Find the equation for the regression line for the points given in points.
points <- data.frame('x' = c(5.6,6.3,7,7.7,8.4), 'y' = c(8.8,12.4,14.8,18.2,20.8))
reg <- lm(y ~ x, data = points)
summary(reg)
##
## Call:
## lm(formula = y ~ x, data = points)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
regplot <- ggplot(points, aes(x = x, y = y, na.rm = TRUE))+
geom_point(na.rm = TRUE, color = 'darkseagreen', size = 5)+
geom_smooth(method = "lm", color = 'red', se = FALSE)+
ggtitle("Regression Line for Coordinate Pairs")+
xlab('x')+
ylab('y')+
theme(plot.title = element_text(hjust = 0.5, size = 7.5))
regplot
## `geom_smooth()` using formula 'y ~ x'
Extrema for \(f(x,y) = 24x -6xy^2 - 8y^3\)
\(f_{x} = 24 - 6y^2\), \(f_{xx} = 0\), \(f_{xy} = -12y\)
\(f_{y} = -12xy - 24y^2\), \(f_{yy} = -12x - 48y\), \(f_{yx} = -12y\)
Critical Values: Set \(f_{x}, f_y = 0\)
\(24 - 6y^2 = 0 = -12xy - 24y^2\)
\(y = \pm {2}\)
\(-12({2})x - 24(4) = 0\), \(-12(-{2})x - 24(4) = 0\)
\(x = -4\), \(x = 4\)
Critical Values: \((-4, {2}), (4, -{2})\)
Open Disk Calculation:
\(D = f_{xx}f_{yy} - {f_{xy}}^2\)
\(D = 0 *(12x -48y) - (-12y)^2\), evaluated at \((-4, {2})\):
\(D = -12*({2})^2\)
\(D = -48\)
Similarly for \((4, -{2})\):
\(D = -48\), because the sign change in y is irrelevant because it is squared.
From Theorem 12.8.2, the Second Derivative Test, Because D is negative, \(f\) has a saddle point at each point where D is negative.
Saddle Point at \((-4, {2})\)
Saddle Point at \((4, -{2})\)
X: House Brand Price Y: Name Brand Price
\(81 - 21x + 17y\) \(40 + 11x -23y\)
A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell 81 -21x + 17y units of the “house” brand and 40 + 11x - 23y units of the “name” brand.
This question does not necessarily make sense.
x and y are in dollars. Are the units of the coefficients \(\frac 1{dollars}\)?
\(R(x,y)\)
The revenue would be given by the number of each unit sold, multiplied by the cost for each unit, respectively.
So, \(R(x,y) = (81 - 21x + 17y)*x + (40 + 11x -23y)*y\)
\(R(x,y) = 81x - 21x^2 + 17xy + 40y + 11xy -23y^2\)
\(R(x,y) = 81x - 21x^2 + 28xy + 40y -23y^2\)
If she sells the house brand for $2.30 and the name brand for $4.10, the revenue would be as follows:
\(R(2.30,4.10) = 81(2.30) - 21(2.30)^2 + 28(2.30)(4.10) + 40(4.10) -23(4.10)^2\)
revenue <- function(x,y){
out = 81*x - 21*(x^2) + 28*x*y + 40*y -23*(y^2)
return(out)
}
revenue(2.3,4.1)
## [1] 116.62
So, the revenue would be $116.62
\(C(x,y) = \frac 16 x^2 + \frac 16 y^2 + 7x + 25y + 700\) x: Number Produced in LA y: Number Produced in Denver
96 total products to be sold. At the end, I will substitute 96 - x for x and 96 - y for y.
Minimize total weekly cost. Find Extrema
\(f_{x} = \frac 13 x + 7\), \(f_{xx} = \frac 13\), \(f_{xy} = 0\)
\(f_{y} = \frac 13 y + 25\), \(f_{yy} = \frac 13\), \(f_{yx} = 0\)
Critical Values: Set \(f_{x}, f_y = 0\)
\(\frac 13 x + 7 = 0 = \frac 13 y + 25\)
\(x = -21\)
\(y = -75\)
Critical Value: \((-21,-75)\)
Second Derivative test to confirm if the critical value is a relative minimum:
\(D = f_{xx}f_{yy} - {f_{xy}}^2\)
D must be greater than 0 and \(f_{xx}(x_0,y_0)\) must be greater than 0.
\(D = \frac13*\frac13 - 0^2\) \(D = \frac 19\)
\(f_{xx}(-21.-75) = \frac 13 > 0\)
So, the critical value is in fact a relative minimum.
\(C(-21,-75) = \frac 16 (-21)^2 + \frac 16 (-75)^2 + 7(-21) + 25(-75) + 700\)
cost <- function(x,y){
out <- (1/6)*x^2 + (1/6)*y^2 + 7*x + 25*y + 700
return(out)
}
cost(-21,-75)
## [1] -311
So, the cost is $311. This means that it costs $311 to make 75 units in LA and 21 units in Denver
\(\int \int{e^{8x + 3y}dA}\), where R: \(2\leq x \leq 4\) and \(2 \leq y \leq 4\)
\(\int \int{e^{8x + 3y}dA} = \int_{2}^{4} \int_{2}^{4}{e^{8x + 3y}dxdy}\)
\(\int_{2}^{4} [\frac 18 {e^{8x + 3y}]|_2^4 dy} = \int_{2}^{4} \frac 18 ({e^{32 + 3y} - {e^{16 + 3y}})dy}\)
\(\int_{2}^{4} \frac 18 ({e^{32 + 3y} - {e^{16 + 3y}})dy} = [\frac 18*\frac 13 ({e^{32 + 3y} - {e^{16 + 3y}}})]|_2^4\)
\(= \frac 1{24}[({e^{32 + 12} - {e^{16 + 12}}}) - ({e^{32 + 6} - {e^{16 + 6}}})]\)
\(= \frac 1{24}[({e^{44} - {e^{28}}}) - ({e^{38} - {e^{22}}})]\)
Answer
\(\int \int{e^{8x + 3y}dA} = \frac 1{24}[{e^{44} - {e^{28}}} - {e^{38} + {e^{22}}}]\)