC  LWB  ERM  CHG  BET  CHW  TED  AO.  SYR 
## [281] GNS  KCOM INTU OXIG MSLH HL   RSW  TYMN DNO  SDY  TCY  CMS  HRG  SIV 
## [295] PLP  GRI  HOC  BLND VTC  DPLM PTEC CEY  ALY  PAG  DOM  ASHM SPT  BTG 
## [309] JUP  FSTA ANH  LSL  SIA  BRW  SMP  FDSA EXO  DTY  JPR  FOUR AGA  BAG 
## [323] SDL  MCRO VCT  MONY LVD  MMC  INFI 888  CMBN CKN  AVV  RCDO DVO  SFR 
## [337] STCK RAT  NXR  E2V  OSB  PAY  TIG  HMSO RM   TPT  EXI  DPH  PHTM RNO 
## [351] VP   ITE  SGRO IMG  RMV  HNT  RUS  DIA  JE   BHY  FOXT AQP  DLN  GDWN
## [365] TRI  GEMD GMS  BMS  AVON BACT TRB  HLCL GAW  FDM  AEP  UKCM FAN  STVG
## [379] UTV  MOSB CTR  DJAN ARW  NCC  ATST BMY  AIE  XAR  UTG  SPO  PRV  XPP 
## [393] CSRT STOB SAFE CAR  SEPU HSTN JEV  CLI  ZPLA SHB  DSC  RDI  TRS  SUS 
## [407] SKP  WKP  BYG  ELTA CAU  CAPC BVC  GPOR MTVW MYI  TEM  PHP  FRCL EDIN
## [421] FCPT SERV LMP  SMT  LWDB MRC  CAL  BRWM CTY  UKW  CLDN PCTN WTAN AGR 
## [435] VEC  PLI  TRY  QED  TMPL ASL  MRCH LIO  IPO  IEM  HGT  MUT  BIST RCP 
## [449] CLIG FEV  MNKS ECWO DIG  BNKR MKLW SCIN GPE  TCSC SCAM BBOX BTEM SREI
## [463] JEMI EFM  JMG  FSV  JAM  NAIT JCH  FCSS PIN  LWI  OXB  MCKS SEP  JETG
## [477] PNL  AUKT AAS  CDI  AGIT HSL  SVI  FCI  HHI  SDU  FGT  SDP  VIN  BRLA
## [491] FCRE EUT  KIT  JRS  JEO  WWH  BUT  DIVI SCF  BRSC HRI  JESC BRFI BRCI
## [505] PCFT STS  PCT  SLET TRG  BRGE ABD  IVI  HAN  JII  MAJE SST  JMF  TIGT
## [519] BEE  FCS  BRNA NAS  JFJ  CYN  MNP  HEFT PCGH WPC  ALM  THRG P2P  SLS 
## [533] JAI  HNE  IPU  IAT  SHRS MCP  JMO  HGL  MTU  SCP  LSLI SJG  BGFD ANW 
## [547] PAC  JMC  APF  FAS  ATR  JMI  DNDL ATS  PHI  NII  FPER MTE  HVTR DNE 
## [561] BGS  FJV  JPS  EWI  CGT  BIOG ATT  JUS  IBT  LMS  EPG  OPHR CNE  MPO 
## [575] REL  BEEP CIR  FEET
## 579 Levels: 888 AA AAL AAS ABD ABF ACA ADM ADN AEP AFR AGA AGIT AGK ... ZPLA
unique(comp.df$year)
##  [1] 2014 2013 2012 2010 2009 2011 2008 2007 2006 2005 2004
unique(comp.df$variable)
