library(s20x)
distanceNew = with(tyredistance.df, DistanceNew)
distanceOld = with(tyredistance.df, DistanceOld)
boxplot(diffDistance, main = "Difference in the wear-out distance between new and old material tyre", ylab = "Wear-out distance (x1000 km)")

boxplot(diffDistance, main = "Difference between new and old design tyres Wear-out distance", ylab = "Wear-out distance (x1000 km)")
summaryStats(diffDistance)
Minimum value: -33
Maximum value: 54
Mean value: 4.4
Median: 1.5
Upper quartile: 17.25
Lower quartile: -6
Variance: 465.83
Standard deviation: 21.58
Midspread (IQR): 23.25
Skewness: 0.45
Number of data values: 20
Exploratory Analysis
Center: 4,400km
Spread: -33,000 - 54,000km
Skew: slightly right-skewed
normcheck(diffDistance)

Check the Normality of the whole model’s residuals by fitting a
linear model. The model shows that the data has a slight
right-skewed.
t.test(diffDistance)
One Sample t-test
data: diffDistance
t = 0.9117, df = 19, p-value = 0.3733
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-5.701217 14.501217
sample estimates:
mean of x
4.4
Applying t test to compares the means of difference distance between
new tyre and old tyre from the same car. p-value is greater than 0.05,
which means that the difference in the wear-out distance between the new
and old design is not statically significant.
Methods and Assumption Checks
We wish to find whether there is a difference in the wear-out
distance between the new and old design tyre where the new and old tyre
each was installed in the rear of the same car, so we carry out a
paired-sample analysis.
Each tyre should be independent of the other. The Q-Q plot shows that
the difference between the new tyre and the old tyre (new tyre distance
- old tyre distance) is slightly right-skewed, but we can rely on the
Central Limit Theorem to justify the Normality assumption.
The model fitted is \(\sf {diffDistance}_i
= µ_{\sf diff} + ε_i\), where \(µ_{\sf
diff}\) is the mean distance difference between new and old
design tyre for each car, and \(ε_i\)
\(_{\sim}^{iid} N(0, σ^2)\).
Executive Summary
We are interested in determining whether there is a difference
between the average wear-out distance of a new design tyre and the
average wear-out distance of an old design tyre where they were
installed in the rear of the same car.
Our data involved two related measurements (on the wear-out distance
of new and old design tyres), and the difference between the two
wear-out distances has been analysed.
We observe that the difference in the wear-out distance between the
new and old design is not statically significant. Therefore, this shows
that the new design tyre does not have a better performance in terms of
wear-out distance than the old design tyre.
LS0tDQp0aXRsZTogIlRoZSBkaWZmZXJlbmNlIGJldHdlZW4gbmV3IGFuZCBvbGQgZGVzaWduIHR5cmVzIFdlYXItb3V0IGRpc3RhbmNlIg0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KPCEtLSBFeHRyYWN0IHRoZSBuZXcgZGlzdGFuY2UgYW5kIHRoZSBvbGQgZGlzdGFuY2Ugb2YgdHlyZSB0aGF0IHdlYXItb3V0LiAtLT4NCg0KYGBge3J9DQpsaWJyYXJ5KHMyMHgpDQpkaXN0YW5jZU5ldyA9IHdpdGgodHlyZWRpc3RhbmNlLmRmLCBEaXN0YW5jZU5ldykNCmRpc3RhbmNlT2xkID0gd2l0aCh0eXJlZGlzdGFuY2UuZGYsIERpc3RhbmNlT2xkKQ0KYGBgDQoNCjwhLS0gVGhlbiBmaW5kIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIG5ldyBhbmQgb2xkIHR5cmUuIC0tPg0KDQpgYGB7cn0NCmRpZmZEaXN0YW5jZSA9IGRpc3RhbmNlTmV3IC0gZGlzdGFuY2VPbGQNCmBgYA0KDQo8IS0tIFBsb3QgYSBib3ggcGxvdCBmb3IgZXhwbG9yYXRvcnkgYW5hbHlzaXMgLS0+DQoNCmBgYHtyfQ0KYm94cGxvdChkaWZmRGlzdGFuY2UsIG1haW4gPSAiRGlmZmVyZW5jZSBiZXR3ZWVuIG5ldyBhbmQgb2xkIGRlc2lnbiB0eXJlcyBXZWFyLW91dCBkaXN0YW5jZSIsIHlsYWIgPSAiV2Vhci1vdXQgZGlzdGFuY2UgKHgxMDAwIGttKSIpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5U3RhdHMoZGlmZkRpc3RhbmNlKQ0KYGBgDQoNCiMgRXhwbG9yYXRvcnkgQW5hbHlzaXMNCg0KQ2VudGVyOiA0LDQwMGttIA0KDQpTcHJlYWQ6IC0zMywwMDAgLSA1NCwwMDBrbSANCg0KU2tldzogc2xpZ2h0bHkgcmlnaHQtc2tld2VkDQoNCg0KDQpgYGB7cn0NCm5vcm1jaGVjayhkaWZmRGlzdGFuY2UpDQpgYGANCg0KQ2hlY2sgdGhlIE5vcm1hbGl0eSBvZiB0aGUgd2hvbGUgbW9kZWwncyByZXNpZHVhbHMgYnkgZml0dGluZyBhIGxpbmVhciBtb2RlbC4gVGhlIG1vZGVsIHNob3dzIHRoYXQgdGhlIGRhdGEgaGFzIGEgc2xpZ2h0IHJpZ2h0LXNrZXdlZC4NCg0KYGBge3J9DQp0LnRlc3QoZGlmZkRpc3RhbmNlKQ0KYGBgDQoNCkFwcGx5aW5nIHQgdGVzdCB0byBjb21wYXJlcyB0aGUgbWVhbnMgb2YgZGlmZmVyZW5jZSBkaXN0YW5jZSBiZXR3ZWVuIG5ldyB0eXJlIGFuZCBvbGQgdHlyZSBmcm9tIHRoZSBzYW1lIGNhci4NCnAtdmFsdWUgaXMgZ3JlYXRlciB0aGFuIDAuMDUsIHdoaWNoIG1lYW5zIHRoYXQgdGhlIGRpZmZlcmVuY2UgaW4gdGhlIHdlYXItb3V0IGRpc3RhbmNlIGJldHdlZW4gdGhlIG5ldyBhbmQgb2xkIGRlc2lnbiBpcyBub3Qgc3RhdGljYWxseSBzaWduaWZpY2FudC4NCg0KDQoNCiMgTWV0aG9kcyBhbmQgQXNzdW1wdGlvbiBDaGVja3MNCg0KV2Ugd2lzaCB0byBmaW5kIHdoZXRoZXIgdGhlcmUgaXMgYSBkaWZmZXJlbmNlIGluIHRoZSB3ZWFyLW91dCBkaXN0YW5jZSBiZXR3ZWVuIHRoZSBuZXcgYW5kIG9sZCBkZXNpZ24gdHlyZSB3aGVyZSB0aGUgbmV3IGFuZCBvbGQgdHlyZSBlYWNoIHdhcyBpbnN0YWxsZWQgaW4gdGhlIHJlYXIgb2YgdGhlIHNhbWUgY2FyLCBzbyB3ZSBjYXJyeSBvdXQgYSBwYWlyZWQtc2FtcGxlIGFuYWx5c2lzLg0KDQpFYWNoIHR5cmUgc2hvdWxkIGJlIGluZGVwZW5kZW50IG9mIHRoZSBvdGhlci4gVGhlIFEtUSBwbG90IHNob3dzIHRoYXQgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgbmV3IHR5cmUgYW5kIHRoZSBvbGQgdHlyZSAobmV3IHR5cmUgZGlzdGFuY2UgLSBvbGQgdHlyZSBkaXN0YW5jZSkgaXMgc2xpZ2h0bHkgcmlnaHQtc2tld2VkLCBidXQgd2UgY2FuIHJlbHkgb24gdGhlIENlbnRyYWwgTGltaXQgVGhlb3JlbSB0byBqdXN0aWZ5IHRoZSBOb3JtYWxpdHkgYXNzdW1wdGlvbi4NCg0KVGhlIG1vZGVsIGZpdHRlZCBpcyAkXHNmIHtkaWZmRGlzdGFuY2V9X2kgPSDCtV97XHNmIGRpZmZ9ICsgzrVfaSQsIHdoZXJlICTCtV97XHNmIGRpZmZ9JCBpcyB0aGUgbWVhbiBkaXN0YW5jZSBkaWZmZXJlbmNlIGJldHdlZW4gbmV3IGFuZCBvbGQgZGVzaWduIHR5cmUgZm9yIGVhY2ggY2FyLCBhbmQgJM61X2kkICRfe1xzaW19XntpaWR9IE4oMCwgz4NeMikkLg0KDQoNCg0KIyBFeGVjdXRpdmUgU3VtbWFyeSANCg0KV2UgYXJlIGludGVyZXN0ZWQgaW4gZGV0ZXJtaW5pbmcgd2hldGhlciB0aGVyZSBpcyBhIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgYXZlcmFnZSB3ZWFyLW91dCBkaXN0YW5jZSBvZiBhIG5ldyBkZXNpZ24gdHlyZSBhbmQgdGhlIGF2ZXJhZ2Ugd2Vhci1vdXQgZGlzdGFuY2Ugb2YgYW4gb2xkIGRlc2lnbiB0eXJlIHdoZXJlIHRoZXkgd2VyZSBpbnN0YWxsZWQgaW4gdGhlIHJlYXIgb2YgdGhlIHNhbWUgY2FyLg0KDQpPdXIgZGF0YSBpbnZvbHZlZCB0d28gcmVsYXRlZCBtZWFzdXJlbWVudHMgKG9uIHRoZSB3ZWFyLW91dCBkaXN0YW5jZSBvZiBuZXcgYW5kIG9sZCBkZXNpZ24gdHlyZXMpLCBhbmQgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgdHdvIHdlYXItb3V0IGRpc3RhbmNlcyBoYXMgYmVlbiBhbmFseXNlZC4NCg0KV2Ugb2JzZXJ2ZSB0aGF0IHRoZSBkaWZmZXJlbmNlIGluIHRoZSB3ZWFyLW91dCBkaXN0YW5jZSBiZXR3ZWVuIHRoZSBuZXcgYW5kIG9sZCBkZXNpZ24gaXMgbm90IHN0YXRpY2FsbHkgc2lnbmlmaWNhbnQuIFRoZXJlZm9yZSwgdGhpcyBzaG93cyB0aGF0IHRoZSBuZXcgZGVzaWduIHR5cmUgZG9lcyBub3QgaGF2ZSBhIGJldHRlciBwZXJmb3JtYW5jZSBpbiB0ZXJtcyBvZiB3ZWFyLW91dCBkaXN0YW5jZSB0aGFuIHRoZSBvbGQgZGVzaWduIHR5cmUu