Intensity
#Model for intensity of negotiations (public opinion at the time of proposal, outlier is not omitted)
model1_intensity <- glm.nb(N_trilogues ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +
factor(term) + factor(CAP_str),
data = trilogues_number)
summary(model1_intensity)
##
## Call:
## glm.nb(formula = N_trilogues ~ proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
## Interinst_conflict + EP_polarization + council_dissent +
## N_eurovoc_terms + factor(package_deal) + competence_length +
## factor(new) + factor(form) + ep_amendments_tabled + elections_months +
## factor(term) + factor(CAP_str), data = trilogues_number,
## init.theta = 3.579933269, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0914 -0.7651 -0.1438 0.4725 4.6479
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 2.359e+01 7.886e+00 2.991
## proposal_t_eupolarizarion -8.108e-02 2.125e-01 -0.382
## proposal_t_wmean_eu_salience 5.665e-01 3.253e-01 1.741
## Interinst_conflict -3.325e-02 1.304e-01 -0.255
## EP_polarization 2.847e-01 1.896e+00 0.150
## council_dissent 7.356e-02 2.906e-02 2.531
## N_eurovoc_terms 2.815e-02 2.490e-02 1.131
## factor(package_deal)1 1.062e+00 1.069e-01 9.932
## competence_length -4.766e-01 1.505e-01 -3.167
## factor(new)1 5.894e-02 9.775e-02 0.603
## factor(form)Directive 4.176e-01 1.882e-01 2.219
## factor(form)Regulation 4.285e-01 1.768e-01 2.424
## ep_amendments_tabled 2.495e-03 5.635e-04 4.428
## elections_months -3.450e-02 1.331e-02 -2.592
## factor(term)8 2.240e+00 7.658e-01 2.925
## factor(CAP_str)CultureMedia -1.359e+01 4.582e+00 -2.967
## factor(CAP_str)Defence -1.382e+01 4.548e+00 -3.037
## factor(CAP_str)Education -4.881e+01 6.711e+07 0.000
## factor(CAP_str)Energy -4.308e+00 1.878e+00 -2.293
## factor(CAP_str)Environment -4.128e+00 1.590e+00 -2.596
## factor(CAP_str)EUgovernance 5.846e+00 1.705e+00 3.428
## factor(CAP_str)Fisheries -3.167e+00 1.247e+00 -2.540
## factor(CAP_str)ForeignTrade 3.081e+00 9.902e-01 3.112
## factor(CAP_str)Health -1.374e+01 4.509e+00 -3.048
## factor(CAP_str)Immigration -1.336e+01 4.541e+00 -2.943
## factor(CAP_str)InternationalRelations 1.537e-01 6.320e-01 0.243
## factor(CAP_str)Labour -4.767e+00 1.855e+00 -2.570
## factor(CAP_str)LawCrime -1.319e+01 4.529e+00 -2.913
## factor(CAP_str)Macroeconomics 4.818e+00 1.596e+00 3.019
## factor(CAP_str)Market 3.150e+00 9.656e-01 3.262
## factor(CAP_str)RegionalPolicy -7.191e-01 1.020e+00 -0.705
## factor(CAP_str)Rights -1.266e+01 4.534e+00 -2.793
## factor(CAP_str)SocialPolicy -4.978e+00 1.883e+00 -2.643
## factor(CAP_str)Technology -1.079e+01 3.605e+00 -2.993
## factor(CAP_str)Transportation -1.154e+01 3.505e+00 -3.294
## Pr(>|z|)
## (Intercept) 0.002778 **
## proposal_t_eupolarizarion 0.702806
## proposal_t_wmean_eu_salience 0.081631 .
## Interinst_conflict 0.798786
## EP_polarization 0.880666
## council_dissent 0.011366 *
## N_eurovoc_terms 0.258262
## factor(package_deal)1 < 2e-16 ***
## competence_length 0.001543 **
## factor(new)1 0.546499
## factor(form)Directive 0.026511 *
## factor(form)Regulation 0.015347 *
## ep_amendments_tabled 9.5e-06 ***
## elections_months 0.009545 **
## factor(term)8 0.003441 **
## factor(CAP_str)CultureMedia 0.003008 **
## factor(CAP_str)Defence 0.002386 **
## factor(CAP_str)Education 0.999999
## factor(CAP_str)Energy 0.021825 *
## factor(CAP_str)Environment 0.009431 **
## factor(CAP_str)EUgovernance 0.000608 ***
## factor(CAP_str)Fisheries 0.011089 *
## factor(CAP_str)ForeignTrade 0.001859 **
## factor(CAP_str)Health 0.002305 **
## factor(CAP_str)Immigration 0.003251 **
## factor(CAP_str)InternationalRelations 0.807877
## factor(CAP_str)Labour 0.010179 *
## factor(CAP_str)LawCrime 0.003583 **
## factor(CAP_str)Macroeconomics 0.002534 **
## factor(CAP_str)Market 0.001107 **
## factor(CAP_str)RegionalPolicy 0.480734
## factor(CAP_str)Rights 0.005228 **
## factor(CAP_str)SocialPolicy 0.008223 **
## factor(CAP_str)Technology 0.002758 **
## factor(CAP_str)Transportation 0.000989 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(3.5799) family taken to be 1)
##
## Null deviance: 823.79 on 361 degrees of freedom
## Residual deviance: 336.02 on 327 degrees of freedom
## (169 observations deleted due to missingness)
## AIC: 1662.1
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 3.580
