This dataset takes a look at Maryland’s socioeconomic characteristics by county. The reason for my choice is my interest in what causes poverty. Through research, I know that negative socioeconomic characteristics such as illiteracy, unemployment, and low life expectancy are known to be associated with poverty. The data table includes demographics, employment status, educational status/background, modes of transportation, and so on. The data is updated annually, so the table consists of data from 2021-2022.

##The variables include:

###Total Households ###Population 25 years and older
###Less than 9th Grade
###High School no Diploma
###High School Diploma
###Some College no degree
###Associates degree
###Bachelor’s degree
###Graduate or Professional ###Employment Status of the Population 16 years and over
###Civilian Labor Force (16 years & over)
###Employed ###Unemployed
###Unemployment Rate
###Commute Workers 16 yrs and over
###Percent Drove Alone
###Percent Carpooled
###Percent Public Transportation
###Percent Walked
###Percent Other
###Percent Worked at Home
###Median Household Income ($)
###Families ###Percent Families in Poverty
###Percent Civilian Population w/ Health Ins. Cov.
###Total Housing Units
###Percent Occupied ###Percent Vacant
###Total Population ###Voting Age Population
###Male ###Female
###White Alone - those who identify as white alone or as part of a multiracial or ethnic background
###Black Alone - those who identify as black alone or as part of a multiracial or ethnic background ###Asian Alone- those who identify as Asian alone or as part of a multiracial or ethnic background ###American Indian/Alaska Native Alone- those who identify as Amer. Ind/Alaska Native alone or as part of a multiracial or ethnic background
###Native Hawaiian/Pacific Islander Alone- those who identify as Native Amer. alone or as part of a multiracial or ethnic background ###Some Other Race Alone
######Two or More Races ###Hispanic or Latino (of any race) ### Geography

##Article Analysis ###I will be using an article called “Marylanders Against Poverty” by the Baltimore Jewish Council & Staiman Design. In this article, they introduce data with visuals and ranks of every county in Maryland. The information in the article shows the population, number of people living below the poverty line, income (median income, poverty rate, child poverty rate, senior poverty rate, poverty rate amongst Blacks, Hispanics, female-headed households, individuals living below the 200% of the federal poverty rate, and individuals living in deep poverty). The article includes the ranking of each county in regards to (unemployment rate, housing wage, children experiencing homelessness in Maryland schools, and the percent of income spent on child care). Lastly, the article discusses income supports (percent of households in poverty with children that receive temporary cash assistance, percent of children in poverty receiving temporary cash assistance, adults receiving temporary disability assistance program, percent of population participating in food supplement program, penetration rate of the food supplement program, medicaid enrollment, and uninsured population). Although there are many variables that are associated with poverty, an explanatory analysis has shown that there are other features that contribute to a person’s socioeconomic status and other impacts of poverty (government assistance, homelessness, and the need for higher housing wages).

###The article states some interesting, yet alarming facts; stating that there are more people experiencing poverty now than there were 30 years ago. It is said that “nearly 200,000 more Marylanders are trying to get by on incomes below the Federal Poverty Level than in 1990 – a year that the U.S. economy entered a recession – and almost every county in the state has a higher poverty rate than it had in 1990”. Almost half of all Marylanders living in poverty lived in deep poverty, defined as having incomes at or below 50 percent of the Federal Poverty Level. While unemployment rates have continued to decline since the Great Recession, wages often aren’t high enough to support a family. The article also shares a disturbing fact that even with the new state minimum wage at $11 per hour as of January 2020, someone working full-time at minimum wage makes only 40 percent of the income needed to afford a two-bedroom apartment in Maryland.

Link to article: http://mapadvocacy.org/wp-content/uploads/2020/02/Maryland-Poverty-Profiles_2020-FINAL.pdf

Loading and Importing Data

setwd("~/Data 110 Folder")
MD_df <- read.csv("MD_economic.csv")
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.1.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.1.3
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.1.3
library(ggplot2)
library(psych)
## Warning: package 'psych' was built under R version 4.1.3
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(corrplot)
## corrplot 0.92 loaded
library(RColorBrewer)
library(dslabs)
## Warning: package 'dslabs' was built under R version 4.1.3
library(highcharter)
## Warning: package 'highcharter' was built under R version 4.1.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## 
## Attaching package: 'highcharter'
## The following object is masked from 'package:dslabs':
## 
##     stars

