Thomas H. Jagger, Florida State University
June 30, 2015, Aalborg, Denmark
Examining the Environmental Characteristics of Tornado Outbreaks in the United States with Spatial Clustering.
Integrating R-INLA with \( \require{color} \color{green} \mathbf{R} \) Spatial Packages and the fpc, flexible procedures for clustering package.
Joint work with James B. Elsner . Generated using R-Studio on Sun Jun 28 16:30:18 2015 .
We use a modified tornado data set keeping tornado paths in the Midwest and South from from 1979 to 2010 of at least EF0 (F0) strength. The data set is put into \( \require{color} \color{green} \mathbf{R} \) SpatialLinesDataFrame objects or arrays. We use the \( \require{color} \color{green} \mathbf{R} \) ggplot2 package for plotting data sets.
xx = subset(TornC.spdf, Date == "2007-05-05")
cc = coordinates(xx)
best = pamk(cc, krange = 1:(N-1), alpha = .01)
cluster = best$pamobject$clustering
clustloc = split(1:length(xx),cluster)
Hulls = lapply(clustloc,function(i)
spTransform(gBuffer(gConvexHull(xx[i,]),id=cluster[i[1]],width=25000),longlat))
Hulls.df = do.call("rbind",lapply(Hulls, fortify))
Map = get_map(location = c(lon=-99.5,lat=39.8), source = "google",
maptype = "roadmap", zoom = 6, color = "bw")
ggmap(Map, extent = "panel") + geom_point(aes(x = slon, y = slat),
data = TornC.df[TornC.df$Date == dd, ],color = "black") +
geom_polygon(aes(x = long, y = lat, fill=id ,alpha=.5),
data = Hulls.df ,show_guide=FALSE)+scale_fill_manual(values=c("red","orange"))
Total kinetic energy in megajoules per m3 based on the tornado's strength is:
| EF0 | EF1 | EF2 | EF3 | EF4 | EF5 |
|---|---|---|---|---|---|
| 0.570 | 0.661 | 0.786 | 0.919 | 0.974 | 1.054 |
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -2.690 0.234 -3.143 -2.693 -2.223 -2.697 0
lnT 0.782 0.069 0.643 0.783 0.916 0.784 0
CAPEK -0.432 0.096 -0.618 -0.433 -0.242 -0.435 0
HLCYH 0.405 0.077 0.256 0.404 0.557 0.403 0
The model has no random effects
Model hyperparameters:
mean sd 0.025quant 0.5quant
Precision parameter for the Gamma observations 0.563 0.026 0.513 0.563
0.975quant mode
Precision parameter for the Gamma observations 0.617 0.562
Expected number of effective parameters(std dev): 4.01(0.00)
Number of equivalent replicates : 158.27
Deviance Information Criterion: 825.34
Effective number of parameters: 4.65
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 2.760 0.084 2.595 2.760 2.926 2.760 0
HLCYH 0.173 0.036 0.102 0.173 0.245 0.173 0
CAPEK 0.066 0.051 -0.034 0.066 0.167 0.066 0
The model has no random effects
Model hyperparameters:
mean sd 0.025quant
size for the nbinomial observations (overdispersion) 2.63 0.166 2.32
0.5quant 0.975quant mode
size for the nbinomial observations (overdispersion) 2.63 2.98 2.62
Expected number of effective parameters(std dev): 3.02(0.001)
Number of equivalent replicates : 209.61
Deviance Information Criterion: 4999.01
Effective number of parameters: 3.67
Thank you for your time.
Analysis and Talk on http://rpubs.com/thjagger/
Thomas Jagger tjagger@fsu.edu