Alejandro de la Vega
2/28/2014
We covered the basics last time
Time for some disparate but necessary loose ends
?scale
colnames(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"
colnames(iris)[1] = "Length"
colnames(iris) = c("SLength", "SWidth", "PLength", "PWidth", "Species")
colnames(iris)
[1] "SLength" "SWidth" "PLength" "PWidth" "Species"
SLength SWidth PLength PWidth Species
1 5.1 3.5 1.4 NA setosa
2 4.9 3.0 1.4 0.2 setosa
3 NA 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
na.omit(iris) # removes rows with NAs
SLength SWidth PLength PWidth Species
2 4.9 3.0 1.4 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
mean(iris$SLength)
[1] NA
mean(iris$SLength, na.rm=T)
[1] 4.867
install.packages('package_name')
library(package_name)
Data is commonly stored in “wide-format”
R likes long format data because its a computer
sub angry neutral sad happy
1 1 2 5 3 7
2 2 1 4 3 9
3 3 3 6 3 7
reshape2 package makes this very easy
melt() - converts wide to long
cast() - long back to wide
melt(data, id.vars=c("id"), measure.vars=c("var"),value.name = "val")
melt(face_ratings, id.vars=c("sub"), value.name="rating")
sub variable rating
1 1 angry 2
2 2 angry 1
3 3 angry 3
4 1 neutral 5
5 2 neutral 4
6 3 neutral 6
7 1 sad 3
8 2 sad 3
9 3 sad 3
10 1 happy 7
11 2 happy 9
12 3 happy 7
melt(face_ratings, id.vars=c("sub"), measure.vars=c("sad", "happy"), value.name="rating")
sub variable rating
1 1 sad 3
2 2 sad 3
3 3 sad 3
4 1 happy 7
5 2 happy 9
6 3 happy 7
dcast(data, x1 + x2 ~ y1 + y2)
dcast(melt_face, ...~variable)
sub angry neutral sad happy
1 1 2 5 3 7
2 2 1 4 3 9
3 3 3 6 3 7
head(trustData)
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 90 1
3 1 N 14 4 0
4 1 N 14 7 0
5 1 N 30 7 0
6 1 N 11 90 1
dcast(trustData, sub~condition, margins=T)
sub N T U (all)
1 1 37 0 11 48
2 2 38 0 10 48
3 3 43 0 5 48
4 4 39 0 9 48
5 5 44 0 4 48
6 6 44 0 4 48
7 7 0 45 4 49
8 8 0 41 8 49
9 9 0 42 7 49
10 10 0 32 17 49
11 (all) 245 160 79 484
library(dplyr)
tbl_df(trustData)
Source: local data frame [484 x 5]
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 90 1
3 1 N 14 4 0
4 1 N 14 7 0
5 1 N 30 7 0
6 1 N 11 90 1
7 1 N 18 4 1
8 1 N 26 21 1
9 1 N 26 7 0
10 1 N 18 14 1
.. ... ... ... ... ...
new_data <- function(data, args, ...)
filter(data, logical conditions, optional conditions)
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 90 1
3 1 N 14 4 0
4 1 N 14 7 0
5 1 N 30 7 0
6 1 N 11 90 1
7 1 N 18 4 1
head(trustData)
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 90 1
3 1 N 14 4 0
4 1 N 14 7 0
5 1 N 30 7 0
6 1 N 11 90 1
trustData$delay == 4 & trustData$choice == 1
[1] TRUE FALSE FALSE FALSE FALSE FALSE
filter(trustData, delay == 4, choice == 1)
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 4 1
3 1 N 30 4 1
4 1 N 26 4 1