##   [1] "Turnover.th.GBP"                                 
##   [2] "Profit..Loss..before.Taxation.th.GBP"            
##   [3] "Net.Tangible.Assets..Liab...th.GBP"              
##   [4] "Shareholders.Funds.th.GBP"                       
##   [5] "Profit.Margin.."                                 
##   [6] "Return.on.Shareholders.Funds.."                  
##   [7] "Return.on.Capital.Employed.."                    
##   [8] "Liquidity.Ratio..x."                             
##   [9] "Gearing.."                                       
##  [10] "Number.of.Employees"                             
##  [11] "Tangible.Assets.th.GBP"                          
##  [12] "Land...Buildings.th.GBP"                         
##  [13] "Freehold.Land.th.GBP"                            
##  [14] "Leasehold.Land.th.GBP"                           
##  [15] "Fixtures...Fittings.th.GBP"                      
##  [16] "Plant...Vehicles.th.GBP"                         
##  [17] "Plant.th.GBP"                                    
##  [18] "Vehicles.th.GBP"                                 
##  [19] "Other.Fixed.Assets.th.GBP"                       
##  [20] "Intangible.Assets.th.GBP"                        
##  [21] "Investments..Fixed.Assets..th.GBP"               
##  [22] "Fixed.Assets.th.GBP"                             
##  [23] "Stock...W.I.P.th.GBP"                            
##  [24] "Stock.th.GBP"                                    
##  [25] "X.W.I.P..th.GBP"                                 
##  [26] "Finished.Goods.th.GBP"                           
##  [27] "Trade.Debtors.th.GBP"                            
##  [28] "Bank...Deposits.th.GBP"                          
##  [29] "Other.Current.Assets.th.GBP"                     
##  [30] "Group.Loans..asset..th.GBP"                      
##  [31] "Directors.Loans..asset..th.GBP"                  
##  [32] "Other.Debtors.th.GBP"                            
##  [33] "Prepayments.th.GBP"                              
##  [34] "Deferred.Taxation.th.GBP"                        
##  [35] "Investments..Current.Assets..th.GBP"             
##  [36] "Current.Assets.th.GBP"                           
##  [37] "Trade.Creditors.th.GBP"                          
##  [38] "Short.Term.Loans...Overdrafts.th.GBP"            
##  [39] "Bank.Overdrafts.th.GBP"                          
##  [40] "Group.Loans..short.t...th.GBP"                   
##  [41] "Director.Loans..short.t...th.GBP"                
##  [42] "Corporation.Tax.th.GBP"                          
##  [43] "Dividends.th.GBP"                                
##  [44] "Accruals...Def..Inc...short.t...th.GBP"          
##  [45] "Social.Securities...V.A.T..th.GBP"               
##  [46] "Other.Current.Liabilities.th.GBP"                
##  [47] "Current.Liabilities.th.GBP"                      
##  [48] "Net.Current.Assets..Working.Capital..th.GBP"     
##  [49] "Net.Tangible.Assets..Liab...th.GBP.1"            
##  [50] "Working.Capital.needs.th.GBP"                    
##  [51] "Total.Assets.th.GBP"                             
##  [52] "Total.Assets.less.Cur..Liab..th.GBP"             
##  [53] "Long.Term.Debt.th.GBP"                           
##  [54] "Group.Loans..long.t...th.GBP"                    
##  [55] "Director.Loans..long.t...th.GBP"                 
##  [56] "Hire.Purchase...Leas...long.t...th.GBP"          
##  [57] "Hire.Purchase..long.t...th.GBP"                  
##  [58] "Leasing..long.t...th.GBP"                        
##  [59] "Preference.Shares.th.GBP"                        
##  [60] "Other.Long.Term.Loans.th.GBP"                    
##  [61] "Total.Other.Long.Term.Liab..th.GBP"              
##  [62] "Accruals...Def..Inc...long.t...th.GBP"           
##  [63] "Other.Long.Term.Liab..th.GBP"                    
##  [64] "Provisions.for.Other.Liab..th.GBP"               
##  [65] "Deferred.Tax.th.GBP"                             
##  [66] "Other.Provisions.th.GBP"                         
##  [67] "Pension.Liabilities.th.GBP"                      
##  [68] "Balance.sheet.Minorities.th.GBP"                 
##  [69] "Long.Term.Liabilities.th.GBP"                    
##  [70] "Net.assets.th.GBP"                               
##  [71] "Issued.Capital.th.GBP"                           
##  [72] "Ordinary.Shares.th.GBP"                          
##  [73] "Preference.Shares.th.GBP.1"                      
##  [74] "Other.Shares.th.GBP"                             
##  [75] "Total.Reserves.th.GBP"                           
##  [76] "Share.Premium.Account.th.GBP"                    
##  [77] "Revaluation.Reserves.th.GBP"                     
##  [78] "Profit..Loss..Account.th.GBP"                    
##  [79] "Other.Reserves.th.GBP"                           
##  [80] "Shareholders.Funds.th.GBP.1"                     
