(just in case)
## # A tibble: 6 × 691
## id first_name x1_grado_0 x1_grado_1 x1_grado_2 x1_confianza_2
## <int> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 FELIPE GARFIAS NA NA 2 NA
## 2 2 VIVIANA SEPULVEDA NA NA 2 NA
## 3 3 IGNACIO ASPE NA NA 2 NA
## 4 4 SOFIA MELLA NA 1 NA NA
## 5 5 BEATRIZ GOMEZ NA NA 2 NA
## 6 6 CLAUDIA VILDOSOLA NA 1 NA NA
## # … with 685 more variables: x1_confianza_3 <dbl>, x1_confianza_4 <dbl>,
## # x1_confianza_5 <dbl>, x2_grado_1 <dbl>, x2_grado_2 <dbl>, x2_grado_3 <dbl>,
## # x2_confianza_1 <dbl>, x2_confianza_2 <dbl>, x2_confianza_3 <dbl>,
## # x2_confianza_4 <dbl>, x2_confianza_5 <dbl>, x3_grado_0 <dbl>,
## # x3_grado_1 <dbl>, x3_grado_2 <dbl>, x3_grado_3 <dbl>, x3_confianza_1 <dbl>,
## # x3_confianza_2 <dbl>, x3_confianza_3 <dbl>, x3_confianza_4 <dbl>,
## # x3_confianza_5 <dbl>, x4_grado_0 <dbl>, x4_grado_1 <dbl>, …
## # A tibble: 6 × 5
## id first_name imagen grado_value confianza_value
## <int> <chr> <fct> <dbl> <dbl>
## 1 1 FELIPE GARFIAS 1 2 3
## 2 1 FELIPE GARFIAS 2 2 4
## 3 1 FELIPE GARFIAS 3 1 3
## 4 1 FELIPE GARFIAS 4 1 2
## 5 1 FELIPE GARFIAS 5 2 4
## 6 1 FELIPE GARFIAS 6 1 2
Delete unused datasets
Ojo, hay algunos que faltan
Change all names to lower
Change from dbl to int
df_merged <- df_merged %>% mutate(grade = as.integer(grade)) %>% mutate(confidence = as.integer(confidence))
## Rows: 31,548
## Columns: 5
## $ id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ name <chr> "FELIPE GARFIAS", "FELIPE GARFIAS", "FELIPE GARFIAS", "FELI…
## $ image <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
## $ grade <dbl> 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 1, 2,…
## $ confidence <dbl> 3, 4, 3, 2, 4, 2, 5, 3, 5, 4, 3, 2, 4, 4, 5, 4, 4, 2, 4, 5,…
Check unique participants
## [1] 39
Check if any nombre has all the images
Check by participant
## # A tibble: 2 × 2
## # Groups: name [2]
## name n
## <chr> <int>
## 1 IGNACIO GLARIA 76
## 2 ANDREA DIAZ 80
Delete two raters with less than 88 images
Reformat the dataset as: one column per examiner, filled with the grades per row, as follows
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 88
## Raters = 36
## ICC(A,1) = 0.566
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(87,1614) = 53.3 , p = 0
##
## 95%-Confidence Interval for ICC Population Values:
## 0.493 < ICC < 0.645
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : consistency
##
## Subjects = 88
## Raters = 36
## ICC(C,1) = 0.592
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(87,3045) = 53.3 , p = 0
##
## 95%-Confidence Interval for ICC Population Values:
## 0.522 < ICC < 0.669
Identifiy demographic data to compare ttm vs rx