5 1 N 34 4 1
6 2 N 11 4 1
7 2 N 14 4 1
8 2 N 30 4 1
9 2 N 26 4 1
10 2 N 22 4 1
filter(trustData, condition == "N",
condition == "T")
[1] sub condition value delay choice
<0 rows> (or 0-length row.names)
filter(trustData,
condition == "N" | condition == "T")
filter(trustData, condition %in% c("N", "T"))
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 90 1
3 1 N 14 4 0
4 1 N 14 7 0
5 1 N 30 7 0
6 1 N 11 90 1
7 1 N 18 4 1
8 1 N 26 21 1
9 1 N 26 7 0
10 1 N 18 14 1
11 1 N 30 4 1
12 1 N 26 90 1
13 1 N 30 150 0
14 1 N 22 7 1
15 1 N 14 21 1
16 1 N 30 42 1
17 1 N 22 150 1
18 1 N 22 42 1
19 1 N 14 42 1
20 1 N 18 7 0
21 1 N 34 42 1
22 1 N 11 14 1
23 1 N 22 90 0
24 1 N 14 90 1
25 1 N 14 150 1
26 1 N 34 90 1
27 1 N 26 14 1
28 1 N 11 21 1
29 1 N 18 150 1
30 1 N 14 14 1
31 1 N 22 21 1
32 1 N 26 4 1
33 1 N 30 21 1
34 1 N 18 21 1
35 1 N 26 42 1
36 1 N 34 21 1
37 1 N 34 4 1
38 2 N 11 4 1
39 2 N 18 90 1
40 2 N 22 14 1
41 2 N 14 4 1
42 2 N 11 7 1
43 2 N 30 7 1
44 2 N 34 7 1
45 2 N 26 21 1
46 2 N 26 7 1
47 2 N 18 14 1
48 2 N 30 4 1
49 2 N 30 150 1
50 2 N 34 150 1
51 2 N 22 7 1
52 2 N 30 42 1
53 2 N 22 150 0
54 2 N 30 90 1
55 2 N 22 42 1
56 2 N 14 42 0
57 2 N 18 7 1
58 2 N 34 42 1
59 2 N 11 150 0
60 2 N 26 150 0
61 2 N 22 90 1
62 2 N 30 14 1
63 2 N 14 90 0
64 2 N 34 90 1
65 2 N 26 14 1
66 2 N 18 150 0
67 2 N 14 14 1
68 2 N 22 21 1
69 2 N 26 4 1
70 2 N 30 21 1
71 2 N 18 21 1
72 2 N 26 42 1
73 2 N 34 21 1
74 2 N 22 4 1
75 2 N 34 4 1
76 3 N 11 4 1
77 3 N 18 90 0
78 3 N 22 14 1
79 3 N 14 4 1
80 3 N 14 7 0
81 3 N 11 7 1
82 3 N 30 7 1
83 3 N 34 7 1
84 3 N 11 90 1
85 3 N 18 4 0
86 3 N 26 21 1
87 3 N 26 7 1
88 3 N 18 14 1
89 3 N 11 42 1
90 3 N 30 4 1
91 3 N 26 90 1
92 3 N 30 150 1
93 3 N 34 150 1
94 3 N 22 7 1
95 3 N 14 21 0
96 3 N 30 42 1
97 3 N 22 150 1
98 3 N 18 42 1
99 3 N 30 90 1
100 3 N 22 42 0
101 3 N 14 42 1
102 3 N 18 7 1
103 3 N 34 42 0
104 3 N 11 150 0
105 3 N 11 14 0
106 3 N 26 150 1
107 3 N 30 14 1
108 3 N 14 90 1
109 3 N 14 150 1
110 3 N 34 90 0
111 3 N 26 14 1
112 3 N 11 21 0
113 3 N 14 14 0
114 3 N 22 21 1
115 3 N 26 4 1
116 3 N 30 21 0
117 3 N 18 21 1
118 3 N 26 42 1
119 4 N 18 90 0
120 4 N 22 14 1
121 4 N 14 4 1
122 4 N 14 7 1
123 4 N 11 7 1
124 4 N 30 7 1
125 4 N 34 7 1
126 4 N 11 90 0
127 4 N 18 4 1
128 4 N 26 21 1
129 4 N 26 7 1
130 4 N 18 14 1
131 4 N 34 150 0
132 4 N 22 7 1
133 4 N 14 21 1
134 4 N 30 42 1
135 4 N 22 150 1
136 4 N 18 42 0
137 4 N 30 90 1
138 4 N 22 42 1
139 4 N 14 42 1
140 4 N 18 7 1
141 4 N 34 42 1
142 4 N 11 150 1
143 4 N 11 14 1
144 4 N 26 150 1
145 4 N 22 90 1
146 4 N 30 14 0
147 4 N 14 90 1
148 4 N 14 150 1
149 4 N 34 90 1
150 4 N 26 14 1
151 4 N 11 21 0
152 4 N 18 150 1
153 4 N 14 14 1
154 4 N 22 21 1
155 4 N 26 4 1
156 4 N 30 21 1
157 4 N 18 21 1
158 5 N 11 4 1
159 5 N 18 90 1
160 5 N 22 14 0
161 5 N 14 4 0
162 5 N 14 7 0