## Std. Err.: 0.466
##
## 2 x log-likelihood: -1590.057
plot_model(model1_intensity, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model1_intensity, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
##without CAP FEs
model1a_intensity <- glm.nb(N_trilogues ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +
factor(term),
data = trilogues_number)
summary(model1a_intensity)
##
## Call:
## glm.nb(formula = N_trilogues ~ proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
## Interinst_conflict + EP_polarization + council_dissent +
## N_eurovoc_terms + factor(package_deal) + competence_length +
## factor(new) + factor(form) + ep_amendments_tabled + elections_months +
## factor(term), data = trilogues_number, init.theta = 2.346123378,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0673 -0.7603 -0.2275 0.3362 4.3328
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3221807 0.5102552 -0.631 0.52777
## proposal_t_eupolarizarion 0.1362111 0.2125342 0.641 0.52159
## proposal_t_wmean_eu_salience 0.7393248 0.3210781 2.303 0.02130 *
## Interinst_conflict -0.1867812 0.1051871 -1.776 0.07578 .
## EP_polarization -0.2261001 0.5274218 -0.429 0.66815
## council_dissent 0.0556300 0.0313659 1.774 0.07613 .
## N_eurovoc_terms 0.0284889 0.0264603 1.077 0.28163
## factor(package_deal)1 1.3785523 0.1131553 12.183 < 2e-16 ***
## competence_length -0.0058284 0.0038947 -1.497 0.13452
## factor(new)1 0.1139391 0.1003230 1.136 0.25607
## factor(form)Directive 0.5163628 0.2014550 2.563 0.01037 *
## factor(form)Regulation 0.5159010 0.1905556 2.707 0.00678 **
## ep_amendments_tabled 0.0033274 0.0005951 5.591 2.25e-08 ***
## elections_months 0.0057797 0.0038390 1.506 0.13219
## factor(term)8 -0.1142432 0.1021404 -1.118 0.26336
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(2.3461) family taken to be 1)
##
## Null deviance: 637.49 on 361 degrees of freedom
## Residual deviance: 339.31 on 347 degrees of freedom
## (169 observations deleted due to missingness)
## AIC: 1703
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 2.346
## Std. Err.: 0.251
##
## 2 x log-likelihood: -1671.014
plot_model(model1a_intensity, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model1a_intensity, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
##without conflict
model1b_intensity <- glm.nb(N_trilogues ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
EP_polarization + council_dissent +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +
factor(term) + factor(CAP_str),
data = trilogues_number)
summary(model1b_intensity)
##
## Call:
## glm.nb(formula = N_trilogues ~ proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
## EP_polarization + council_dissent + N_eurovoc_terms + factor(package_deal) +
## competence_length + factor(new) + factor(form) + ep_amendments_tabled +
## elections_months + factor(term) + factor(CAP_str), data = trilogues_number,
## init.theta = 3.578716485, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0953 -0.7605 -0.1417 0.4679 4.6538
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 2.340e+01 7.838e+00 2.986
## proposal_t_eupolarizarion -8.557e-02 2.121e-01 -0.404
## proposal_t_wmean_eu_salience 5.763e-01 3.240e-01 1.779
## EP_polarization 2.626e-01 1.892e+00 0.139
## council_dissent 7.309e-02 2.903e-02 2.518
## N_eurovoc_terms 2.732e-02 2.475e-02 1.103
## factor(package_deal)1 1.060e+00 1.068e-01 9.924
## competence_length -4.741e-01 1.500e-01 -3.161
## factor(new)1 5.892e-02 9.773e-02 0.603
## factor(form)Directive 4.198e-01 1.882e-01 2.230
## factor(form)Regulation 4.283e-01 1.767e-01 2.423
## ep_amendments_tabled 2.498e-03 5.636e-04 4.433
## elections_months -3.416e-02 1.323e-02 -2.583
## factor(term)8 2.228e+00 7.633e-01 2.919
## factor(CAP_str)CultureMedia -1.350e+01 4.561e+00 -2.960
## factor(CAP_str)Defence -1.370e+01 