Data Exploration

##Head, Tail, and Dimension

Top of the data

head(MD_df)
##         Jurisdictions Total.Households Population.25.years.and.older
## 1     Allegany County            27759                         50489
## 2 Anne Arundel County           205395                        387306
## 3      Baltimore city           239791                        425235
## 4    Baltimore County           312859                        573263
## 5      Calvert County            31462                         61269
## 6     Caroline County            11996                         22216
##   Less.than.9th.Grade High.School.no.Diploma High.School.Diploma
## 1                1307                   4002               21070
## 2                9133                  21910               93676
## 3               20732                  46577              126395
## 4               18315                  32698              152622
## 5                1096                   2716               18833
## 6                1230                   2470                9079
##   Some.College.no.degree Associates.degree Bachelor.s.degree
## 1                  10154              4758              4888
## 2                  77911             29279             90536
## 3                  82107             20061             67779
## 4                 112480             40355            125363
## 5                  15552              4642             10564
## 6                   4072              1687              2182
##   Graduate.or.Professional
## 1                     4310
## 2                    64861
## 3                    61584
## 4                    91430
## 5                     7866
## 6                     1496
##   Employment.Status.of.the.Population.16.years.and.over
## 1                                                 61337
## 2                                                451557
## 3                                                502594
## 4                                                670033
## 5                                                 71843
## 6                                                 25875
##   Civilian.Labor.Force..16.years...over. Employed Unemployed Unemployment.Rate
## 1                                  31591    28738       2853               9.0
## 2                                 306519   290628      15891               5.2
## 3                                 308703   277954      30749              10.0
## 4                                 445373   420974      24399               5.5
## 5                                  49333    45756       3577               7.3
## 6                                  16761    15674       1087               6.5
##   Commute.Workers.16.yrs.and.over Percent.Drove.Alone Percent.Carpooled
## 1                           28108                82.5               9.7
## 2                          296978                80.1               7.5
## 3                          272953                60.0               9.1
## 4                          412831                79.2               8.7
## 5                           45262                81.7               8.4
## 6                           15387                83.7               8.6
##   Percent.Public.Transportation Percent.Walked Percent.Other
## 1                           0.5            4.4           1.2
## 2                           3.6            2.3           1.4
## 3                          18.2            6.6           2.3
## 4                           4.8            1.8           1.5
## 5                           3.0            0.7           0.9
## 6                           0.9            2.4           1.7
##   Percent.Worked.at.Home Median.Household.Income.... Families
## 1                    1.7                       42771    17126
## 2                    5.1                       94502   142696
## 3                    3.8                       46641   123385
## 4                    4.0                       71810   204288
## 5                    5.3                      100350    23759
## 6                    2.6                       52469     8670
##   Percent.Families.in.Poverty Percent.Civilian.Population.w..Health.Ins..Cov.
## 1                        10.6                                            94.1
## 2                         3.9                                            94.6
## 3                        17.2                                            92.0
## 4                         6.0                                            93.3
## 5                         3.3                                            94.7
## 6                        12.1                                            91.7
##   Total.Housing.Units Percent.Occupied Percent.Vacant Total.Population
## 1               33211             84.0           16.0            72591
## 2              219319             93.1            6.9           564600
## 3              296923             81.3           18.7           619796
## 4              337031             93.0            7.0           828637
## 5               34613             90.4            9.6            90824
## 6               13525             88.4           11.6            32785
##   Voting.Age.Population   Male Female White.Alone Black.Alone Asian.Alone
## 1                 58846  37892  34699       64164        5899         594
## 2                418118 279581 285019      417111       91567       20818
## 3                462592 291377 328419      187725      389222       15855
## 4                607614 392930 435707      514340      231516       49045
## 5                 68233  45184  45640       73885       10797        1504
## 6                 24049  15971  16814       26338        4376         190
##   American.Indian.Alaska.Native.Alone Native.Hawaiian.Pacific.Islander.Alone
## 1                                 120                                     24
## 2                                1025                                    408
## 3                                1886                                    309
## 4                                2320                                    398
## 5                                 150                                     34
## 6                                  96                                     18
##   Some.Other.Race.Alone Two.or.More.Races Hispanic.or.Latino..of.any.race.
## 1                   210              1580                             1257
## 2                 13095             20576                            41275
## 3                 10412             14387                            30729
## 4                  8728             22290                            42438
## 5                   541              3913                             3276
## 6                   721              1046                             2247
##   Life.expectancy Geography
## 1            76.4         R
## 2            79.6       S/U
## 3            73.4       S/U
## 4            78.7       S/U
## 5            79.7         R
## 6            76.1         R

Bottom of the data