163 5 N 11 7 0
164 5 N 30 7 0
165 5 N 34 7 1
166 5 N 11 90 1
167 5 N 18 4 0
168 5 N 26 21 1
169 5 N 26 7 1
170 5 N 18 14 1
171 5 N 11 42 0
172 5 N 30 4 0
173 5 N 26 90 0
174 5 N 30 150 1
175 5 N 34 150 1
176 5 N 22 7 0
177 5 N 14 21 0
178 5 N 30 42 0
179 5 N 22 150 0
180 5 N 18 42 1
181 5 N 30 90 1
182 5 N 22 42 1
183 5 N 14 42 1
184 5 N 18 7 1
185 5 N 34 42 1
186 5 N 11 150 0
187 5 N 11 14 1
188 5 N 26 150 0
189 5 N 22 90 1
190 5 N 30 14 1
191 5 N 14 90 1
192 5 N 14 150 1
193 5 N 34 90 0
194 5 N 26 14 1
195 5 N 11 21 0
196 5 N 18 150 1
197 5 N 14 14 1
198 5 N 22 21 0
199 5 N 26 4 0
200 5 N 22 4 1
201 5 N 34 4 0
202 6 N 11 4 0
203 6 N 18 90 1
204 6 N 22 14 0
205 6 N 14 4 1
206 6 N 14 7 0
207 6 N 11 7 0
208 6 N 30 7 0
209 6 N 34 7 1
210 6 N 11 90 0
211 6 N 18 4 0
212 6 N 26 21 1
213 6 N 26 7 1
214 6 N 18 14 1
215 6 N 11 42 0
216 6 N 30 4 1
217 6 N 26 90 1
218 6 N 30 150 1
219 6 N 34 150 1
220 6 N 22 7 0
221 6 N 14 21 1
222 6 N 30 42 1
223 6 N 22 150 1
224 6 N 18 42 1
225 6 N 30 90 1
226 6 N 22 42 1
227 6 N 14 42 1
228 6 N 18 7 1
229 6 N 34 42 1
230 6 N 11 150 0
231 6 N 11 14 1
232 6 N 14 150 1
233 6 N 34 90 0
234 6 N 26 14 0
235 6 N 11 21 0
236 6 N 18 150 0
237 6 N 14 14 1
238 6 N 22 21 0
239 6 N 26 4 0
240 6 N 30 21 0
241 6 N 18 21 0
242 6 N 26 42 1
243 6 N 34 21 0
244 6 N 22 4 0
245 6 N 34 4 0
246 7 T 18 42 0
247 7 T 18 150 0
248 7 T 30 7 1
249 7 T 26 14 1
250 7 T 14 150 0
251 7 T 14 21 0
252 7 T 26 90 1
253 7 T 18 21 0
254 7 T 26 21 1
255 7 T 30 21 1
256 7 T 26 42 1
257 7 T 18 7 0
258 7 T 11 21 0
259 7 T 34 7 1
260 7 T 34 21 1
261 7 T 30 42 1
262 7 T 14 7 0
263 7 T 34 42 1
264 7 T 18 90 1
265 7 T 30 14 1
266 7 T 18 14 1
267 7 T 34 4 1
268 7 T 14 4 1
269 7 T 30 4 1
270 7 T 26 7 1
271 7 T 22 21 1
272 7 T 18 4 1
273 7 T 11 90 0
274 7 T 22 150 1
275 7 T 11 7 1
276 7 T 34 90 1
277 7 T 14 14 1
278 7 T 22 7 0
279 7 T 22 4 1
280 7 T 11 42 0
281 7 T 14 42 0
282 7 T 11 14 0
283 7 T 30 90 1
284 7 T 26 150 1
285 7 T 26 4 1
286 7 T 11 4 0
287 7 T 30 150 1
288 7 T 22 14 1
289 7 T 34 150 1
290 7 T 22 42 1
291 8 T 14 150 0
292 8 T 14 21 1
293 8 T 26 90 0
294 8 T 18 21 1
295 8 T 26 21 1
296 8 T 30 21 1
297 8 T 26 42 1
298 8 T 18 7 1
299 8 T 11 21 1
300 8 T 34 7 1
301 8 T 34 21 1
302 8 T 30 42 1
303 8 T 14 7 1
304 8 T 34 42 1
305 8 T 18 90 0
306 8 T 34 14 1
307 8 T 11 150 0
308 8 T 22 90 0
309 8 T 14 90 0
310 8 T 30 14 1
311 8 T 18 14 1
312 8 T 34 4 1
313 8 T 14 4 1
314 8 T 30 4 1
315 8 T 26 7 1
316 8 T 22 21 1
317 8 T 18 4 1
318 8 T 11 90 0
319 8 T 22 150 0
320 8 T 11 7 1
321 8 T 34 90 0
322 8 T 14 14 1
323 8 T 22 7 1
324 8 T 22 4 1
325 8 T 26 150 0
326 8 T 26 4 1
327 8 T 11 4 1
328 8 T 30 150 0
329 8 T 22 14 1
330 8 T 34 150 0
331 8 T 22 42 1
332 9 T 18 42 0
333 9 T 18 150 0
334 9 T 30 7 1
335 9 T 26 14 1
336 9 T 14 150 0
337 9 T 14 21 1