##  [81] "Turnover.th.GBP.1"                               
##  [82] "National.Turnover.th.GBP"                        
##  [83] "Overseas.Turnover.th.GBP"                        
##  [84] "Cost.of.Sales.th.GBP"                            
##  [85] "Exceptional.Items.pre.GP.th.GBP"                 
##  [86] "Other.Income.pre.GP.th.GBP"                      
##  [87] "Gross.Profit.th.GBP"                             
##  [88] "Administration.Expenses.th.GBP"                  
##  [89] "Other.Operating.Income.Costs.pre.OP.th.GBP"      
##  [90] "Exceptional.Items.pre.OP.th.GBP"                 
##  [91] "Operating.Profit.th.GBP"                         
##  [92] "Other.Income.th.GBP"                             
##  [93] "Total.Other.Income...Int..Received.th.GBP"       
##  [94] "Exceptional.Items.th.GBP"                        
##  [95] "Profit..Loss..on.Sale.of.Operations.th.GBP"      
##  [96] "Costs.of.Reorganisation.th.GBP"                  
##  [97] "Profit..Loss..on.Disposal.th.GBP"                
##  [98] "Other.Exceptional.Items.th.GBP"                  
##  [99] "Profit..Loss..before.Interest.paid.th.GBP"       
## [100] "Interest.Received.th.GBP"                        
## [101] "Interest.Paid.th.GBP"                            
## [102] "Paid.to.Bank.th.GBP"                             
## [103] "Paid.on.Hire.Purchase.th.GBP"                    
## [104] "Paid.on.Leasing.th.GBP"                          
## [105] "Other.Interest.Paid.th.GBP"                      
## [106] "Net.Interest.th.GBP"                             
## [107] "Profit..Loss..before.Tax.th.GBP"                 
## [108] "Taxation.th.GBP"                                 
## [109] "Profit..Loss..after.Tax.th.GBP"                  
## [110] "Extraordinary.Items.th.GBP"                      
## [111] "Minority.Interests.th.GBP"                       
## [112] "Profit..Loss..for.Period.th.GBP"                 
## [113] "Dividends.th.GBP.1"                              
## [114] "Retained.Profit..Loss..th.GBP"                   
## [115] "Depreciation.th.GBP"                             
## [116] "Depreciation.Owned.Assets.th.GBP"                
## [117] "Depreciation.Other.Assets.th.GBP"                
## [118] "Impairment.Tangibles.th.GBP"                     
## [119] "Audit.Fee.th.GBP"                                
## [120] "Non.Audit.Fee.th.GBP"                            
## [121] "Tax.Advice.th.GBP"                               
## [122] "Non.Tax.Advisory.Services.th.GBP"                
## [123] "Other.Auditors.Services.th.GBP"                  
## [124] "Non.Audit.Fees.paid.to.Other.Auditors.th.GBP"    
## [125] "Total.Amortization.and.Impairment.th.GBP"        
## [126] "Amortisation.th.GBP"                             
## [127] "Impairment.th.GBP"                               
## [128] "Total.Operating.Lease.Rentals.th.GBP"            
## [129] "Hire.of.Plant...Machinery.th.GBP"                
## [130] "Land...Building.or.Property.Rents...Other.th.GBP"
## [131] "Research...Development.th.GBP"                   
## [132] "Foreign.Exchange.Gains.Losses.th.GBP"            
## [133] "Remuneration.th.GBP"                             
## [134] "Wages...Salaries.th.GBP"                         
## [135] "Social.Security.Costs.th.GBP"                    
## [136] "Pension.Costs.th.GBP"                            
## [137] "Other.Staff.Costs.th.GBP"                        
## [138] "Directors..Remuneration.th.GBP"                  
## [139] "Directors..Fees.th.GBP"                          
## [140] "Pension.Contribution.th.GBP"                     
## [141] "Other.Emoluments.th.GBP"                         
## [142] "Highest.Paid.Director.th.GBP"                    
## [143] "EBITDA.th.GBP"                                   
## [144] "Number.of.Employees.1"                           
## [145] "Net.Cash.In.Out.flow.Operat..Activ..th.GBP"      
## [146] "Net.Cash.In.Out.flow.Ret..On.Invest..th.GBP"     
## [147] "Taxation.th.GBP.1"                               
## [148] "Net.Cash.Out.In.flow.Investing.Activ..th.GBP"    
## [149] "Capital.Expenditure...Financ..Invest..th.GBP"    
## [150] "Acquisition...Disposal.th.GBP"                   
## [151] "Equity.Dividends.Paid.th.GBP"                    
## [152] "Management.of.Liquid.Resources.th.GBP"           
## [153] "Net.Cash.Out.In.flow.from.Financing.th.GBP"      
## [154] "Increase..Decrease..Cash...Equiv..th.GBP"
count(comp.df, "year")
##    year  freq
## 1  2004  8808
## 2  2005 38587
## 3  2006 40306
## 4  2007 41765
## 5  2008 42942
## 6  2009 43829
## 7  2010 48379
## 8  2011 49858
## 9  2012 50569
## 10 2013 51511
## 11 2014 38221

Save data

saveRDS(comp.info, "company_info.rds")
saveRDS(comp.df, "company_data.rds")

rm(comp.info, comp.df)