4.516e+00 -3.034
## factor(CAP_str)Education -4.870e+01 6.711e+07 0.000
## factor(CAP_str)Energy -4.223e+00 1.841e+00 -2.294
## factor(CAP_str)Environment -4.050e+00 1.554e+00 -2.606
## factor(CAP_str)EUgovernance 5.876e+00 1.703e+00 3.451
## factor(CAP_str)Fisheries -3.140e+00 1.241e+00 -2.531
## factor(CAP_str)ForeignTrade 3.127e+00 9.766e-01 3.202
## factor(CAP_str)Health -1.362e+01 4.472e+00 -3.045
## factor(CAP_str)Immigration -1.326e+01 4.512e+00 -2.938
## factor(CAP_str)InternationalRelations 2.020e-01 6.016e-01 0.336
## factor(CAP_str)Labour -4.691e+00 1.824e+00 -2.572
## factor(CAP_str)LawCrime -1.310e+01 4.508e+00 -2.906
## factor(CAP_str)Macroeconomics 4.844e+00 1.594e+00 3.039
## factor(CAP_str)Market 3.192e+00 9.534e-01 3.348
## factor(CAP_str)RegionalPolicy -6.738e-01 9.992e-01 -0.674
## factor(CAP_str)Rights -1.256e+01 4.509e+00 -2.786
## factor(CAP_str)SocialPolicy -4.895e+00 1.849e+00 -2.647
## factor(CAP_str)Technology -1.070e+01 3.578e+00 -2.990
## factor(CAP_str)Transportation -1.146e+01 3.480e+00 -3.292
## Pr(>|z|)
## (Intercept) 0.002827 **
## proposal_t_eupolarizarion 0.686574
## proposal_t_wmean_eu_salience 0.075275 .
## EP_polarization 0.889642
## council_dissent 0.011803 *
## N_eurovoc_terms 0.269829
## factor(package_deal)1 < 2e-16 ***
## competence_length 0.001571 **
## factor(new)1 0.546593
## factor(form)Directive 0.025726 *
## factor(form)Regulation 0.015387 *
## ep_amendments_tabled 9.29e-06 ***
## elections_months 0.009801 **
## factor(term)8 0.003512 **
## factor(CAP_str)CultureMedia 0.003072 **
## factor(CAP_str)Defence 0.002414 **
## factor(CAP_str)Education 0.999999
## factor(CAP_str)Energy 0.021799 *
## factor(CAP_str)Environment 0.009151 **
## factor(CAP_str)EUgovernance 0.000559 ***
## factor(CAP_str)Fisheries 0.011365 *
## factor(CAP_str)ForeignTrade 0.001367 **
## factor(CAP_str)Health 0.002324 **
## factor(CAP_str)Immigration 0.003299 **
## factor(CAP_str)InternationalRelations 0.736981
## factor(CAP_str)Labour 0.010112 *
## factor(CAP_str)LawCrime 0.003660 **
## factor(CAP_str)Macroeconomics 0.002375 **
## factor(CAP_str)Market 0.000814 ***
## factor(CAP_str)RegionalPolicy 0.500116
## factor(CAP_str)Rights 0.005332 **
## factor(CAP_str)SocialPolicy 0.008120 **
## factor(CAP_str)Technology 0.002791 **
## factor(CAP_str)Transportation 0.000995 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(3.5787) family taken to be 1)
##
## Null deviance: 823.63 on 361 degrees of freedom
## Residual deviance: 336.03 on 328 degrees of freedom
## (169 observations deleted due to missingness)
## AIC: 1660.1
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 3.579
## Std. Err.: 0.466
##
## 2 x log-likelihood: -1590.123
plot_model(model1b_intensity, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model1b_intensity, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
#Model for intensity of negotiations (public opinion at the time of proposal, outlier is omitted)
model2_intensity <- glm.nb(N_trilogues ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +
factor(term) + factor(CAP_str),
data = trilogues_number_noRegi)
summary(model2_intensity)
##
## Call:
## glm.nb(formula = N_trilogues ~ proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
## Interinst_conflict + EP_polarization + council_dissent +
## N_eurovoc_terms + factor(package_deal) + competence_length +
## factor(new) + factor(form) + ep_amendments_tabled + elections_months +
## factor(term) + factor(CAP_str), data = trilogues_number_noRegi,
## init.theta = 9.363821197, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1098 -0.7118 -0.1621 0.5100 3.6057
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 2.629e+01 6.705e+00 3.921