338 9 T 26 90 0
339 9 T 18 21 0
340 9 T 26 21 1
341 9 T 30 21 0
342 9 T 26 42 0
343 9 T 18 7 1
344 9 T 11 21 1
345 9 T 34 7 1
346 9 T 34 21 0
347 9 T 30 42 0
348 9 T 14 7 0
349 9 T 34 42 1
350 9 T 18 90 1
351 9 T 30 14 1
352 9 T 18 14 0
353 9 T 34 4 1
354 9 T 14 4 1
355 9 T 30 4 1
356 9 T 26 7 1
357 9 T 22 21 1
358 9 T 18 4 1
359 9 T 11 90 1
360 9 T 22 150 1
361 9 T 11 7 1
362 9 T 34 90 0
363 9 T 14 14 1
364 9 T 22 7 1
365 9 T 22 4 1
366 9 T 11 42 1
367 9 T 14 42 0
368 9 T 11 14 1
369 9 T 30 90 0
370 9 T 26 150 0
371 9 T 26 4 1
372 9 T 11 4 1
373 9 T 30 150 0
374 10 T 18 150 0
375 10 T 30 7 1
376 10 T 26 14 1
377 10 T 14 150 0
378 10 T 14 21 0
379 10 T 26 90 1
380 10 T 18 21 0
381 10 T 26 21 1
382 10 T 30 21 1
383 10 T 26 42 1
384 10 T 18 7 1
385 10 T 14 7 1
386 10 T 34 42 1
387 10 T 18 90 1
388 10 T 34 14 1
389 10 T 11 150 0
390 10 T 22 90 1
391 10 T 14 4 1
392 10 T 30 4 1
393 10 T 26 7 1
394 10 T 22 21 1
395 10 T 18 4 1
396 10 T 11 90 0
397 10 T 22 150 0
398 10 T 11 7 1
399 10 T 34 90 1
400 10 T 14 14 0
401 10 T 11 14 1
402 10 T 30 90 1
403 10 T 22 14 1
404 10 T 34 150 0
405 10 T 22 42 1
filter(trustData, condition != "N", delay == 4)
sub condition value delay choice
1 7 T 34 4 1
2 7 T 14 4 1
3 7 T 30 4 1
4 7 T 18 4 1
5 7 T 22 4 1
6 7 T 26 4 1
7 7 T 11 4 0
8 8 T 34 4 1
9 8 T 14 4 1
10 8 T 30 4 1
11 8 T 18 4 1
12 8 T 22 4 1
13 8 T 26 4 1
14 8 T 11 4 1
15 9 T 34 4 1
16 9 T 14 4 1
17 9 T 30 4 1
18 9 T 18 4 1
19 9 T 22 4 1
20 9 T 26 4 1
21 9 T 11 4 1
22 10 T 14 4 1
23 10 T 30 4 1
24 10 T 18 4 1
25 1 U 22 4 1
26 2 U 18 4 1
27 3 U 22 4 0
28 3 U 34 4 0
29 4 U 11 4 0
30 4 U 30 4 0
31 4 U 22 4 1
32 4 U 34 4 1
33 10 U 34 4 0
34 10 U 22 4 1
35 10 U 26 4 0
36 10 U 11 4 1
arrange(trustData, delay)
sub condition value delay choice
1 1 N 11 4 1
2 1 N 14 4 0
3 1 N 18 4 1
4 1 N 30 4 1
5 1 N 26 4 1
6 1 N 34 4 1
7 2 N 11 4 1
8 2 N 14 4 1
9 2 N 30 4 1
10 2 N 26 4 1
11 2 N 22 4 1
12 2 N 34 4 1
13 3 N 11 4 1
14 3 N 14 4 1
15 3 N 18 4 0
16 3 N 30 4 1
17 3 N 26 4 1
18 4 N 14 4 1
19 4 N 18 4 1
20 4 N 26 4 1
21 5 N 11 4 1
22 5 N 14 4 0
23 5 N 18 4 0
24 5 N 30 4 0
25 5 N 26 4 0
26 5 N 22 4 1
27 5 N 34 4 0
28 6 N 11 4 0
29 6 N 14 4 1
30 6 N 18 4 0
31 6 N 30 4 1
32 6 N 26 4 0
33 6 N 22 4 0
34 6 N 34 4 0
35 7 T 34 4 1
36 7 T 14 4 1
37 7 T 30 4 1
38 7 T 18 4 1
39 7 T 22 4 1
40 7 T 26 4 1
41 7 T 11 4 0
42 8 T 34 4 1
43 8 T 14 4 1
44 8 T 30 4 1
45 8 T 18 4 1
46 8 T 22 4 1
47 8 T 26 4 1
48 8 T 11 4 1
49 9 T 34 4 1
50 9 T 14 4 1
51 9 T 30 4 1
52 9 T 18 4 1
53 9 T 22 4 1
54 9 T 26 4 1
55 9 T 11 4 1
56 10 T 14 4 1
57 10 T 30 4 1
58 10 T 18 4 1
59 1 U 22 4 1
60 2 U 18 4 1
61 3 U 22 4 0
62 3 U 34 4 0
63 4 U 11 4 0
64 4 U 30 4 0
65 4 U 22 4 1
66 4 U 34 4 1
67 10 U 34 4 0
68 10 U 22 4 1
69 10 U 26 4 0
70 10 U 11 4 1
71 1 N 14 7 0
72 1 N 30 7 0
73 1 N 26 7 0
74 1 N 22 7 1
