M.P.
2022-05-11
(Photo Source: Townsend)
Invented by American Mathematician A.S. Householder in 1958 (Kreyszig).
Orthogonal projections generate Householder matrices, \( P \), which zero-out values of \( A \) when multiplied (Orthogonal Matrices: Lecture 8).
Technique to tridiagonalize a symmetric matrix (Kreyszig).
Tridiagonal matrix : nonzero entries on main and adjacent diagonals, efficient for storage (Weisstein).
\[ T=\begin{bmatrix} 5&5&0&0\\4&1&3&0\\0&9&7&10\\0&0&-1&-5 \end{bmatrix} \]
\[ \begin{equation}P = I - 2\mathbf{u}\mathbf{u}^T\end{equation} \]
\( P \) are symmetric (\( P^T = P \)) and orthogonal ( \( P^T=P^{-1} \))(Lee)
Compute matrix product in each of \( j \) steps to update \( A \):
\[ A = P_jAP_j^T \]
\( P_j = I-2\mathbf{u}_j\mathbf{u}_j^T, 1\leq j\leq n-2 \)
\( \mathbf{u}_j \) constructed from corresponding columns of A, \( \mathbf{a}_j \).
First \( j \) entries of \( \mathbf{u}_j \) are zero, rest are calculated from formulas (see Kreyszig 20.9):
\[ \begin{array}{l} &u_{j+1} = \sqrt{\frac{1}{2}\left( 1+\frac{|a_{j+1,j}|}{s_j}\right)}\\ &u_i = \displaystyle\frac{a_{i,j} \ \mathrm{sgn} (a_{j+1,j})}{2u_{j+1}s_j}, \ j+2 \leq i\leq n \end{array} \]
\[ s_j = \sqrt{ \sum_{i = j+1}^n(a_{i,j})^2} \]
\[ \mathbf{u} = \begin{bmatrix} 0\\ 0\\ \vdots \\ 0\\ u_{j+1}\\ \vdots\\ u_n \end{bmatrix} \]
Error in system2(cmd, code, stdout = TRUE, stderr = TRUE, env = options$engine.env) :
'"C:\Octave\Octave-5.2.0\mingw64\bin\octave-cli.exe"' not found