ACD Model
ACD (1,1)
model01 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(1,1), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(1, 1), dailyRestart = 1)
##
## Model:
## ACD(1, 1)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.353 0.06739 0
## alpha1 0.124 0.01789 0
## beta1 0.539 0.07329 0
## gamma 0.761 0.00584 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.131797
##
## Goodness of fit:
## value
## LogLikelihood -6495.11407
## AIC 12998.22814
## BIC 13025.44064
## MSE 47.71501
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 223
##
## Estimation time: 0.3428 secs
##
## Description: Estimated at 2022-05-19 19:43:49 by user Raffy Cee
model02 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(1,1), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(1, 1), dailyRestart = 1)
##
## Model:
## ACD(1, 1)
##
## Distribution:
## gengamma
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.8262 0.02134 0
## alpha1 0.1797 0.01925 0
## beta1 -0.0158 0.00187 0
## kappa 24.4987 2.43931 0
## gamma 0.1657 0.00832 0
##
## Note: For the distribution parameters the null hypothesis is such that the parameter = 1 (2-sided). If the null is true, the generelized gamma distribution reduces to the exponential distribution
##
## The fixed/unfree mean distribution parameter:
## lambda: 2.324012e-09
##
## Goodness of fit:
## value
## LogLikelihood -5748.32236
## AIC 11506.64473
## BIC 11540.66035
## MSE 48.21413
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 954
##
## Estimation time: 1.3812 secs
##
## Description: Estimated at 2022-05-19 19:43:50 by user Raffy Cee
ACD (0,1)
model03 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(0,1), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(0, 1), dailyRestart = 1)
##
## Model:
## ACD(0, 1)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.0399 0.0105 0
## beta1 0.9604 0.0104 0
## gamma 0.7606 0.0059 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.132064
##
## Goodness of fit:
## value
## LogLikelihood -6532.44376
## AIC 13070.88751
## BIC 13091.29689
## MSE 46.71144
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 104
##
## Estimation time: 0.1709 secs
##
## Description: Estimated at 2022-05-19 19:43:51 by user Raffy Cee
model04 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(0,1), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(0, 1), dailyRestart = 1)
##
## Model:
## ACD(0, 1)
##
## Distribution:
## gengamma
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.00384 0.000122 0
## beta1 0.99580 0.000147 0
## kappa 29.87228 4.387297 0
## gamma 0.15053 0.011069 0
##
## Note: For the distribution parameters the null hypothesis is such that the parameter = 1 (2-sided). If the null is true, the generelized gamma distribution reduces to the exponential distribution
##
## The fixed/unfree mean distribution parameter:
## lambda: 8.789124e-11
##
## Goodness of fit:
## value
## LogLikelihood -5781.53038
## AIC 11571.06076
## BIC 11598.27325
## MSE 46.73396
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 415
##
## Estimation time: 0.5587 secs
##
## Description: Estimated at 2022-05-19 19:43:51 by user Raffy Cee
ACD (1,0)
model05 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(1,0), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(1, 0), dailyRestart = 1)
##
## Model:
## ACD(1, 0)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.902 0.02098 0
## alpha1 0.125 0.01917 0
## gamma 0.760 0.00586 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.132183
##
## Goodness of fit:
## value
## LogLikelihood -6504.98368
## AIC 13015.96737
## BIC 13036.37674
## MSE 47.43051
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 102
##
## Estimation time: 0.1629 secs
##
## Description: Estimated at 2022-05-19 19:43:52 by user Raffy Cee
model06 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(1,0), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(1, 0), dailyRestart = 1)
##
## Model:
## ACD(1, 0)
##
## Distribution:
## gengamma
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.8374 0.021922 0
## alpha1 0.1693 0.019985 0
## kappa 2881.0073 5.109708 0
## gamma 0.0154 0.000133 0
##
## Note: For the distribution parameters the null hypothesis is such that the parameter = 1 (2-sided). If the null is true, the generelized gamma distribution reduces to the exponential distribution
##
## The fixed/unfree mean distribution parameter:
## lambda: 1.040237e-225
##
## Goodness of fit:
## value
## LogLikelihood -5721.04124
## AIC 11450.08249
## BIC 11477.29498
## MSE 48.04151
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 2063
##
## Estimation time: 2.5801 secs
##
## Description: Estimated at 2022-05-19 19:43:52 by user Raffy Cee
ACD (0,0)
model07 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(0,0), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(0, 0), dailyRestart = 1)
##
## Model:
## ACD(0, 0)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 1.02 0.01638 0
## gamma 0.76 0.00591 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.132188
##
## Goodness of fit:
## value
## LogLikelihood -6534.19540
## AIC 13072.39079
## BIC 13085.99704
## MSE 46.71116
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 61
##
## Estimation time: 0.091 secs
##
## Description: Estimated at 2022-05-19 19:43:55 by user Raffy Cee
model08 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(0,0), dailyRestart = 1)
##
##
## Error: Oops, seems like the the optimization function failed. Changing the 'optimFnc' or/and its settings, or starting from a diffrent 'startPara' might work. You can also trace the MLE search path by adding the argument 'control = list(trace = 1)'.