75 1 N 18 7 0
76 2 N 11 7 1
77 2 N 30 7 1
78 2 N 34 7 1
79 2 N 26 7 1
80 2 N 22 7 1
81 2 N 18 7 1
82 3 N 14 7 0
83 3 N 11 7 1
84 3 N 30 7 1
85 3 N 34 7 1
86 3 N 26 7 1
87 3 N 22 7 1
88 3 N 18 7 1
89 4 N 14 7 1
90 4 N 11 7 1
91 4 N 30 7 1
92 4 N 34 7 1
93 4 N 26 7 1
94 4 N 22 7 1
95 4 N 18 7 1
96 5 N 14 7 0
97 5 N 11 7 0
98 5 N 30 7 0
99 5 N 34 7 1
100 5 N 26 7 1
101 5 N 22 7 0
102 5 N 18 7 1
103 6 N 14 7 0
104 6 N 11 7 0
105 6 N 30 7 0
106 6 N 34 7 1
107 6 N 26 7 1
108 6 N 22 7 0
109 6 N 18 7 1
110 7 T 30 7 1
111 7 T 18 7 0
112 7 T 34 7 1
113 7 T 14 7 0
114 7 T 26 7 1
115 7 T 11 7 1
116 7 T 22 7 0
117 8 T 18 7 1
118 8 T 34 7 1
119 8 T 14 7 1
120 8 T 26 7 1
121 8 T 11 7 1
122 8 T 22 7 1
123 9 T 30 7 1
124 9 T 18 7 1
125 9 T 34 7 1
126 9 T 14 7 0
127 9 T 26 7 1
128 9 T 11 7 1
129 9 T 22 7 1
130 10 T 30 7 1
131 10 T 18 7 1
132 10 T 14 7 1
133 10 T 26 7 1
134 10 T 11 7 1
135 1 U 11 7 0
136 1 U 34 7 1
137 2 U 14 7 1
138 8 U 30 7 1
139 10 U 34 7 0
140 10 U 22 7 1
141 1 N 18 14 1
142 1 N 11 14 1
143 1 N 26 14 1
144 1 N 14 14 1
145 2 N 22 14 1
146 2 N 18 14 1
147 2 N 30 14 1
148 2 N 26 14 1
149 2 N 14 14 1
150 3 N 22 14 1
151 3 N 18 14 1
152 3 N 11 14 0
153 3 N 30 14 1
154 3 N 26 14 1
155 3 N 14 14 0
156 4 N 22 14 1
157 4 N 18 14 1
158 4 N 11 14 1
159 4 N 30 14 0
160 4 N 26 14 1
161 4 N 14 14 1
162 5 N 22 14 0
163 5 N 18 14 1
164 5 N 11 14 1
165 5 N 30 14 1
166 5 N 26 14 1
167 5 N 14 14 1
168 6 N 22 14 0
169 6 N 18 14 1
170 6 N 11 14 1
171 6 N 26 14 0
172 6 N 14 14 1
173 7 T 26 14 1
174 7 T 30 14 1
175 7 T 18 14 1
176 7 T 14 14 1
177 7 T 11 14 0
178 7 T 22 14 1
179 8 T 34 14 1
180 8 T 30 14 1
181 8 T 18 14 1
182 8 T 14 14 1
183 8 T 22 14 1
184 9 T 26 14 1
185 9 T 30 14 1
186 9 T 18 14 0
187 9 T 14 14 1
188 9 T 11 14 1
189 10 T 26 14 1
190 10 T 34 14 1
191 10 T 14 14 0
192 10 T 11 14 1
193 10 T 22 14 1
194 1 U 22 14 1
195 1 U 30 14 1
196 2 U 11 14 0
197 6 U 30 14 1
198 7 U 34 14 1
199 8 U 26 14 1
200 8 U 11 14 1
201 9 U 34 14 0
202 9 U 22 14 0
203 10 U 30 14 0
204 10 U 18 14 0
205 1 N 26 21 1
206 1 N 14 21 1
207 1 N 11 21 1
208 1 N 22 21 1
209 1 N 30 21 1
210 1 N 18 21 1
211 1 N 34 21 1
212 2 N 26 21 1
213 2 N 22 21 1
214 2 N 30 21 1
215 2 N 18 21 1
216 2 N 34 21 1
217 3 N 26 21 1
218 3 N 14 21 0
219 3 N 11 21 0
220 3 N 22 21 1
221 3 N 30 21 0
222 3 N 18 21 1
223 4 N 26 21 1
224 4 N 14 21 1
225 4 N 11 21 0
226 4 N 22 21 1
227 4 N 30 21 1
228 4 N 18 21 1
229 5 N 26 21 1
230 5 N 14 21 0
231 5 N 11 21 0
232 5 N 22 21 0
233 6 N 26 21 1
234 6 N 14 21 1
235 6 N 11 21 0
236 6 N 22 21 0
237 6 N 30 21 0
238 6 N 18 21 0
239 6 N 34 21 0
240 7 T 14 21 0
241 7 T 18 21 0
242 7 T 26 21 1
243 7 T 30 21 1
244 7 T 11 21 0
245 7 T 34 21 1
246 7 T 22 21 1
247 8 T 14 21 1
248 8 T 18 21 1
249 8 T 26 21 1
250 8 T 30 21 1
251 8 T 11 21 1
252 8 T 34 21 1
253 8 T 22 21 1