## proposal_t_eupolarizarion -3.295e-01 1.823e-01 -1.807
## proposal_t_wmean_eu_salience -1.984e-01 2.839e-01 -0.699
## Interinst_conflict -4.500e-02 1.086e-01 -0.414
## EP_polarization -3.078e+00 1.598e+00 -1.926
## council_dissent 7.701e-02 2.378e-02 3.238
## N_eurovoc_terms 5.908e-03 2.113e-02 0.280
## factor(package_deal)1 6.536e-01 9.244e-02 7.070
## competence_length -5.022e-01 1.277e-01 -3.933
## factor(new)1 1.359e-01 8.204e-02 1.657
## factor(form)Directive 4.331e-01 1.617e-01 2.679
## factor(form)Regulation 4.072e-01 1.523e-01 2.673
## ep_amendments_tabled 2.402e-03 5.048e-04 4.758
## elections_months -3.460e-02 1.128e-02 -3.066
## factor(term)8 2.562e+00 6.519e-01 3.931
## factor(CAP_str)CultureMedia -1.504e+01 3.901e+00 -3.854
## factor(CAP_str)Defence -1.361e+01 3.849e+00 -3.537
## factor(CAP_str)Education -4.549e+01 1.034e+07 0.000
## factor(CAP_str)Energy -5.171e+00 1.600e+00 -3.232
## factor(CAP_str)Environment -3.874e+00 1.344e+00 -2.883
## factor(CAP_str)EUgovernance 6.310e+00 1.450e+00 4.353
## factor(CAP_str)Fisheries -3.678e+00 1.061e+00 -3.467
## factor(CAP_str)ForeignTrade 3.545e+00 8.367e-01 4.237
## factor(CAP_str)Health -1.389e+01 3.822e+00 -3.635
## factor(CAP_str)Immigration -1.434e+01 3.856e+00 -3.719
## factor(CAP_str)InternationalRelations 7.694e-01 5.267e-01 1.461
## factor(CAP_str)Labour -4.598e+00 1.566e+00 -2.936
## factor(CAP_str)LawCrime -1.433e+01 3.846e+00 -3.728
## factor(CAP_str)Macroeconomics 5.323e+00 1.353e+00 3.934
## factor(CAP_str)Market 3.774e+00 8.143e-01 4.634
## factor(CAP_str)RegionalPolicy -3.610e+01 7.268e+06 0.000
## factor(CAP_str)Rights -1.374e+01 3.848e+00 -3.572
## factor(CAP_str)SocialPolicy -4.688e+00 1.590e+00 -2.948
## factor(CAP_str)Technology -1.073e+01 3.052e+00 -3.517
## factor(CAP_str)Transportation -1.131e+01 2.972e+00 -3.805
## Pr(>|z|)
## (Intercept) 8.81e-05 ***
## proposal_t_eupolarizarion 0.070722 .
## proposal_t_wmean_eu_salience 0.484689
## Interinst_conflict 0.678599
## EP_polarization 0.054076 .
## council_dissent 0.001204 **
## N_eurovoc_terms 0.779793
## factor(package_deal)1 1.55e-12 ***
## competence_length 8.40e-05 ***
## factor(new)1 0.097549 .
## factor(form)Directive 0.007379 **
## factor(form)Regulation 0.007516 **
## ep_amendments_tabled 1.95e-06 ***
## elections_months 0.002168 **
## factor(term)8 8.46e-05 ***
## factor(CAP_str)CultureMedia 0.000116 ***
## factor(CAP_str)Defence 0.000404 ***
## factor(CAP_str)Education 0.999996
## factor(CAP_str)Energy 0.001229 **
## factor(CAP_str)Environment 0.003942 **
## factor(CAP_str)EUgovernance 1.34e-05 ***
## factor(CAP_str)Fisheries 0.000526 ***
## factor(CAP_str)ForeignTrade 2.27e-05 ***
## factor(CAP_str)Health 0.000278 ***
## factor(CAP_str)Immigration 0.000200 ***
## factor(CAP_str)InternationalRelations 0.144116
## factor(CAP_str)Labour 0.003328 **
## factor(CAP_str)LawCrime 0.000193 ***
## factor(CAP_str)Macroeconomics 8.35e-05 ***
## factor(CAP_str)Market 3.58e-06 ***
## factor(CAP_str)RegionalPolicy 0.999996
## factor(CAP_str)Rights 0.000355 ***
## factor(CAP_str)SocialPolicy 0.003194 **
## factor(CAP_str)Technology 0.000437 ***
## factor(CAP_str)Transportation 0.000142 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(9.3638) family taken to be 1)
##
## Null deviance: 553.67 on 356 degrees of freedom
## Residual deviance: 345.88 on 322 degrees of freedom
## (169 observations deleted due to missingness)
## AIC: 1507.7
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 9.36
## Std. Err.: 2.41
##
## 2 x log-likelihood: -1435.698
plot_model(model2_intensity, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model2_intensity, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
##without CAP FEs
model2a_intensity <- glm.nb(N_trilogues ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +
factor(term),
data = trilogues_number_noRegi)
summary(model2a_intensity)
##
## Call:
## glm.nb(formula = N_trilogues ~ proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
## Interinst_conflict + EP_polarization + council_dissent +
## N_eurovoc_terms + factor(package_deal) + competence_length +
## factor(new) + factor(form) + ep_amendments_tabled + elections_months +
## factor(term), data = trilogues_number_noRegi, init.theta = 6.032846629,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.9375 -0.7927 -0.2092 0.4928 3.5014
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.7657042 0.4085012 1.874 0.06087 .