ACD (2,2)
model09 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(2,2), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(2, 2), dailyRestart = 1)
##
## Model:
## ACD(2, 2)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.6700 0.10201 0.000
## alpha1 0.1176 0.02002 0.000
## alpha2 0.1020 0.04192 0.015
## beta1 0.1962 0.17196 0.254
## beta2 -0.0485 0.04662 0.298
## gamma 0.7654 0.00593 0.000
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.128618
##
## Goodness of fit:
## value
## LogLikelihood -6485.10184
## AIC 12982.20368
## BIC 13023.02242
## MSE 48.08956
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 751
##
## Estimation time: 1.0469 secs
##
## Description: Estimated at 2022-05-19 19:43:56 by user Raffy Cee
model10 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(2,2), dailyRestart = 1)
##
##
## Error: Oops, seems like the the optimization function failed. Changing the 'optimFnc' or/and its settings, or starting from a diffrent 'startPara' might work. You can also trace the MLE search path by adding the argument 'control = list(trace = 1)'.
ACD (2,1)
model11 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(2,1), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(2, 1), dailyRestart = 1)
##
## Model:
## ACD(2, 1)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.7514 0.02348 0
## alpha1 0.1418 0.02154 0
## alpha2 0.1915 0.02097 0
## beta1 -0.0139 0.00127 0
## gamma 0.7614 0.00593 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.131471
##
## Goodness of fit:
## value
## LogLikelihood -6481.43185
## AIC 12972.86371
## BIC 13006.87933
## MSE 49.29598
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 712
##
## Estimation time: 0.9505 secs
##
## Description: Estimated at 2022-05-19 19:43:59 by user Raffy Cee
model12 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(2,1), dailyRestart = 1)
##
##
## Error: Oops, seems like the the optimization function failed. Changing the 'optimFnc' or/and its settings, or starting from a diffrent 'startPara' might work. You can also trace the MLE search path by adding the argument 'control = list(trace = 1)'.