tail(MD_df)
##        Jurisdictions Total.Households Population.25.years.and.older
## 19 St. Mary's County            39276                         73031
## 20   Somerset County             8362                         17070
## 21     Talbot County            16498                         28077
## 22 Washington County            55999                        103916
## 23   Wicomico County            37415                         63959
## 24  Worcester County            21190                         38930
##    Less.than.9th.Grade High.School.no.Diploma High.School.Diploma
## 19                2404                   5125               21776
## 20                 872                   2228                7180
## 21                 996                   1956                7210
## 22                3313                  10233               38185
## 23                2331                   4987               21301
## 24                1043                   2819               12456
##    Some.College.no.degree Associates.degree Bachelor.s.degree
## 19                  15543              5951             13009
## 20                   3441               887              1617
## 21                   5433              1989              5448
## 22                  21830              8061             13451
## 23                  13111              4458             10373
## 24                   8238              2675              7439
##    Graduate.or.Professional
## 19                     9223
## 20                      845
## 21                     5045
## 22                     8843
## 23                     7398
## 24                     4260
##    Employment.Status.of.the.Population.16.years.and.over
## 19                                                 86676
## 20                                                 21979
## 21                                                 31332
## 22                                                120112
## 23                                                 82053
## 24                                                 43529
##    Civilian.Labor.Force..16.years...over. Employed Unemployed Unemployment.Rate
## 19                                  56495    54121       2374               4.2
## 20                                   9564     8593        971              10.2
## 21                                  18689    17863        826               4.4
## 22                                  72273    67375       4898               6.8
## 23                                  53854    49785       4069               7.6
## 24                                  25756    23915       1841               7.1
##    Commute.Workers.16.yrs.and.over Percent.Drove.Alone Percent.Carpooled
## 19                           55125                82.6               9.4
## 20                            8335                81.6               6.2
## 21                           17611                78.1               9.7
## 22                           66237                80.8               9.8
## 23                           48673                83.6               8.6
## 24                           23449                80.5               7.3
##    Percent.Public.Transportation Percent.Walked Percent.Other
## 19                           2.2            2.4           1.0
## 20                           0.8            5.6           1.4
## 21                           1.3            3.3           1.2
## 22                           1.4            2.1           1.1
## 23                           0.6            2.4           1.5
## 24                           2.2            2.6           1.9
##    Percent.Worked.at.Home Median.Household.Income.... Families
## 19                    2.5                       86508    27646
## 20                    4.5                       39239     5258
## 21                    6.3                       65595    10959
## 22                    4.8                       58260    37413
## 23                    3.3                       54493    24425
## 24                    5.5                       59458    13493
##    Percent.Families.in.Poverty Percent.Civilian.Population.w..Health.Ins..Cov.
## 19                         5.8                                            94.2
## 20                        18.0                                            91.3
## 21                         6.7                                            93.8
## 22                         9.7                                            93.0
## 23                        10.2                                            91.7
## 24                         7.8                                            92.6
##    Total.Housing.Units Percent.Occupied Percent.Vacant Total.Population
## 19               43276             89.6           10.4           110979
## 20               11244             73.8           26.2            25801
## 21               20110             81.9           18.1            37461
## 22               61199             91.4            8.6           149546
## 23               41911             88.8           11.2           102014
## 24               55822             37.8           62.2            51559
##    Voting.Age.Population  Male Female White.Alone Black.Alone Asian.Alone
## 19                 81547 55420  55559       87485       15922        3079
## 20                 20719 13821  11980       13703       10845         266
## 21                 29319 17595  19866       31137        4342         534
## 22                113424 75958  73588      124033       15675        2636
## 23                 75053 48622  53392       69062       25818        3336
## 24                 41458 25205  26354       42634        6977         710
##    American.Indian.Alaska.Native.Alone Native.Hawaiian.Pacific.Islander.Alone
## 19                                 220                                     28
## 20                                  91                                     13
## 21                                  32                                     31
## 22                                 330                                     62
## 23                                 210                                     74
## 24                                 102                                     55
##    Some.Other.Race.Alone Two.or.More.Races Hispanic.or.Latino..of.any.race.
## 19                   684              3561                             5377
## 20                   414               469                              906
## 21                   378              1007                             2427
## 22                  1375              5435                             6698
## 23                   983              2531                             5145
## 24                   149               932                             1741
##    Life.expectancy Geography
## 19            79.5         R
## 20            76.3         R
## 21            81.1         R
## 22            77.5         R
## 23            76.9         R
## 24            78.5         R

