Karlie Hadden
05/06/2022
In this project I will be modeling two cases:
Case 1 : Homogeneous Equation using methods similar to HW7
Case 2 : Homogeneous Equation using matrix determinants
\[ \begin{aligned} y''+ Dy &=0\\ y(0) &=0\\ y(L) &=0\\ D &= 3.3 \times10^{20} \;\textrm{Nm} \end{aligned} \]
For correctly modeling the buckling of a lithospheric plate, I am working under the following assumptions:
The density of the rock is \( 2360\frac{kg}{m^3} \) at a depth of \( 5000m \) below mean sea level
\[ \begin{align*} P& = 120 \; \textrm{MPa}\\ D& = 3.3 \times10^{20} \;\textrm{Nm} \end{align*} \]
I have assumed the length of the plate is 20 meters long and the ends of the plate are fixed
I have sourced these above assumptions for 1 and 2 from Otsubo, M., Katayama, I., Miyakawa, A. et al., 2020.
Side note: \( 1\textrm{Pa}=\frac{1\textrm{N}}{\textrm{m}^2} \)
Using the IVP from the introduction slide, a difference equation found by a Taylor expansions will numerically solve our IVP. The Taylor expansion is shown below:
\[ y^{''}=\frac{1}{h^2}[y(x+h)-2y(x)+y(x-h)] \]
Simplifying the results and applying it to the case that models the buckling of a plate:
\[ \begin{aligned} 0& = (\frac{1}{h^2}[y(x+h)-2y(x)+y(x-h)])*h^2\\ 0& = [y_{i+1}-2y_i+y_{i-1}]+h^2Dy_i\\ 0& = -y_{i+1}+y_i(2-Dh^2)-y_{i-1}\\ a& = 2-Dh^2 \end{aligned} \]
\[ \begin{array} {} i&=1:& u_0 & +& au_1 & -& u_2 & +& 0u_3 & + & 0u_4 +& 0u_5 &= 0\\ i&=2:& u_0 & -& u_1 & +& au_2 & -& u_3 & + & 0u_4 +& 0u_5 &= 0\\ i&=3:& u_0 & +& 0u_1 & -& u_2 & +& au_3 & - & u_4 +& 0u_5 &= 0\\ i&=4:& u_0 & +& 0u_1 & -& 0u_2 & -& u_3 & + & au_4 -& u_5 &= 0\\ \end{array} {} \]
\[ \begin{array} {} i&=1:& 0 & +& au_1 & -& u_2 & +& 0u_3 & + & 0u_4 +& 0 &= 0\\ i&=2:& 0 & -& u_1 & +& au_2 & -& u_3 & + & 0u_4 +& 0 &= 0\\ i&=3:& 0 & +& 0u_1 & -& u_2 & +& au_3 & - & u_4 +& 0 &= 0\\ i&=4:& 0 & +& 0u_1 & -& 0u_2 & -& u_3 & + & au_4 -& 0 &= 0\\ \end{array} {} \]
\[ A = \begin{bmatrix} a & -1 & 0 & 0 \\ -1 & a & -1 & 0 \\ 0 & -1 & a & -1 \\ 0 & 0 & -1 & -a \end{bmatrix} \, \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} \ = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \]
disp('Enter in A and b:')
D=120; #plate rigidity
h=10-2/2; #step size
a=2-D*(h^2);
A = [a,-1,0,0;-1,a,-1,0;0,-1,a,-1;0,0,-1,-a] #Initialize matrix A
b=[0;0;0;0] #Initialize vector b
disp('Use octave to find inverse G of A, using G=inv(A) command:')
G=inv(A) #Finds the inverse of matrix A
disp('Solve Au=b by computing u=G*b:')
u=G*b
A =
-9718 -1 0 0
-1 -9718 -1 0
0 -1 -9718 -1
0 0 -1 9718
b =
0
0
0
0
u =
0
0
0
0
The graph below interpolates the displacement at each of the four mesh points within the lithospheric plate.
N = 10; #Nodes
L = 20; #Plate Length
M = N+2; #M = number of boundary nodes plus interior nodes
h = L/(N+1); #step size along the plate
h2= h^2; #from notes, needed for calculation
p = pi/L; #First eigen value for analytical solution
a = 2-((h^2)*(p^2));
y = zeros(M,1); #initialize y-values
t = linspace(0,L,M); #initialize t-values
y(1)=sin(p*t(1));
y(2)=sin(p*t(2));
for k= L:M-1; #for-loop for critical buckling force
y(k)=a*y(k-1)-y(k-2);
end
A= zeros(N,N); #Set up matrix
A(1,1)=a;
A(1,2)=-1;
for i=2:N-1
A(i,i-1:i+1)=[-1,a,-1]; #For-loop for tri-diagonal matrix
end
A(N,N-1)=-1;
A(N,N)=a;
A;
det = det(A)
eigenvalues = eig(A);
e1 = eigenvalues(1)
#To find eigenvector u, solve (A-cI)u = 0
I = eye(N);
B = A-e1*1
C = rref(B)
C(N,N) = 1;
d = [zeros(1,N-1), sin(p*t(M-1))];
u=C\d;
figure
subplot(1,2,1)
plot(t,y)
subplot(1,2,2)
t1=linspace(0,L,N);
plot(t1,u)
print("Case2Plot.png")
Displays the plot that interpolates the displacement of a lithospheric plate. The first eigen value is the critical buckling force.
det = -0.038122
e1 = -5.5293e-04
Case 1 is displaying the correct values for when our \( \mathbf{b} \) has all zero values
Case 2 is displaying a correct displacement graph and the determinant values (not equaling zero) were accounted for using an eigenvector
Increasing the nodes in Case 2 models the displacement graph appropriately, the curve is sinusoidal
Modeling lithospheric flexure without fixed ends
Apply actual field data from Grand Junction into this numerical method to test accuracy
Add more comments to code
HW7: Ch21.4
Class notes: Ch21.4
Textbook: Ch21.4
Otsubo, M., Katayama, I., Miyakawa, A. et al. Inelastic behavior and mechanical strength of the shallow upper crust controlled by layer-parallel slip in the high-strain zone of the Niigata region, Japan. Earth Planets Space 72, 30 (2020). https://doi.org/10.1186/s40623-020-01154-w
Schubert, G., Turcotte, D., 2002, Geodynamics: Cambridge University Press, p. 211-212