ACD (2,0)
model13 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(2,0), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(2, 0), dailyRestart = 1)
##
## Model:
## ACD(2, 0)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.787 0.0245 0
## alpha1 0.108 0.0190 0
## alpha2 0.145 0.0217 0
## gamma 0.764 0.0059 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.129433
##
## Goodness of fit:
## value
## LogLikelihood -6480.49782
## AIC 12968.99564
## BIC 12996.20814
## MSE 48.20903
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 217
##
## Estimation time: 0.3318 secs
##
## Description: Estimated at 2022-05-19 19:44:00 by user Raffy Cee
model14 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(2,0), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(2, 0), dailyRestart = 1)
##
## Model:
## ACD(2, 0)
##
## Distribution:
## gengamma
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.686 0.0219 0
## alpha1 0.125 0.0183 0
## alpha2 0.202 0.0233 0
## kappa 9.277 0.7786 0
## gamma 0.269 0.0115 0
##
## Note: For the distribution parameters the null hypothesis is such that the parameter = 1 (2-sided). If the null is true, the generelized gamma distribution reduces to the exponential distribution
##
## The fixed/unfree mean distribution parameter:
## lambda: 0.0001557101
##
## Goodness of fit:
## value
## LogLikelihood -5802.12287
## AIC 11614.24575
## BIC 11648.26137
## MSE 49.32068
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 1042
##
## Estimation time: 1.329 secs
##
## Description: Estimated at 2022-05-19 19:44:01 by user Raffy Cee
ACD (1,2)
model13 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(1,2), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(1, 2), dailyRestart = 1)
##
## Model:
## ACD(1, 2)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.2319 0.01623 0
## alpha1 0.0916 0.00870 0
## beta1 1.0233 0.01751 0
## beta2 -0.3347 0.00651 0
## gamma 0.7620 0.00584 0
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.131095
##
## Goodness of fit:
## value
## LogLikelihood -6485.69760
## AIC 12981.39520
## BIC 13015.41082
## MSE 47.78744
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 870
##
## Estimation time: 1.1409 secs
##
## Description: Estimated at 2022-05-19 19:44:02 by user Raffy Cee
model14 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(1,2), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(1, 2), dailyRestart = 1)
##
## Model:
## ACD(1, 2)
##
## Distribution:
## gengamma
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.2657 0.03356 0
## alpha1 0.1267 0.01640 0
## beta1 -0.0141 0.00268 0
## beta2 0.6153 0.04146 0
## kappa 2.5441 0.09523 0
## gamma 0.5032 0.00967 0
##
## Note: For the distribution parameters the null hypothesis is such that the parameter = 1 (2-sided). If the null is true, the generelized gamma distribution reduces to the exponential distribution
##
## The fixed/unfree mean distribution parameter:
## lambda: 0.1128987
##
## Goodness of fit:
## value
## LogLikelihood -6016.32385
## AIC 12044.64770
## BIC 12085.46644
## MSE 47.96015
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 599
##
## Estimation time: 0.8483 secs
##
## Description: Estimated at 2022-05-19 19:44:03 by user Raffy Cee
ACD (0,2)
model13 <- acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(0,2), dailyRestart = 1)
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "weibull", order = c(0, 2), dailyRestart = 1)
##
## Model:
## ACD(0, 2)
##
## Distribution:
## weibull
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.0644 0.0278 0.020
## beta1 0.5050 2.1353 0.813
## beta2 0.4311 2.1263 0.839
## gamma 0.7606 0.0059 0.000
##
## Note: The p-value for the distribution parameter gamma is from the 2-tailed test H0: gamma = 1.
##
## The fixed/unfree mean distribution parameter:
## theta: 1.132091
##
## Goodness of fit:
## value
## LogLikelihood -6532.38602
## AIC 13072.77203
## BIC 13099.98453
## MSE 46.71135
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 145
##
## Estimation time: 0.2618 secs
##
## Description: Estimated at 2022-05-19 19:44:04 by user Raffy Cee
model14 <- acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(0,2), dailyRestart = 1)
## Warning in sqrt(diag(solve(hessian))): NaNs produced
##
## ACD model estimation by Maximum Likelihood
##
## Call:
## acdFit(durations = adjDurData, model = "ACD", dist = "gengamma", order = c(0, 2), dailyRestart = 1)
##
## Model:
## ACD(0, 2)
##
## Distribution:
## gengamma
##
## N: 6655
##
## Parameter estimate:
## Coef SE PV
## omega 0.362 NaN NaN
## beta1 -0.190 NaN NaN
## beta2 0.811 NaN NaN
## kappa 31.897 4.9307 0
## gamma 0.145 0.0113 0
##
## Note: For the distribution parameters the null hypothesis is such that the parameter = 1 (2-sided). If the null is true, the generelized gamma distribution reduces to the exponential distribution
##
## The fixed/unfree mean distribution parameter:
## lambda: 2.529077e-11
##
## Goodness of fit:
## value
## LogLikelihood -5784.40206
## AIC 11578.80411
## BIC 11612.81973
## MSE 46.72628
##
## Convergence: 0
##
## Number of log-likelihood function evaluations: 1564
##
## Estimation time: 1.9572 secs
##
## Description: Estimated at 2022-05-19 19:44:04 by user Raffy Cee