Dimensions of the data

dim(MD_df)
## [1] 24 43

View, Structure of Data, and Check for NA’s

View data

view(MD_df)

Look at the structure of the data

str(MD_df)
## 'data.frame':    24 obs. of  43 variables:
##  $ Jurisdictions                                        : chr  "Allegany County" "Anne Arundel County" "Baltimore city" "Baltimore County" ...
##  $ Total.Households                                     : int  27759 205395 239791 312859 31462 11996 60432 37076 54988 12940 ...
##  $ Population.25.years.and.older                        : int  50489 387306 425235 573263 61269 22216 115213 69969 103318 23131 ...
##  $ Less.than.9th.Grade                                  : int  1307 9133 20732 18315 1096 1230 2363 2187 2346 926 ...
##  $ High.School.no.Diploma                               : int  4002 21910 46577 32698 2716 2470 6658 5674 5189 2466 ...
##  $ High.School.Diploma                                  : int  21070 93676 126395 152622 18833 9079 34633 25824 33029 8856 ...
##  $ Some.College.no.degree                               : int  10154 77911 82107 112480 15552 4072 22755 15106 24837 4753 ...
##  $ Associates.degree                                    : int  4758 29279 20061 40355 4642 1687 8943 5084 8473 1476 ...
##  $ Bachelor.s.degree                                    : int  4888 90536 67779 125363 10564 2182 25023 9632 17540 2926 ...
##  $ Graduate.or.Professional                             : int  4310 64861 61584 91430 7866 1496 14838 6462 11904 1728 ...
##  $ Employment.Status.of.the.Population.16.years.and.over: int  61337 451557 502594 670033 71843 25875 135084 81142 122589 26313 ...
##  $ Civilian.Labor.Force..16.years...over.               : int  31591 306519 308703 445373 49333 16761 91970 53741 82373 16613 ...
##  $ Employed                                             : int  28738 290628 277954 420974 45756 15674 88335 50620 78635 15240 ...
##  $ Unemployed                                           : int  2853 15891 30749 24399 3577 1087 3635 3121 3738 1373 ...
##  $ Unemployment.Rate                                    : num  9 5.2 10 5.5 7.3 6.5 4 5.8 4.5 8.3 ...
##  $ Commute.Workers.16.yrs.and.over                      : int  28108 296978 272953 412831 45262 15387 86849 49958 79070 14847 ...
##  $ Percent.Drove.Alone                                  : num  82.5 80.1 60 79.2 81.7 83.7 85.5 82.9 81.4 78.4 ...
##  $ Percent.Carpooled                                    : num  9.7 7.5 9.1 8.7 8.4 8.6 6.9 8.4 7.3 14.9 ...
##  $ Percent.Public.Transportation                        : num  0.5 3.6 18.2 4.8 3 0.9 0.8 1.2 5.8 0.8 ...
##  $ Percent.Walked                                       : num  4.4 2.3 6.6 1.8 0.7 2.4 1.4 1.6 1.1 2.1 ...
##  $ Percent.Other                                        : num  1.2 1.4 2.3 1.5 0.9 1.7 0.7 1.4 0.6 1.3 ...
##  $ Percent.Worked.at.Home                               : num  1.7 5.1 3.8 4 5.3 2.6 4.7 4.6 3.7 2.6 ...
##  $ Median.Household.Income....                          : int  42771 94502 46641 71810 100350 52469 90510 70516 93973 50532 ...
##  $ Families                                             : int  17126 142696 123385 204288 23759 8670 45399 26121 40303 8539 ...
##  $ Percent.Families.in.Poverty                          : num  10.6 3.9 17.2 6 3.3 12.1 3.4 6.5 5.2 11.9 ...
##  $ Percent.Civilian.Population.w..Health.Ins..Cov.      : num  94.1 94.6 92 93.3 94.7 91.7 96.3 94.5 95.9 94.4 ...
##  $ Total.Housing.Units                                  : int  33211 219319 296923 337031 34613 13525 63123 42269 58014 16700 ...
##  $ Percent.Occupied                                     : num  84 93.1 81.3 93 90.4 88.4 95.6 87.3 93.4 77.3 ...
##  $ Percent.Vacant                                       : num  16 6.9 18.7 7 9.6 11.6 4.4 12.7 6.6 22.7 ...
##  $ Total.Population                                     : int  72591 564600 619796 828637 90824 32785 167319 102416 156021 32386 ...
##  $ Voting.Age.Population                                : int  58846 418118 462592 607614 68233 24049 127833 77244 114231 24851 ...
##  $ Male                                                 : int  37892 279581 291377 392930 45184 15971 82784 50878 75368 15476 ...
##  $ Female                                               : int  34699 285019 328419 435707 45640 16814 84535 51538 80653 16910 ...
##  $ White.Alone                                          : int  64164 417111 187725 514340 73885 26338 154304 90422 72951 21345 ...
##  $ Black.Alone                                          : int  5899 91567 389222 231516 10797 4376 5585 6972 67351 8901 ...
##  $ Asian.Alone                                          : int  594 20818 15855 49045 1504 190 2762 1505 4916 325 ...
##  $ American.Indian.Alaska.Native.Alone                  : int  120 1025 1886 2320 150 96 348 280 894 27 ...
##  $ Native.Hawaiian.Pacific.Islander.Alone               : int  24 408 309 398 34 18 75 35 163 0 ...
##  $ Some.Other.Race.Alone                                : int  210 13095 10412 8728 541 721 1001 983 1151 554 ...
##  $ Two.or.More.Races                                    : int  1580 20576 14387 22290 3913 1046 3244 2219 8595 1234 ...
##  $ Hispanic.or.Latino..of.any.race.                     : int  1257 41275 30729 42438 3276 2247 5368 4231 8358 1615 ...
##  $ Life.expectancy                                      : num  76.4 79.6 73.4 78.7 79.7 76.1 79.1 76.8 79.2 76.8 ...
##  $ Geography                                            : chr  "R" "S/U" "S/U" "S/U" ...

