M.P.
2022-05-11
(Photo Source: Townsend)
Invented by American Mathematician A.S. Householder in 1958 (Kreyszig).
Orthogonal projections generate Householder matrices, \( P \), which zero-out values of \( A \) when multiplied (Orthogonal Matrices: Lecture 8).
Technique to tridiagonalize a symmetric matrix (Kreyszig).
Tridiagonal matrix : nonzero entries on main and adjacent diagonals, efficient for storage (Weisstein).
\[ T=\begin{bmatrix} 5&5&0&0\\4&1&3&0\\0&9&7&10\\0&0&-1&-5 \end{bmatrix} \]
\[ \begin{equation}P = I - 2\mathbf{u}\mathbf{u}^T\end{equation} \]
\( P \) are symmetric (\( P^T = P \)) and orthogonal ( \( P^T=P^{-1} \))(Lee)
Compute matrix product in each of \( j \) steps to update \( A \):
\[ A = P_jAP_j^T \]
\( P_j = I-2\mathbf{u}_j\mathbf{u}_j^T, 1\leq j\leq n-2 \)
\( \mathbf{u}_j \) constructed from corresponding columns of A, \( \mathbf{a}_j \).
First \( j \) entries of \( \mathbf{u}_j \) are zero, rest are calculated from formulas (see Kreyszig 20.9):
\[ \begin{array}{l} &u_{j+1} = \sqrt{\frac{1}{2}\left( 1+\frac{|a_{j+1,j}|}{s_j}\right)}\\ &u_i = \displaystyle\frac{a_{i,j} \ \mathrm{sgn} (a_{j+1,j})}{2u_{j+1}s_j}, \ j+2 \leq i\leq n \end{array} \]
\[ s_j = \sqrt{ \sum_{i = j+1}^n(a_{i,j})^2} \]
\[ \mathbf{u} = \begin{bmatrix} 0\\ 0\\ \vdots \\ 0\\ u_{j+1}\\ \vdots\\ u_n \end{bmatrix} \]
Declare symmetric matrix A
A =
4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2
Vector u calculated from each column of A with specific formulas
u =
0
0.9492
0.2816
0.1408
Householder matrix P = I-2uu':
P =
1.0000 0 0 0
0 -0.8018 -0.5345 -0.2673
0 -0.5345 0.8414 -0.0793
0 -0.2673 -0.0793 0.9604
Left multiply A by P and right-multiply by P':
A =
4.0000 -3.7417 -0.0000 0
-3.7417 6.0000 -1.0102 -3.9795
-0.0000 -1.0102 2.4552 0.1586
0 -3.9795 0.1586 -0.4552
A new u vector is calculated from the next column of A:
u =
0
0
0.7893
0.6140
New Householder matrix P = I-2uu':
P =
1.0000 0 0 0
0 1.0000 0 0
0 0 -0.2461 -0.9693
0 0 -0.9693 0.2461
Updated matrix A is calculated from PAP'
A =
4.0000e+00 -3.7417e+00 4.7806e-17 1.8832e-16
-3.7417e+00 6.0000e+00 4.1057e+00 1.3323e-15
4.7806e-17 4.1057e+00 -2.0339e-01 8.3349e-01
1.8832e-16 9.9920e-16 8.3349e-01 2.2034e+00
Values off main diagonals on the order of 10^-15, so we round to zero:
T =
4.0000 -3.7417 0 0
-3.7417 6.0000 4.1057 0
0 4.1057 -0.2034 0.8335
0 0 0.8335 2.2034
Original matrix
A =
4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2
To prove that we get a similar matrix, use Octave's eig() function to calculate the eigenvalues and compare.
eigT =
10.0000
-2.8284
2.0000
2.8284
eigA =
-2.8284
2.0000
2.8284
10.0000
\( A \) and \( T \) similar: same eigenvalues (not in the same order)
Tridiagonalization took \( n-2 \) multiplications of \( PAP^T \) (plus computation of \( \mathbf{u} \) and \( P = I-2\mathbf{u}\mathbf{u}^T \) in each step).
According to Wolfram Mathworld, “Computing the determinant of such a matrix requires only \( O(7n) \) (as opposed to \( O(\frac{n^3}{3} \))) arithmetic operations) (qtd in Weisstein).”
Householder reflections used in important matrix manipulations, such as QR Factorization.
Kreyszig, Erwin, et al. “Chapter 20.9 Tridiagonalization and QR-Factorization.” Advanced Engineering Mathematics: Tenth Edition, 10th ed.,Wiley, Hoboken, NJ, 2011, pp. 888–896.
Weisstein, Eric W. “Tridiagonal Matrix.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/TridiagonalMatrix.html
Lee, Che-Rung. “Lecture 4: QR Decomposition.” CS 3331 Numerical Methods. Taiwan, National Tsing Hua University, http://www.cs.nthu.edu.tw/~cherung/teaching/2008cs3331/lec04.pdf. Accessed 26 Apr. 2022.
“Orthogonal Matrices: Lecture 8.” Applied Numerical Linear Algebra.
Chalmers University of Technology,
Chalmers University of Technology. http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1213/Lectures//Lecture8.pdf
Rabinoff, Joseph, and Dan Margalit. Interactive Linear Algebra,
Georgia Institute of Technology, 2017,
textbooks.math.gatech.edu/ila/similarity.html.
Townsend, Alex. “Numerical Linear Algebra and Matrix Factorizations.”
Math 720: Top Ten Algorithms from the 20th Century.
Cornell Department of Mathematics, 2019, Ithica, New York.