## proposal_t_eupolarizarion -0.0898161 0.1736923 -0.517 0.60509
## proposal_t_wmean_eu_salience -0.0775054 0.2502522 -0.310 0.75678
## Interinst_conflict -0.1965473 0.0849183 -2.315 0.02064 *
## EP_polarization -0.5355824 0.4208906 -1.272 0.20320
## council_dissent 0.0737168 0.0244689 3.013 0.00259 **
## N_eurovoc_terms 0.0131939 0.0216194 0.610 0.54168
## factor(package_deal)1 0.7516122 0.0938652 8.007 1.17e-15 ***
## competence_length -0.0065170 0.0031599 -2.062 0.03917 *
## factor(new)1 0.2159145 0.0807676 2.673 0.00751 **
## factor(form)Directive 0.5096088 0.1652567 3.084 0.00204 **
## factor(form)Regulation 0.3904510 0.1578375 2.474 0.01337 *
## ep_amendments_tabled 0.0025477 0.0005047 5.048 4.45e-07 ***
## elections_months 0.0049525 0.0031367 1.579 0.11437
## factor(term)8 0.0170315 0.0824809 0.206 0.83641
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(6.0328) family taken to be 1)
##
## Null deviance: 486.63 on 356 degrees of freedom
## Residual deviance: 357.55 on 342 degrees of freedom
## (169 observations deleted due to missingness)
## AIC: 1524
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 6.03
## Std. Err.: 1.20
##
## 2 x log-likelihood: -1492.039
plot_model(model2_intensity, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model2_intensity, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
##without conflict
model2b_intensity <- glm.nb(N_trilogues ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
EP_polarization + council_dissent +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +
factor(term)+ factor(CAP_str),
data = trilogues_number_noRegi)
summary(model2b_intensity)