View columns and variables in the dataset

unique(MD_df)
##             Jurisdictions Total.Households Population.25.years.and.older
## 1         Allegany County            27759                         50489
## 2     Anne Arundel County           205395                        387306
## 3          Baltimore city           239791                        425235
## 4        Baltimore County           312859                        573263
## 5          Calvert County            31462                         61269
## 6         Caroline County            11996                         22216
## 7          Carroll County            60432                        115213
## 8            Cecil County            37076                         69969
## 9          Charles County            54988                        103318
## 10      Dorchester County            12940                         23131
## 11       Frederick County            90022                        166221
## 12         Garrett County            11865                         21378
## 13         Harford County            92895                        172031
## 14          Howard County           111337                        210338
## 15            Kent County             7605                         13932
## 16      Montgomery County           369242                        713454
## 17 Prince George's County           306694                        607229
## 18    Queen Anne's County            17995                         34452
## 19      St. Mary's County            39276                         73031
## 20        Somerset County             8362                         17070
## 21          Talbot County            16498                         28077
## 22      Washington County            55999                        103916
## 23        Wicomico County            37415                         63959
## 24       Worcester County            21190                         38930
##    Less.than.9th.Grade High.School.no.Diploma High.School.Diploma
## 1                 1307                   4002               21070
## 2                 9133                  21910               93676
## 3                20732                  46577              126395
## 4                18315                  32698              152622
## 5                 1096                   2716               18833
## 6                 1230                   2470                9079
## 7                 2363                   6658               34633
## 8                 2187                   5674               25824
## 9                 2346                   5189               33029
## 10                 926                   2466                8856
## 11                4713                   7623               40825
## 12                 730                   1602                9311
## 13                3782                   8507               46622
## 14                4546                   5386               29437
## 15                 622                   1142                4138
## 16               36934                  26790               98014
## 17               43844                  40417              156973
## 18                 750                   2026               10163
## 19                2404                   5125               21776
## 20                 872                   2228                7180
## 21                 996                   1956                7210
## 22                3313                  10233               38185
## 23                2331                   4987               21301
## 24                1043                   2819               12456
##    Some.College.no.degree Associates.degree Bachelor.s.degree
## 1                   10154              4758              4888
## 2                   77911             29279             90536
## 3                   82107             20061             67779
## 4                  112480             40355            125363
## 5                   15552              4642             10564
## 6                    4072              1687              2182
## 7                   22755              8943             25023
## 8                   15106              5084              9632
## 9                   24837              8473             17540
## 10                   4753              1476              2926
## 11                  32534             13284             39146
## 12                   3700              1843              2244
## 13                  38458             14187             36150
## 14                  30345             11851             63325
## 15                   2615               784              2644
## 16                  98365             37163            190725
## 17                 136486             36033            110917
## 18                   6464              2892              7377
## 19                  15543              5951             13009
## 20                   3441               887              1617
## 21                   5433              1989              5448
## 22                  21830              8061             13451
## 23                  13111              4458             10373
## 24                   8238              2675              7439
##    Graduate.or.Professional
## 1                      4310
## 2                     64861
## 3                     61584
## 4                     91430
## 5                      7866
## 6                      1496
## 7                     14838
## 8                      6462
## 9                     11904
## 10                     1728
## 11                    28096
## 12                     1948
## 13                    24325
## 14                    65448
## 15                     1987
## 16                   225463
## 17                    82559
## 18                     4780
## 19                     9223
## 20                      845
## 21                     5045
## 22                     8843
## 23                     7398
## 24                     4260
##    Employment.Status.of.the.Population.16.years.and.over
## 1                                                  61337
## 2                                                 451557
## 3                                                 502594
## 4                                                 670033
## 5                                                  71843
## 6                                                  25875
## 7                                                 135084
## 8                                                  81142
## 9                                                 122589
## 10                                                 26313
## 11                                                194819
## 12                                                 24679
## 13                                                200369
## 14                                                244975
## 15                                                 16794
## 16                                                822213
## 17                                                723402
## 18                                                 39552
## 19                                                 86676
## 20                                                 21979
## 21                                                 31332
## 22                                                120112
## 23                                                 82053
## 24                                                 43529
##    Civilian.Labor.Force..16.years...over. Employed Unemployed Unemployment.Rate
## 1                                   31591    28738       2853               9.0
## 2                                  306519   290628      15891               5.2
## 3                                  308703   277954      30749              10.0
## 4                                  445373   420974      24399               5.5
## 5                                   49333    45756       3577               7.3
## 6                                   16761    15674       1087               6.5
## 7                                   91970    88335       3635               4.0
## 8                                   53741    50620       3121               5.8
## 9                                   82373    78635       3738               4.5
## 10                                  16613    15240       1373               8.3
## 11                                 137361   130387       6974               5.1
## 12                                  14638    13937        701               4.8
## 13                                 136253   129108       7145               5.2
## 14                                 174816   167493       7323               4.2
## 15                                   9588     9131        457               4.8
## 16                                 585924   554085      31839               5.4
## 17                                 514437   476889      37548               7.3
## 18                                  26542    25556        986               3.7
## 19                                  56495    54121       2374               4.2
## 20                                   9564     8593        971              10.2
## 21                                  18689    17863        826               4.4
## 22                                  72273    67375       4898               6.8
## 23                                  53854    49785       4069               7.6
## 24                                  25756    23915       1841               7.1
##    Commute.Workers.16.yrs.and.over Percent.Drove.Alone Percent.Carpooled
## 1                            28108                82.5               9.7
## 2                           296978                80.1               7.5
## 3                           272953                60.0               9.1
## 4                           412831                79.2               8.7
## 5                            45262                81.7               8.4
## 6                            15387                83.7               8.6
## 7                            86849                85.5               6.9
## 8                            49958                82.9               8.4
## 9                            79070                81.4               7.3
## 10                           14847                78.4              14.9
## 11                          128717                78.1               9.6
## 12                           13738                79.5               9.9
## 13                          128501                83.4               8.6
## 14                          166207                81.2               7.2
## 15                            8927                67.8               7.9
## 16                          545924                65.3               9.8
## 17                          469632                66.5              11.3
## 18                           24973                77.7               9.8
## 19                           55125                82.6               9.4
## 20                            8335                81.6               6.2
## 21                           17611                78.1               9.7
## 22                           66237                80.8               9.8
## 23                           48673                83.6               8.6
## 24                           23449                80.5               7.3
##    Percent.Public.Transportation Percent.Walked Percent.Other
## 1                            0.5            4.4           1.2
## 2                            3.6            2.3           1.4
## 3                           18.2            6.6           2.3
## 4                            4.8            1.8           1.5
## 5                            3.0            0.7           0.9
## 6                            0.9            2.4           1.7
## 7                            0.8            1.4           0.7
## 8                            1.2            1.6           1.4
## 9                            5.8            1.1           0.6
## 10                           0.8            2.1           1.3
## 11                           2.9            2.1           1.2
## 12                           0.6            3.7           0.6
## 13                           1.7            1.2           0.8
## 14                           3.8            1.0           1.1
## 15                           1.8           10.0           1.6
## 16                          15.5            2.1           1.4
## 17                          16.0            2.0           1.4
## 18                           