254 9 T 14 21 1
255 9 T 18 21 0
256 9 T 26 21 1
257 9 T 30 21 0
258 9 T 11 21 1
259 9 T 34 21 0
260 9 T 22 21 1
261 10 T 14 21 0
262 10 T 18 21 0
263 10 T 26 21 1
264 10 T 30 21 1
265 10 T 22 21 1
266 2 U 14 21 0
267 2 U 11 21 1
268 3 U 34 21 0
269 4 U 34 21 0
270 5 U 30 21 0
271 5 U 18 21 0
272 5 U 34 21 0
273 10 U 11 21 0
274 10 U 34 21 0
275 1 N 30 42 1
276 1 N 22 42 1
277 1 N 14 42 1
278 1 N 34 42 1
279 1 N 26 42 1
280 2 N 30 42 1
281 2 N 22 42 1
282 2 N 14 42 0
283 2 N 34 42 1
284 2 N 26 42 1
285 3 N 11 42 1
286 3 N 30 42 1
287 3 N 18 42 1
288 3 N 22 42 0
289 3 N 14 42 1
290 3 N 34 42 0
291 3 N 26 42 1
292 4 N 30 42 1
293 4 N 18 42 0
294 4 N 22 42 1
295 4 N 14 42 1
296 4 N 34 42 1
297 5 N 11 42 0
298 5 N 30 42 0
299 5 N 18 42 1
300 5 N 22 42 1
301 5 N 14 42 1
302 5 N 34 42 1
303 6 N 11 42 0
304 6 N 30 42 1
305 6 N 18 42 1
306 6 N 22 42 1
307 6 N 14 42 1
308 6 N 34 42 1
309 6 N 26 42 1
310 7 T 18 42 0
311 7 T 26 42 1
312 7 T 30 42 1
313 7 T 34 42 1
314 7 T 11 42 0
315 7 T 14 42 0
316 7 T 22 42 1
317 8 T 26 42 1
318 8 T 30 42 1
319 8 T 34 42 1
320 8 T 22 42 1
321 9 T 18 42 0
322 9 T 26 42 0
323 9 T 30 42 0
324 9 T 34 42 1
325 9 T 11 42 1
326 9 T 14 42 0
327 10 T 26 42 1
328 10 T 34 42 1
329 10 T 22 42 1
330 1 U 11 42 1
331 1 U 18 42 1
332 2 U 11 42 0
333 2 U 18 42 0
334 4 U 11 42 0
335 4 U 26 42 0
336 5 U 26 42 0
337 8 U 18 42 0
338 8 U 11 42 0
339 8 U 14 42 0
340 9 U 22 42 0
341 10 U 18 42 0
342 10 U 30 42 1
343 10 U 11 42 0
344 10 U 14 42 0
345 1 N 18 90 1
346 1 N 11 90 1
347 1 N 26 90 1
348 1 N 22 90 0
349 1 N 14 90 1
350 1 N 34 90 1
351 2 N 18 90 1
352 2 N 30 90 1
353 2 N 22 90 1
354 2 N 14 90 0
355 2 N 34 90 1
356 3 N 18 90 0
357 3 N 11 90 1
358 3 N 26 90 1
359 3 N 30 90 1
360 3 N 14 90 1
361 3 N 34 90 0
362 4 N 18 90 0
363 4 N 11 90 0
364 4 N 30 90 1
365 4 N 22 90 1
366 4 N 14 90 1
367 4 N 34 90 1
368 5 N 18 90 1
369 5 N 11 90 1
370 5 N 26 90 0
371 5 N 30 90 1
372 5 N 22 90 1
373 5 N 14 90 1
374 5 N 34 90 0
375 6 N 18 90 1
376 6 N 11 90 0
377 6 N 26 90 1
378 6 N 30 90 1
379 6 N 34 90 0
380 7 T 26 90 1
381 7 T 18 90 1
382 7 T 11 90 0
383 7 T 34 90 1
384 7 T 30 90 1
385 8 T 26 90 0
386 8 T 18 90 0
387 8 T 22 90 0
388 8 T 14 90 0
389 8 T 11 90 0
390 8 T 34 90 0
391 9 T 26 90 0
392 9 T 18 90 1
393 9 T 11 90 1
394 9 T 34 90 0
395 9 T 30 90 0
396 10 T 26 90 1
397 10 T 18 90 1
398 10 T 22 90 1
399 10 T 11 90 0
400 10 T 34 90 1
401 10 T 30 90 1
402 1 U 30 90 1
403 2 U 11 90 0
404 2 U 26 90 1
405 3 U 22 90 1
406 4 U 26 90 0
407 6 U 22 90 0
408 6 U 14 90 0
409 7 U 22 90 0
410 7 U 14 90 1
411 8 U 30 90 0
412 9 U 22 90 0
413 9 U 14 90 1
414 10 U 14 90 0
415 1 N 30 150 0
416 1 N 22 150 1
417 1 N 14 150 1
418 1 N 18 150 1
419 2 N 30 150 1
420 2 N 34 150 1
421 2 N 22 150 0
422 2 N 11 150 0
423 2 N 26 150 0
424 2 N 18 150 0
425 3 N 30 150 1