##
## Call:
## glm.nb(formula = N_trilogues ~ proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
## EP_polarization + council_dissent + N_eurovoc_terms + factor(package_deal) +
## competence_length + factor(new) + factor(form) + ep_amendments_tabled +
## elections_months + factor(term) + factor(CAP_str), data = trilogues_number_noRegi,
## init.theta = 9.339275162, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1292 -0.6943 -0.1581 0.5084 3.6168
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 2.597e+01 6.651e+00 3.904
## proposal_t_eupolarizarion -3.337e-01 1.822e-01 -1.831
## proposal_t_wmean_eu_salience -1.813e-01 2.810e-01 -0.645
## EP_polarization -3.101e+00 1.595e+00 -1.943
## council_dissent 7.645e-02 2.377e-02 3.216
## N_eurovoc_terms 4.865e-03 2.100e-02 0.232
## factor(package_deal)1 6.522e-01 9.248e-02 7.053
## competence_length -4.975e-01 1.271e-01 -3.915
## factor(new)1 1.363e-01 8.203e-02 1.662
## factor(form)Directive 4.352e-01 1.617e-01 2.692
## factor(form)Regulation 4.062e-01 1.523e-01 2.666
## ep_amendments_tabled 2.407e-03 5.049e-04 4.766
## elections_months -3.404e-02 1.120e-02 -3.040
## factor(term)8 2.539e+00 6.488e-01 3.914
## factor(CAP_str)CultureMedia -1.487e+01 3.876e+00 -3.836
## factor(CAP_str)Defence -1.342e+01 3.815e+00 -3.518
## factor(CAP_str)Education -4.532e+01 1.034e+07 0.000
## factor(CAP_str)Energy -5.039e+00 1.564e+00 -3.222
## factor(CAP_str)Environment -3.756e+00 1.310e+00 -2.867
## factor(CAP_str)EUgovernance 6.333e+00 1.449e+00 4.371
## factor(CAP_str)Fisheries -3.631e+00 1.053e+00 -3.447
## factor(CAP_str)ForeignTrade 3.599e+00 8.277e-01 4.348
## factor(CAP_str)Health -1.369e+01 3.784e+00 -3.617
## factor(CAP_str)Immigration -1.415e+01 3.825e+00 -3.701
## factor(CAP_str)InternationalRelations 8.344e-01 5.022e-01 1.661
## factor(CAP_str)Labour -4.480e+00 1.537e+00 -2.915
## factor(CAP_str)LawCrime -1.418e+01 3.822e+00 -3.709
## factor(CAP_str)Macroeconomics 5.344e+00 1.353e+00 3.951
## factor(CAP_str)Market 3.823e+00 8.065e-01 4.741
## factor(CAP_str)RegionalPolicy -3.603e+01 7.282e+06 0.000
## factor(CAP_str)Rights -1.357e+01 3.820e+00 -3.552
## factor(CAP_str)SocialPolicy -4.564e+00 1.558e+00 -2.928
## factor(CAP_str)Technology -1.058e+01 3.024e+00 -3.497
## factor(CAP_str)Transportation -1.116e+01 2.947e+00 -3.788
## Pr(>|z|)
## (Intercept) 9.44e-05 ***
## proposal_t_eupolarizarion 0.067091 .
## proposal_t_wmean_eu_salience 0.518873
## EP_polarization 0.051958 .
## council_dissent 0.001299 **
## N_eurovoc_terms 0.816834
## factor(package_deal)1 1.75e-12 ***
## competence_length 9.03e-05 ***
## factor(new)1 0.096603 .
## factor(form)Directive 0.007107 **
## factor(form)Regulation 0.007666 **
## ep_amendments_tabled 1.88e-06 ***
## elections_months 0.002365 **
## factor(term)8 9.10e-05 ***
## factor(CAP_str)CultureMedia 0.000125 ***
## factor(CAP_str)Defence 0.000435 ***
## factor(CAP_str)Education 0.999997
## factor(CAP_str)Energy 0.001273 **
## factor(CAP_str)Environment 0.004148 **
## factor(CAP_str)EUgovernance 1.24e-05 ***
## factor(CAP_str)Fisheries 0.000567 ***
## factor(CAP_str)ForeignTrade 1.38e-05 ***
## factor(CAP_str)Health 0.000298 ***
## factor(CAP_str)Immigration 0.000215 ***
## factor(CAP_str)InternationalRelations 0.096621 .
## factor(CAP_str)Labour 0.003559 **
## factor(CAP_str)LawCrime 0.000208 ***
## factor(CAP_str)Macroeconomics 7.80e-05 ***
## factor(CAP_str)Market 2.13e-06 ***
## factor(CAP_str)RegionalPolicy 0.999996
## factor(CAP_str)Rights 0.000382 ***
## factor(CAP_str)SocialPolicy 0.003408 **
## factor(CAP_str)Technology 0.000471 ***
## factor(CAP_str)Transportation 0.000152 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(9.3393) family taken to be 1)
##
## Null deviance: 553.29 on 356 degrees of freedom
## Residual deviance: 345.83 on 323 degrees of freedom
## (169 observations deleted due to missingness)
## AIC: 1505.9
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 9.34
## Std. Err.: 2.40
##
## 2 x log-likelihood: -1435.873
plot_model(model2_intensity, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model2_intensity, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
stargazer(model1_intensity, model1a_intensity, model1b_intensity, model2_intensity, model2a_intensity, model2b_intensity, type = "text", omit=c("CAP_str", "term"), omit.labels = c("CAP FE", "EP term FE"))