2.2            1.6           1.2
## 19                           2.2            2.4           1.0
## 20                           0.8            5.6           1.4
## 21                           1.3            3.3           1.2
## 22                           1.4            2.1           1.1
## 23                           0.6            2.4           1.5
## 24                           2.2            2.6           1.9
##    Percent.Worked.at.Home Median.Household.Income.... Families
## 1                     1.7                       42771    17126
## 2                     5.1                       94502   142696
## 3                     3.8                       46641   123385
## 4                     4.0                       71810   204288
## 5                     5.3                      100350    23759
## 6                     2.6                       52469     8670
## 7                     4.7                       90510    45399
## 8                     4.6                       70516    26121
## 9                     3.7                       93973    40303
## 10                    2.6                       50532     8539
## 11                    6.1                       88502    65073
## 12                    5.7                       48174     8206
## 13                    4.4                       83445    67167
## 14                    5.7                      115576    82294
## 15                   11.0                       56638     4644
## 16                    5.9                      103178   257855
## 17                    2.8                       78607   202472
## 18                    7.6                       89241    12995
## 19                    2.5                       86508    27646
## 20                    4.5                       39239     5258
## 21                    6.3                       65595    10959
## 22                    4.8                       58260    37413
## 23                    3.3                       54493    24425
## 24                    5.5                       59458    13493
##    Percent.Families.in.Poverty Percent.Civilian.Population.w..Health.Ins..Cov.
## 1                         10.6                                            94.1
## 2                          3.9                                            94.6
## 3                         17.2                                            92.0
## 4                          6.0                                            93.3
## 5                          3.3                                            94.7
## 6                         12.1                                            91.7
## 7                          3.4                                            96.3
## 8                          6.5                                            94.5
## 9                          5.2                                            95.9
## 10                        11.9                                            94.4
## 11                         4.5                                            94.7
## 12                         7.6                                            92.5
## 13                         5.4                                            96.1
## 14                         3.6                                            95.2
## 15                         7.8                                            93.7
## 16                         4.8                                            91.6
## 17                         6.5                                            88.1
## 18                         3.8                                            95.0
## 19                         5.8                                            94.2
## 20                        18.0                                            91.3
## 21                         6.7                                            93.8
## 22                         9.7                                            93.0
## 23                        10.2                                            91.7
## 24                         7.8                                            92.6
##    Total.Housing.Units Percent.Occupied Percent.Vacant Total.Population
## 1                33211             84.0           16.0            72591
## 2               219319             93.1            6.9           564600
## 3               296923             81.3           18.7           619796
## 4               337031             93.0            7.0           828637
## 5                34613             90.4            9.6            90824
## 6                13525             88.4           11.6            32785
## 7                63123             95.6            4.4           167319
## 8                42269             87.3           12.7           102416
## 9                58014             93.4            6.6           156021
## 10               16700             77.3           22.7            32386
## 11               93645             95.1            4.9           246105
## 12               19080             61.8           38.2            29516
## 13               98277             94.0            6.0           250132
## 14              115003             95.6            4.4           312495
## 15               10667             71.3           28.7            19666
## 16              385485             95.5            4.5          1039198
## 17              330708             92.8            7.2           905161
## 18               20754             86.2           13.8            49071
## 19               43276             89.6           10.4           110979
## 20               11244             73.8           26.2            25801
## 21               20110             81.9           18.1            37461
## 22               61199             91.4            8.6           149546
## 23               41911             88.8           11.2           102014
## 24               55822             37.8           62.2            51559
##    Voting.Age.Population   Male Female White.Alone Black.Alone Asian.Alone
## 1                  58846  37892  34699       64164        5899         594
## 2                 418118 279581 285019      417111       91567       20818
## 3                 462592 291377 328419      187725      389222       15855
## 4                 607614 392930 435707      514340      231516       49045
## 5                  68233  45184  45640       73885       10797        1504
## 6                  24049  15971  16814       26338        4376         190
## 7                 127833  82784  84535      154304        5585        2762
## 8                  77244  50878  51538       90422        6972        1505
## 9                 114231  75368  80653       72951       67351        4916
## 10                 24851  15476  16910       21345        8901         325
## 11                176511 121305 124800      199955       22103       11186
## 12                 23763  14618  14898       28689         170         111
## 13                189002 122344 127788      198611       33702        6564
## 14                212310 152843 159652      183406       57755       54328
## 15                 15837   9426  10240       16175        2914         218
## 16                653497 501571 537627      563929      187943      153504
## 17                595152 435878 469283      170009      572465       38811
## 18                 37499  24230  24841       43799        3439         268
## 19                 81547  55420  55559       87485       15922        3079
## 20                 20719  13821  11980       13703       10845         266
## 21                 29319  17595  19866       31137        4342         534
## 22                113424  75958  73588      124033       15675        2636
## 23                 75053  48622  53392       69062       25818        3336
## 24                 41458  25205  26354       42634        6977         710
##    American.Indian.Alaska.Native.Alone Native.Hawaiian.Pacific.Islander.Alone
## 1                                  120                                     24
## 2                                 1025                                    408
## 3                                 1886                                    309
## 4                                 2320                                    398
## 5                                  150                                     34
## 6                                   96                                     18
## 7                                  348                                     75
## 8                                  280                                     35
## 9                                  894                                    163
## 10                                  27                                      0
## 11                                 618                                    174
## 12                                  62                                      0
## 13                                 444                                     11
## 14                                 592                                     41
## 15                                  39                                      0
## 16                                3091                                    477
## 17                                3266                                    333
## 18                                  38                                     67
## 19                                 220                                     28
## 20                                  91                                     13
## 21                                  32                                     31
## 22                                 330                                     62
## 23                                 210                                     74
## 24                                 102                                     55
##    Some.Other.Race.Alone Two.or.More.Races Hispanic.or.Latino..of.any.race.
## 1                    210              1580                             1257
## 2                  13095             20576                            41275
## 3                  10412             14387                            30729
## 4                   8728             22290                            42438
## 5                    541              3913                             3276
## 6                    721              1046                             2247
## 7                   1001              3244                             5368
## 8                    983              2219                             4231
## 9                   1151              8595                             8358
## 10                   554              1234                             1615
## 11                  3917              8152                            21623
## 12                    16               468                              316
## 13                  3267              7533                            10608
## 14                  3727             12646                            20343
## 15                    29               291                              851
## 16                 88027             42227                           197242
## 17                 96031             24246                           157427
## 18                   441              1019                             1805
## 19                   684              3561                             5377
## 20                   414               469                              906
## 21                   378              1007                             2427
## 22                  1375              5435                             6698
## 23                   983              2531                             5145
## 24                   149               932                             1741
##    Life.expectancy Geography
## 1             76.4         R
## 2             79.6       S/U
## 3             73.4       S/U
## 4             78.7       S/U
## 5             79.7         R
## 6             76.1         R
## 7             79.1         R
## 8             76.8         R
## 9             79.2         R
## 10            76.8         R
## 11            80.2         R
## 12            78.9         R
## 13            79.4         R
## 14            83.3         R
## 15            79.6         R
## 16            84.9       S/U
## 17            79.6       S/U
## 18            79.4         R
## 19            79.5         R
## 20            76.3         R
## 21            81.1         R
## 22            77.5         R
## 23            76.9         R
## 24            78.5         R