426 3 N 34 150 1
427 3 N 22 150 1
428 3 N 11 150 0
429 3 N 26 150 1
430 3 N 14 150 1
431 4 N 34 150 0
432 4 N 22 150 1
433 4 N 11 150 1
434 4 N 26 150 1
435 4 N 14 150 1
436 4 N 18 150 1
437 5 N 30 150 1
438 5 N 34 150 1
439 5 N 22 150 0
440 5 N 11 150 0
441 5 N 26 150 0
442 5 N 14 150 1
443 5 N 18 150 1
444 6 N 30 150 1
445 6 N 34 150 1
446 6 N 22 150 1
447 6 N 11 150 0
448 6 N 14 150 1
449 6 N 18 150 0
450 7 T 18 150 0
451 7 T 14 150 0
452 7 T 22 150 1
453 7 T 26 150 1
454 7 T 30 150 1
455 7 T 34 150 1
456 8 T 14 150 0
457 8 T 11 150 0
458 8 T 22 150 0
459 8 T 26 150 0
460 8 T 30 150 0
461 8 T 34 150 0
462 9 T 18 150 0
463 9 T 14 150 0
464 9 T 22 150 1
465 9 T 26 150 0
466 9 T 30 150 0
467 10 T 18 150 0
468 10 T 14 150 0
469 10 T 11 150 0
470 10 T 22 150 0
471 10 T 34 150 0
472 1 U 34 150 1
473 1 U 11 150 1
474 1 U 26 150 1
475 2 U 14 150 0
476 3 U 18 150 0
477 4 U 30 150 0
478 6 U 26 150 1
479 7 U 11 150 1
480 8 U 18 150 0
481 9 U 11 150 1
482 9 U 34 150 0
483 10 U 26 150 0
484 10 U 30 150 0
arrange(trustData, desc(delay), choice)
sub condition value delay choice
1 1 N 30 150 0
2 2 N 22 150 0
3 2 N 11 150 0
4 2 N 26 150 0
5 2 N 18 150 0
6 3 N 11 150 0
trustData[order(desc(trustData$delay),
trustData$choice), ]
select(trustData, delay, choice)
delay choice
1 4 1
2 90 1
3 4 0
select(trustData, sub:value)
sub condition value
1 1 N 11
2 1 N 18
3 1 N 14
select(trustData, -sub, -choice)
condition value delay
1 N 11 4
2 N 18 90
3 N 14 4
select(trustData, -(value:delay))
sub condition choice
1 1 N 1
2 1 N 1
3 1 N 0
mutate(trustData, VBD = value*delay, VBD2 = VBD * 2)
sub condition value delay choice VBD VBD2
1 1 N 11 4 1 44 88
2 1 N 18 90 1 1620 3240
3 1 N 14 4 0 56 112
4 1 N 14 7 0 98 196
5 1 N 30 7 0 210 420
6 1 N 11 90 1 990 1980
7 1 N 18 4 1 72 144
8 1 N 26 21 1 546 1092
summarise(trustData, mean_choice = mean(choice))
mean_choice
1 0.6467
[1] "time" "treatment" "subject" "rep" "potato" "buttery"
[7] "grassy" "rancid" "painty"
subject potato buttery grassy rancid painty
61 3 2.9 0.0 0.0 0.0 5.5
25 3 14.0 0.0 0.0 1.1 0.0
62 10 11.0 6.4 0.0 0.0 0.0
26 10 9.9 5.9 2.9 2.2 0.0
63 15 1.2 0.1 0.0 1.1 5.1
27 15 8.8 3.0 3.6 1.5 2.3
mfries <- melt(french_fries, id.vars=c("time", "treatment", "subject", "rep"), value.name="rating", variable.name="type")
head(mfries)
time treatment subject rep type rating
1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2
6 1 1 15 2 potato 8.8
group_by(data, var1, var2, etc)
group_by(mfries, type, treatment)
Source: local data frame [5 x 6]
Groups: type, treatment
time treatment subject rep type rating
1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2
by_type <- group_by(mfries, type)
summarise(by_type, rating = mean(rating),
sd = sd(rating))
Source: local data frame [5 x 3]
type rating sd