##
## ==================================================================================================================================
## Dependent variable:
## -----------------------------------------------------------------------------------------------------
## N_trilogues
## (1) (2) (3) (4) (5) (6)
## ----------------------------------------------------------------------------------------------------------------------------------
## proposal_t_eupolarizarion -0.081 0.136 -0.086 -0.330* -0.090 -0.334*
## (0.213) (0.213) (0.212) (0.182) (0.174) (0.182)
##
## proposal_t_wmean_eu_salience 0.566* 0.739** 0.576* -0.198 -0.078 -0.181
## (0.325) (0.321) (0.324) (0.284) (0.250) (0.281)
##
## Interinst_conflict -0.033 -0.187* -0.045 -0.197**
## (0.130) (0.105) (0.109) (0.085)
##
## EP_polarization 0.285 -0.226 0.263 -3.078* -0.536 -3.101*
## (1.896) (0.527) (1.892) (1.598) (0.421) (1.595)
##
## council_dissent 0.074** 0.056* 0.073** 0.077*** 0.074*** 0.076***
## (0.029) (0.031) (0.029) (0.024) (0.024) (0.024)
##
## factor(package_deal)1 1.062*** 1.379*** 1.060*** 0.654*** 0.752*** 0.652***
## (0.107) (0.113) (0.107) (0.092) (0.094) (0.092)
##
## competence_length -0.477*** -0.006 -0.474*** -0.502*** -0.007** -0.498***
## (0.151) (0.004) (0.150) (0.128) (0.003) (0.127)
##
## factor(new)1 0.059 0.114 0.059 0.136* 0.216*** 0.136*
## (0.098) (0.100) (0.098) (0.082) (0.081) (0.082)
##
## factor(form)Directive 0.418** 0.516** 0.420** 0.433*** 0.510*** 0.435***
## (0.188) (0.201) (0.188) (0.162) (0.165) (0.162)
##
## factor(form)Regulation 0.429** 0.516*** 0.428** 0.407*** 0.390** 0.406***
## (0.177) (0.191) (0.177) (0.152) (0.158) (0.152)
##
## ep_amendments_tabled 0.002*** 0.003*** 0.002*** 0.002*** 0.003*** 0.002***
## (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
##
## elections_months -0.034*** 0.006 -0.034*** -0.035*** 0.005 -0.034***
## (0.013) (0.004) (0.013) (0.011) (0.003) (0.011)
##
## Constant 23.589*** -0.322 23.403*** 26.294*** 0.766* 25.969***
## (7.886) (0.510) (7.838) (6.705) (0.409) (6.651)
##
## ----------------------------------------------------------------------------------------------------------------------------------
## CAP FE Yes No Yes Yes No Yes
## EP term FE Yes Yes Yes Yes Yes Yes
## ----------------------------------------------------------------------------------------------------------------------------------
## Observations 362 362 362 357 357 357
## Log Likelihood -796.028 -836.507 -796.061 -718.849 -747.019 -718.936
## theta 3.580*** (0.466) 2.346*** (0.251) 3.579*** (0.466) 9.364*** (2.415) 6.033*** (1.197) 9.339*** (2.405)
## Akaike Inf. Crit. 1,662.057 1,703.014 1,660.123 1,507.698 1,524.039 1,505.873
## ==================================================================================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Models duration
trilogues_duration$duration_negotiations_months_rounded <- round(trilogues_duration$duration_negotiations_months, digits = 0)
trilogues_duration_noRegi$duration_negotiations_months_rounded <- round(trilogues_duration_noRegi$duration_negotiations_months, digits = 0)
model1_duration <- glm.nb(duration_negotiations_months_rounded ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent + N_trilogues +
N_eurovoc_terms + factor(package_deal) + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months ,
data = trilogues_duration)
summary(model1_duration)
##
## Call:
## glm.nb(formula = duration_negotiations_months_rounded ~ proposal_t_eupolarizarion +
## proposal_t_wmean_eu_salience + Interinst_conflict + EP_polarization +
## council_dissent + N_trilogues + N_eurovoc_terms + factor(package_deal) +
## competence_length + factor(new) + factor(form) + ep_amendments_tabled +
## elections_months, data = trilogues_duration, init.theta = 2.286820553,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0284 -1.1352 -0.3457 0.3550 3.1103
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.2484445 0.5992984 -2.083 0.037235 *
## proposal_t_eupolarizarion 0.1955580 0.2510630 0.779 0.436027
## proposal_t_wmean_eu_salience -0.1438961 0.3657868 -0.393 0.694033
## Interinst_conflict 0.0533882 0.1224914 0.436 0.662944
## EP_polarization 0.1091335 0.5928539 0.184 0.853949
## council_dissent -0.0136571 0.0356540 -0.383 0.701686
## N_trilogues 0.2601366 0.0182140 14.282 < 2e-16 ***
## N_eurovoc_terms 0.0383745 0.0293614 1.307 0.191223
## factor(package_deal)1 -0.0631975 0.1590411 -0.397 0.691098
## competence_length -0.0080023 0.0045758 -1.749 0.080317 .
## factor(new)1 0.2654572 0.1167372 2.274 0.022968 *
## factor(form)Directive 0.3976470 0.2606141 1.526 0.127058
## factor(form)Regulation 0.4428132 0.2472644 1.791 0.073318 .
## ep_amendments_tabled 0.0008457 0.0007438 1.137 0.255557
## elections_months 0.0165940 0.0046728 3.551 0.000384 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(2.2868) family taken to be 1)
##
## Null deviance: 639.97 on 344 degrees of freedom
## Residual deviance: 345.11 on 330 degrees of freedom
## (211 observations deleted due to missingness)
## AIC: 1306.8
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 2.287
## Std. Err.: 0.332
##
## 2 x log-likelihood: -1274.843
plot_model(model1_duration, type = "pred", terms = c("proposal_t_eupolarizarion"))
plot_model(model1_duration, type = "pred", terms = c("proposal_t_wmean_eu_salience"))
model1_duration_zi <- zeroinfl(duration_negotiations_months_rounded ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent +
N_eurovoc_terms + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months | N_trilogues + factor(package_deal),
data = trilogues_duration_noRegi, dist = "negbin", EM = TRUE)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model1_duration_zi)