Interpretation of the data:

Montgomery County is the most populous county with Prince George’s County coming in second. Another trend that is very apparent is that there is an even ratio between males and females in every county. However, the ratio of the black and white populations in each county are the greatest compared to other races and unevenly distributed. American Indian/Alaska Native and Native Hawaiian/Pacific Islander have the lowest populations in each county. Anne Arundel County, Baltimore County, Baltimore City, Montgomery County, and Prince George’s County are the only suburban/urban places in Maryland.

From the data above, some questions I would like to explore is

###1.Life expectancy: ###a. Does characteristics of poverty have an impact on life expectancy? ###2. Geography ###a. Does geography have any effect on socioeconomic status? ###3. County ###a. Does where you live have an effect on the population with higher education?

Loading the Janitor package to

library(janitor)
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test

Use library Janitor to clean up and format the column names

Maryland_df <- MD_df%>%
janitor::clean_names()

A look at life expectancy amongst counties in MD

Maryland_df$life_expectancy
##  [1] 76.4 79.6 73.4 78.7 79.7 76.1 79.1 76.8 79.2 76.8 80.2 78.9 79.4 83.3 79.6
## [16] 84.9 79.6 79.4 79.5 76.3 81.1 77.5 76.9 78.5

Setting up information for the highcharter graph

library("highcharter")
library("magrittr")
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
hc <- highchart() %>% 
  hc_title(text = "Life Expectancy Amongst Counties") %>% 
  hc_chart(type = "column") %>% 
  hc_xAxis(categories = c("Allegany County",        "Anne Arundel County" ,   "Baltimore city" , "Baltimore County"   ,    "Calvert County"    ,     "Caroline County"  ,     
 "Carroll County"   ,      "Cecil County"      ,     "Charles County"  ,      
 "Dorchester County"   ,   "Frederick County"    ,   "Garrett County"  ,      
 "Harford County"       ,  "Howard County"  ,        "Kent County"    ,       
 "Montgomery County"     , "Prince George's County", "Queen Anne's County"  , 
 "St. Mary's County"      ,"Somerset County"  ,      "Talbot County"  ,       
 "Washington County"  ,    "Wicomico County"   ,     "Worcester County"   )) %>% 
  hc_add_series(data = c(76.4, 79.6, 73.4, 78.7, 79.7, 76.1, 79.1, 76.8 ,79.2, 76.8, 80.2, 78.9, 79.4, 83.3, 79.6, 84.9 ,79.6, 79.4, 79.5, 76.3, 81.1, 77.5, 76.9 ,78.5)) %>% hc_yAxis(min = 60)%>%
                    hc_title(
                            text=" Lif Expectancy of Every County In Maryland")%>%
                    hc_xAxis(
                            title = list(text="County")) %>%
                    hc_yAxis(
                            title = list(text="Life Expectancy"))

A look at life expectancy in regard to levels (low, medium, high)

hc1 <- hc %>% 
  hc_tooltip(crosshairs = TRUE, shared = TRUE) %>% 
  hc_yAxis(minorGridLineWidth = 0, gridLineWidth = 0,
           plotBands = list(
             list(from = 70, to = 75, color = "rgba(68, 170, 213, 0.1)",
                  label = list(text = "Low")),
             list(from = 75.1, to = 80, color = "rgba(0, 0, 0, 0.1)",
                  label = list(text = "Medium")),
             list(from = 80.1, to = 85, color = "rgba(68, 170, 213, 0.1)",
                  label = list(text = "High"))
             ))%>%
                    hc_title(
                            text=" Lif Expectancy of Every County In Maryland")%>%
                    hc_xAxis(
                            title = list(text="County")) %>%
                    hc_yAxis(
                            title = list(text="Life Expectancy"))

hc1

Based on the bar graph above and accordding to the scale, Montgomery county has the highest life expectancy, with Howard county in a close second. The county with the lowest life expectancy is Baltimore City, which is the only city below an expectancy below 75 years.This graph just shows a mild look at the counties life expectancy abd below, I will take a deeper look at if income has any affect on how long people life in each area.

Cleaning the data

We first have to sort our data based on the value column in descending order:

data_new1 <- Maryland_df[order(Maryland_df$life_expectancy, decreasing = TRUE), ]

A look at the top 5 counties

Counties_5 <- subset(data_new1, select = c( "life_expectancy", "jurisdictions", "median_household_income","percent_civilian_population_w_health_ins_cov")) %>%
head(5)

A look at the last 5 counties

Counties_10 <-subset(data_new1, select = c("life_expectancy","jurisdictions", "median_household_income", "percent_civilian_population_w_health_ins_cov")) %>%
  tail(5)

Binding the two dataframes together

Counties_total <- rbind(Counties_10, Counties_5)

A look at the the top five and last 5 counties in regard to life expectancy and household income

ggplot(Counties_total, aes(x = median_household_income, y = life_expectancy, color=jurisdictions)) +
 xlab("Median Household Income") + 
 ylab("Life Expectancy") +
 theme_minimal(base_size = 14, base_family = "Georgia") + 
 geom_point(size = 3, alpha = 0.5) +
 geom_smooth(method=lm, se=FALSE, lty = 2, size = 0.3)+
  ggtitle("County Life Expectancy In relation to Income")+
  geom_smooth(method = lm, se = FALSE, color = "black", lty=2, size = 0.3)+
  xlim(30000 ,120000)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database

## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Based on the graph above, there is a correlation between income and life expectancy. When the income is very low, under $60,000, the life expectancy is under 77.5 years. When the income increases above $62,500, the life expectancy goes up to 85, which is almost a 10-year difference. The last five counties in regard to life expectancy are in the same general area, As income increases, the data is more spread out, however, there is a constant increase in age.

