library(tidyverse)
library(lme4)
respondents_data <- data.frame(respondent = c("Alice", "Bob",
"Claudia", "Daniel"),
gender = c("female", "male", "female", "male")) %>%
mutate(rt_bias = runif(min=1, max=10, n=n()))
respondents_data
collected_data <- respondents_data %>% mutate(number_of_observations = 20) %>% uncount(number_of_observations) %>% mutate(reaction_time=rt_bias + rnorm(mean=10, n=n()))
collected_data
t.test(reaction_time ~ gender, data=collected_data)
Welch Two Sample t-test
data: reaction_time by gender
t = 6.9482, df = 48.132, p-value = 8.71e-09
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.268700 4.116203
sample estimates:
mean in group female mean in group male
17.09229 13.89984
summary(lm(reaction_time ~ gender, data=collected_data))
Call:
lm(formula = reaction_time ~ gender, data = collected_data)
Residuals:
Min 1Q Median 3Q Max
-4.9314 -1.4669 0.0814 1.4191 4.1755
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.0923 0.3249 52.609 < 2e-16 ***
gendermale -3.1925 0.4595 -6.948 9.88e-10 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.055 on 78 degrees of freedom
Multiple R-squared: 0.3823, Adjusted R-squared: 0.3744
F-statistic: 48.28 on 1 and 78 DF, p-value: 9.884e-10
summary(lmer(reaction_time ~ gender + (1|respondent),
data=collected_data))
Linear mixed model fit by REML. t-tests use
Satterthwaite's method [lmerModLmerTest]
Formula: reaction_time ~ gender + (1 | respondent)
Data: collected_data
REML criterion at convergence: 233.3
Scaled residuals:
Min 1Q Median 3Q Max
-2.49299 -0.44896 0.09558 0.52886 2.76354
Random effects:
Groups Name Variance Std.Dev.
respondent (Intercept) 6.4110 2.5320
Residual 0.9345 0.9667
Number of obs: 80, groups: respondent, 4
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 17.092 1.797 2.000 9.512 0.0109 *
gendermale -3.192 2.541 2.000 -1.256 0.3359
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
gendermale -0.707
dat <- read_csv("https://github.com/LingConLab/Can-recall-data-be-trusted/raw/master/data/ITM.csv")
colnames(dat)
dat %>% group_by(year_of_birth, sex) %>% summarise(ITM=mean(`number of lang`), n = n()) %>% ggplot(aes(x=year_of_birth, y=ITM)) + geom_point(aes(size=n, color=sex), alpha=0.5)
summary(lm(`number of lang` ~ year_of_birth + sex, data=dat))
summary(lmer(`number of lang` ~ year_of_birth + sex + (1|residence), data=dat))
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkobG1lNCkKbGlicmFyeShnZ3Bsb3QyKQpgYGAKCmBgYHtyfQpyZXNwb25kZW50c19kYXRhIDwtIGRhdGEuZnJhbWUocmVzcG9uZGVudCA9IGMoIkFsaWNlIiwgIkJvYiIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2xhdWRpYSIsICJEYW5pZWwiKSwKICAgICAgICAgICBnZW5kZXIgPSBjKCJmZW1hbGUiLCAibWFsZSIsICJmZW1hbGUiLCAibWFsZSIpKSAlPiUKICBtdXRhdGUocnRfYmlhcyA9IHJ1bmlmKG1pbj0xLCBtYXg9MTAsIG49bigpKSkKcmVzcG9uZGVudHNfZGF0YQpgYGAKYGBge3J9CmNvbGxlY3RlZF9kYXRhIDwtIHJlc3BvbmRlbnRzX2RhdGEgJT4lIG11dGF0ZShudW1iZXJfb2Zfb2JzZXJ2YXRpb25zID0gMjApICU+JSB1bmNvdW50KG51bWJlcl9vZl9vYnNlcnZhdGlvbnMpICU+JSBtdXRhdGUocmVhY3Rpb25fdGltZT1ydF9iaWFzICsgcm5vcm0obWVhbj0xMCwgbj1uKCkpKQpjb2xsZWN0ZWRfZGF0YQpgYGAKYGBge3J9CnQudGVzdChyZWFjdGlvbl90aW1lIH4gZ2VuZGVyLCBkYXRhPWNvbGxlY3RlZF9kYXRhKQpgYGAKYGBge3J9CnN1bW1hcnkobG0ocmVhY3Rpb25fdGltZSB+IGdlbmRlciwgZGF0YT1jb2xsZWN0ZWRfZGF0YSkpCmBgYApgYGB7cn0Kc3VtbWFyeShsbWVyKHJlYWN0aW9uX3RpbWUgfiBnZW5kZXIgKyAoMXxyZXNwb25kZW50KSwKICAgICAgICAgICAgIGRhdGE9Y29sbGVjdGVkX2RhdGEpKQpgYGAKCgpgYGB7cn0KZGF0IDwtIHJlYWRfY3N2KCJodHRwczovL2dpdGh1Yi5jb20vTGluZ0NvbkxhYi9DYW4tcmVjYWxsLWRhdGEtYmUtdHJ1c3RlZC9yYXcvbWFzdGVyL2RhdGEvSVRNLmNzdiIpCmBgYAoKYGBge3J9CmNvbG5hbWVzKGRhdCkKYGBgCmBgYHtyfQpkYXQgJT4lIGdyb3VwX2J5KHllYXJfb2ZfYmlydGgsIHNleCkgJT4lIHN1bW1hcmlzZShJVE09bWVhbihgbnVtYmVyIG9mIGxhbmdgKSwgbiA9IG4oKSkgJT4lIGdncGxvdChhZXMoeD15ZWFyX29mX2JpcnRoLCB5PUlUTSkpICsgZ2VvbV9wb2ludChhZXMoc2l6ZT1uLCBjb2xvcj1zZXgpLCBhbHBoYT0wLjUpCmBgYAoKCmBgYHtyfQpzdW1tYXJ5KGxtKGBudW1iZXIgb2YgbGFuZ2AgfiB5ZWFyX29mX2JpcnRoICsgc2V4LCBkYXRhPWRhdCkpCmBgYAoKYGBge3J9CnN1bW1hcnkobG1lcihgbnVtYmVyIG9mIGxhbmdgIH4geWVhcl9vZl9iaXJ0aCArIHNleCArICgxfHJlc2lkZW5jZSksIGRhdGE9ZGF0KSkKYGBg