##
## Call:
## zeroinfl(formula = duration_negotiations_months_rounded ~ proposal_t_eupolarizarion +
## proposal_t_wmean_eu_salience + Interinst_conflict + EP_polarization +
## council_dissent + N_eurovoc_terms + competence_length + factor(new) +
## factor(form) + ep_amendments_tabled + elections_months | N_trilogues +
## factor(package_deal), data = trilogues_duration_noRegi, dist = "negbin",
## EM = TRUE)
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.22794 -0.61176 -0.09859 0.19257 10.18706
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6091708 0.6001994 1.015 0.31013
## proposal_t_eupolarizarion -0.3472521 0.2504834 -1.386 0.16565
## proposal_t_wmean_eu_salience -0.9601526 0.3779630 -2.540 0.01107 *
## Interinst_conflict 0.0231452 0.1156754 0.200 0.84141
## EP_polarization -0.1019273 0.5586472 -0.182 0.85523
## council_dissent 0.0042482 0.0354969 0.120 0.90474
## N_eurovoc_terms 0.0207074 0.0298394 0.694 0.48771
## competence_length -0.0050183 0.0046036 -1.090 0.27568
## factor(new)1 0.5307357 0.1139622 4.657 3.21e-06 ***
## factor(form)Directive 0.6450503 0.2635148 2.448 0.01437 *
## factor(form)Regulation 0.8004542 0.2511816 3.187 0.00144 **
## ep_amendments_tabled 0.0016796 0.0007042 2.385 0.01708 *
## elections_months 0.0245251 0.0047112 5.206 1.93e-07 ***
## Log(theta) 0.9893146 0.1588565 6.228 4.73e-10 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.4385 2.0252 4.661 3.15e-06 ***
## N_trilogues -5.3082 1.0445 -5.082 3.74e-07 ***
## factor(package_deal)1 0.6824 1.0990 0.621 0.535
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 2.6894
## Number of iterations in BFGS optimization: 1
## Log-likelihood: -609.3 on 17 Df
model2_duration_zi <- zeroinfl(duration_negotiations_months_rounded ~
proposal_t_eupolarizarion + proposal_t_wmean_eu_salience +
Interinst_conflict + EP_polarization + council_dissent +
N_eurovoc_terms + competence_length + factor(new) + factor(form) + ep_amendments_tabled + elections_months +factor(term)| N_trilogues + factor(package_deal),
data = trilogues_duration_noRegi, dist = "negbin", EM = TRUE)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model2_duration_zi)
##
## Call:
## zeroinfl(formula = duration_negotiations_months_rounded ~ proposal_t_eupolarizarion +
## proposal_t_wmean_eu_salience + Interinst_conflict + EP_polarization +
## council_dissent + N_eurovoc_terms + competence_length + factor(new) +
## factor(form) + ep_amendments_tabled + elections_months + factor(term) |
## N_trilogues + factor(package_deal), data = trilogues_duration_noRegi,
## dist = "negbin", EM = TRUE)
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.24146 -0.60028 -0.09914 0.21056 9.89995
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5049911 0.6050489 0.835 0.4039
## proposal_t_eupolarizarion -0.3721736 0.2505970 -1.485 0.1375
## proposal_t_wmean_eu_salience -0.9573661 0.3773213 -2.537 0.0112 *
## Interinst_conflict 0.0161883 0.1152532 0.140 0.8883
## EP_polarization -0.0271129 0.5590817 -0.048 0.9613
## council_dissent 0.0072033 0.0353600 0.204 0.8386
## N_eurovoc_terms 0.0326367 0.0313449 1.041 0.2978
## competence_length -0.0043450 0.0046229 -0.940 0.3473
## factor(new)1 0.4879123 0.1188633 4.105 4.05e-05 ***
## factor(form)Directive 0.6552621 0.2632090 2.490 0.0128 *
## factor(form)Regulation 0.8136098 0.2511885 3.239 0.0012 **
## ep_amendments_tabled 0.0016532 0.0007007 2.359 0.0183 *
## elections_months 0.0257658 0.0048083 5.359 8.39e-08 ***
## factor(term)8 -0.1478721 0.1228852 -1.203 0.2288
## Log(theta) 1.0020789 0.1598843 6.268 3.67e-10 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.4275 2.0250 4.656 3.23e-06 ***
## N_trilogues -5.3011 1.0440 -5.078 3.82e-07 ***
## factor(package_deal)1 0.7033 1.0835 0.649 0.516
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 2.7239
## Number of iterations in BFGS optimization: 1
## Log-likelihood: -608.6 on 18 Df
stargazer(model2_duration_zi, type = "text")
##
## =================================================================
## Dependent variable:
## ------------------------------------
## duration_negotiations_months_rounded
## -----------------------------------------------------------------
## proposal_t_eupolarizarion -0.372
## (0.251)
##
## proposal_t_wmean_eu_salience -0.957**
## (0.377)
##
## Interinst_conflict 0.016
## (0.115)
##
## EP_polarization -0.027
## (0.559)
##
## council_dissent 0.007
## (0.035)
##
## N_eurovoc_terms 0.033
## (0.031)
##
## competence_length -0.004
## (0.005)
##
## factor(new)1 0.488***
## (0.119)
##
## factor(form)Directive 0.655**
## (0.263)
##
## factor(form)Regulation 0.814***
## (0.251)
##
## ep_amendments_tabled 0.002**
## (0.001)
##
## elections_months 0.026***
## (0.005)
##
## factor(term)8 -0.148
## (0.123)
##
## Constant 0.505
## (0.605)
##
## -----------------------------------------------------------------
## Observations 345
## Log Likelihood -608.595
## =================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
plot_model(model1_duration_zi, type = "pred", terms = "proposal_t_wmean_eu_salience")