Loading and importing data

setwd("~/Data 110 Folder")
MD_lit <- read.csv("ExportedData1.csv")

Combining both dataframes

MD_lit1 = cbind(MD_df, MD_lit)

View new dataframe

view(MD_lit1)

We first have to sort our data based on the value column in inscending order:

data_new2 <- MD_lit1[order(MD_lit1$Upper.bound, decreasing = FALSE), ]

Look at the column names

colnames(data_new2)
##  [1] "Jurisdictions"                                        
##  [2] "Total.Households"                                     
##  [3] "Population.25.years.and.older"                        
##  [4] "Less.than.9th.Grade"                                  
##  [5] "High.School.no.Diploma"                               
##  [6] "High.School.Diploma"                                  
##  [7] "Some.College.no.degree"                               
##  [8] "Associates.degree"                                    
##  [9] "Bachelor.s.degree"                                    
## [10] "Graduate.or.Professional"                             
## [11] "Employment.Status.of.the.Population.16.years.and.over"
## [12] "Civilian.Labor.Force..16.years...over."               
## [13] "Employed"                                             
## [14] "Unemployed"                                           
## [15] "Unemployment.Rate"                                    
## [16] "Commute.Workers.16.yrs.and.over"                      
## [17] "Percent.Drove.Alone"                                  
## [18] "Percent.Carpooled"                                    
## [19] "Percent.Public.Transportation"                        
## [20] "Percent.Walked"                                       
## [21] "Percent.Other"                                        
## [22] "Percent.Worked.at.Home"                               
## [23] "Median.Household.Income...."                          
## [24] "Families"                                             
## [25] "Percent.Families.in.Poverty"                          
## [26] "Percent.Civilian.Population.w..Health.Ins..Cov."      
## [27] "Total.Housing.Units"                                  
## [28] "Percent.Occupied"                                     
## [29] "Percent.Vacant"                                       
## [30] "Total.Population"                                     
## [31] "Voting.Age.Population"                                
## [32] "Male"                                                 
## [33] "Female"                                               
## [34] "White.Alone"                                          
## [35] "Black.Alone"                                          
## [36] "Asian.Alone"                                          
## [37] "American.Indian.Alaska.Native.Alone"                  
## [38] "Native.Hawaiian.Pacific.Islander.Alone"               
## [39] "Some.Other.Race.Alone"                                
## [40] "Two.or.More.Races"                                    
## [41] "Hispanic.or.Latino..of.any.race."                     
## [42] "Life.expectancy"                                      
## [43] "Geography"                                            
## [44] "X"                                                    
## [45] "X.1"                                                  
## [46] "X.2"                                                  
## [47] "prose.literacy.skills2"                               
## [48] "Lower.bound"                                          
## [49] "Upper.bound"

A look at the top 5 counties

County_5 <- subset(data_new2, select = c( "Upper.bound", "Jurisdictions","Percent.Families.in.Poverty")) %>%
head(5)

A look at the last 5 counties

County_10 <-subset(data_new2, select = c("Upper.bound", "Jurisdictions", "Percent.Families.in.Poverty")) %>%
  tail(5)

Binding the two dataframes together

County_total <- rbind(County_10, County_5)

A look at the the top five and last 5 counties in regard to percent families in poverty and illiteracy rate

ggplot(County_total, aes(x =Percent.Families.in.Poverty , y = Upper.bound, color=Jurisdictions)) +
 xlab("Percent of Families in Poverty") + 
 ylab("Illiteracy Rate") +
 theme_minimal(base_size = 14, base_family = "Georgia") + 
 geom_point(size = 3, alpha = 0.5) +
 geom_smooth(method=lm, se=FALSE, lty = 2, size = 0.3)+
  ggtitle("County Poverty Rate In relation to Illiteracy")+
  geom_smooth(method = lm, se = FALSE, color = "black", lty=2, size = 0.3)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Based on the graph, it shows the relation between illiteracy and the percentage of families in poverty. There are two points on the graph that stick out and that is Prince George’s County and St. Mary’s County. The reason why those two points don’t support the trend is that after further research, I learned that Prince George’s County is regarded to be one of the nation’s wealthiest Black communities, which contributes to PG’s lower poverty rate. The reason for this is that the black and/or minority community in just about every county in MD makes up most of the families in poverty. Higher average income offsets the trend of the people in poverty in this specific area. However, there is not enough conclusive evidence that explains why St. Mary’s illiteracy rate is so high, but its poverty rate is relatively low.

Graph of the top 5 and lowest 5 counties in MD according to median household income

ggplot(data = Counties_total, aes(x = reorder (jurisdictions, median_household_income), y = median_household_income, fill = jurisdictions,)) +
  geom_bar(stat = "identity")+
theme(axis.text.x = element_text(angle = 90))+
   coord_flip() +
  geom_text(aes(label = median_household_income ), hjust = 1.2, colour = "white", fontface = "bold") +
ggtitle("Income of Top 5 and Lowest 5 counties in MD")+
xlab("County")+
ylab("Median Household Income")

The graph above shows the first and last 5 counties in regard to median household income. If we look at the data, with the exception of Talbot county, every city in the top five income bracket is lowest 7 in poverty rate. The lowest 5 cities in relation to income are top five in poverty rate.

##Link to tableau: https://public.tableau.com/app/profile/nate.jack7718/viz/MDSocio/MDSocioeconomics

###This tableau is a better visual Of poverty rate across the state of Maryland. As you can see, near the district, the poverty rate is the lowest. Then as we get to the outskirts of MD in the North-Western and South-Eastern parts, moving away from the district, poverty rates grow.