library(tidyverse)
x=c(5.6,6.3,7,7.7,8.4)
y = c(8.8,12.4,14.8,18.2,20.8)
summary(lm(y~x))
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
\(y= 4.26x - 14.8\)
\(f(x,y) = 24x - 6xy^2 - 8y^3\)
d_dx = D(expr(24*x - 6*x*y^2 - 8*y^3),'x')
d_dy = D(expr(24*x - 6*x*y^2 - 8*y^3),'y')
d_dx
## 24 - 6 * y^2
d_dy
## -(6 * x * (2 * y) + 8 * (3 * y^2))
Solve for d_dx = 0
\(0 = 24 - 6y^2\)
\(-24 = -6y^2\)
\(4 = y^2\)
\(+/-2 = y\)
Solve for d_dy = 0
\(0 = -12xy - 24y^2\)
y = 2
\(0 = -24x - 96\)
\(96 = -24x\) \(x = -4\)
y = -2
\(0 = 24x - 96\)
\(96 = 24x\) \(x = 4\)
So the two critical points are (-4,2) and (4,-2).
Second Order Derivatives
d_dxx = D(D(expr(24*x - 6*x*y^2 - 8*y^3),'x'),'x')
d_dxy = D(D(expr(24*x - 6*x*y^2 - 8*y^3),'x'),'y')
d_dyy = D(D(expr(24*x - 6*x*y^2 - 8*y^3),'y'),'y')
d_dxx
## [1] 0
d_dxy
## -(6 * (2 * y))
d_dyy
## -(6 * x * 2 + 8 * (3 * (2 * y)))
(d_dxx * d_dyy) - d_dxy = (0 * -12xy - 24y^2) - (-12y)^2 = -144y^2 = +/- 576
Both of these points are saddle points.
Plugging back into the original equation, we have:
\(z = 24(-4) - 6(-4)(2)^2 - 8(2)^3 = -64\)
\(z = 24(4) - 6(4)(-2)^2 - 8(-2)^3 = 64\)
\((-4,2,-64), (4,-2,64)\)
Step 1. Find the revenue function R(x,y).
\(R = -21x^2 + 17xy + 81x -23y^2 + 11xy + 40y\)
Step 2. What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
x = 2.30
y = 4.10
x*(81 - 21*x + 17*y) + y*(40 + 11*x - 23*y)
## [1] 116.62
\(C(x, y) = \frac1{6} x 2 + \frac1{6} y 2 + 7x + 25y + 700\)
\(x + y = 96\)
\(y = 96-x\)
\(C(x) = \frac1{6} x 2 + \frac1{6} (96-x) 2 + 7x + 25(96-x) + 700\)
Simplify
\(C(x)=\frac1{3}x^2−50x+4636\)
\(C'(x) = \frac2{3}x - 50\)
\(x = 75\)
\(C(x)=\frac{75}{3}^2−50(75)+4636 = 894.33\)
75 units should be manufactured in Los Angeles and 21 units should be manufactured in Denver to minimize the total weekly cost to $894.33.
\(\int_{2}^{4}\int_{2}^{4} e^{8x + 3y} dA ; R: (2 <= x <= 4), (2 <= y <= 4)\)
\(u = 8x - 3y\) \(du = 8\)
\(\frac1{8}\int{e^udu}\)
\(\frac{e^{32+3y}- e^{16+3y}}{8}\)
\(\int_{2}^{4} \frac{e^{32_3y}- e^{16+3y}}{8}\)
\(\int_{2}^{4} \frac{e^{32+3y}}{8}\) - \(\int_{2}^{4} \frac{e^{16+3y}}{8}\)
\(\frac1{8}\frac{e^{32+12}- e^{32+6}}{8} - \frac1{8}\frac{e^{16+12}- e^{16+6}}{8}\)
\(\frac{e^{44} - e^{38} - e^{28} + e^{22}}{24}\)
Write your answer in exact form without decimals.