Assessment 1

summary(fortune)
##      wealth            age         region
##  Min.   : 1.000   Min.   :  7.00   A:38  
##  1st Qu.: 1.300   1st Qu.: 56.00   E:80  
##  Median : 1.800   Median : 65.00   M:22  
##  Mean   : 2.684   Mean   : 64.03   O:29  
##  3rd Qu.: 3.000   3rd Qu.: 72.00   U:63  
##  Max.   :37.000   Max.   :102.00         
##                   NA's   :7
#adding line
ggplot(aes(x = age, y = wealth, alpha = region), data = fortune) + 
 geom_point(aes(col = region)) + 
  geom_vline(xintercept = 64.03) +
  geom_hline(yintercept = 2.684)+ 
theme_bw()
## Warning: Using alpha for a discrete variable is not advised.
## Warning: Removed 7 rows containing missing values (geom_point).

Assessment 2

ggplot(aes(x = age, y = wealth, group = region), data = fortune) + 
  geom_point(aes(color = region)) +
  facet_wrap(~region, nrow = 5) +
  geom_smooth(data = filter(fortune),aes(color = region), se = FALSE)+
  theme_bw()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Assessment 3

ggplot(aes(x = happy),  data = happy) +
    geom_density(aes(fill = love), alpha=0.4) +
theme_bw()

Assessment 4

ggplot(happy, aes(x = love, y = happy, data=sex, fill=sex)) +
  geom_point(position = "jitter") +
  geom_boxplot(position = "dodge")
## Warning: Continuous x aesthetic -- did you forget aes(group=...)?

Assessment 5

ggplot(happy, aes(x =love, y = happy, color = sex)) +
  geom_point(position = "jitter", aes(x =love, y = happy, color = sex)) + 
  geom_smooth(aes(group = sex), method = lm, se=F, color = "black", fullrange=FALSE) +
  theme_bw()
## `geom_smooth()` using formula 'y ~ x'