1 painty 2.5218 NaN
2 rancid 3.8522 NaN
3 grassy 0.6642 8.784e+75
4 buttery 1.8237 NaN
5 potato 6.9525 NaN
type_treat <- group_by(mfries, type, treatment)
summarise(type_treat, rating = mean(rating))
Source: local data frame [15 x 3]
Groups: type
type treatment rating
1 painty 3 2.5255
2 painty 2 2.4558
3 painty 1 2.5836
4 rancid 3 3.8667
5 rancid 2 3.6246
6 rancid 1 4.0655
7 grassy 3 0.6805
8 grassy 2 0.6629
9 grassy 1 0.6491
10 buttery 3 1.7177
11 buttery 2 1.9739
12 buttery 1 1.7801
13 potato 3 6.9680
14 potato 2 7.0017
15 potato 1 6.8879
summarise(type_treat, n = n(),
nd = n_distinct(rating))
Source: local data frame [15 x 4]
Groups: type
type treatment n nd
1 painty 3 231 76
2 painty 2 231 75
3 painty 1 232 74
4 rancid 3 231 91
5 rancid 2 232 95
6 rancid 1 232 87
7 grassy 3 231 39
8 grassy 2 232 40
9 grassy 1 232 32
10 buttery 3 231 59
11 buttery 2 230 65
12 buttery 1 231 62
13 potato 3 231 107
14 potato 2 232 117
15 potato 1 232 113
by_treat <- group_by(mfries2,treatment)
mutate(by_treat, scale_rating=scale(rating))
Source: local data frame [3,471 x 5]
Groups: treatment
treatment subject type rating scale_rating
1 1 3 potato 2.9 -0.07806
2 1 3 potato 14.0 2.86450
3 1 10 potato 11.0 2.06921
4 1 10 potato 9.9 1.77761
5 1 15 potato 1.2 -0.52873
6 1 15 potato 8.8 1.48600
7 1 16 potato 9.0 1.53902
8 1 16 potato 8.2 1.32694
9 1 19 potato 7.0 1.00883
10 1 19 potato 13.0 2.59941
.. ... ... ... ... ...
filter(by_treat, rating > mean(rating))
Source: local data frame [1,307 x 4]
Groups: treatment
treatment subject type rating
1 1 3 potato 14.0
2 1 10 potato 11.0
3 1 10 potato 9.9
4 1 15 potato 8.8
5 1 16 potato 9.0
6 1 16 potato 8.2
7 1 19 potato 7.0
8 1 19 potato 13.0
9 1 31 potato 12.2
10 1 31 potato 12.8
.. ... ... ... ...
mfries %.%
group_by(type) %.%
summarise(mean_rating = mean(rating))
Source: local data frame [5 x 2]
type mean_rating
1 painty 2.5218
2 rancid 3.8522
3 grassy 0.6642
4 buttery 1.8237
5 potato 6.9525
output <- mfries %.%
filter(treatment != 1) %.%
group_by(type) %.%
filter(rating > mean(rating)) %.%
summarise(mean_rating = mean(rating))
output
Source: local data frame [5 x 2]
type mean_rating
1 painty 6.517
2 rancid 7.555
3 grassy 2.209
4 buttery 4.592
5 potato 9.754
head(trustData, n = 3)
sub condition value delay choice
1 1 N 11 4 1
2 1 N 18 90 1
3 1 N 14 4 0
head(qc, n=3)
sub age gender
1 1 27 male
2 2 31 <NA>
3 3 30 male
inner_join(x, y, by = c("id1", "id2"))
inner_join(trust_data, qc1, by = c("sub"))
sub condition value delay choice age gender
1 1 N 11 4 1 27 male
2 1 N 18 90 1 27 male
3 1 N 14 4 0 27 male
4 1 N 14 7 0 27 male
males <- filter(qc, gender == "male")
anti_join(trustData, males)
sub age gender
1 1 27 male
2 2 31 <NA>
3 3 30 male
sub condition value delay choice
1 10 T 18 150 0
2 10 T 30 7 1
3 10 T 26 14 1