library(ISLR)
library(MASS)
library(class)
attach(Weekly)
attach(Boston)
attach(Auto)

Question 10.

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

pairs(Weekly[,1:8])

cor(Weekly[,1:8])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000
plot(Volume)

There looks to be a positive correlation between Year and Volume with Volume increases over the years.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

Directionfit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family="binomial")
summary(Directionfit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = "binomial", data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Lag2 is the only predictor that is statistically significant.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

Correctprob=predict(Directionfit,type="response")
Correctpred=rep("Down", length(Correctprob))
Correctpred[Correctprob>0.5]="Up"
table(Correctpred, Direction)
##            Direction
## Correctpred Down  Up
##        Down   54  48
##        Up    430 557

When the predictions are correct the percentage is 56.11% which is (54+557)/(54+557+48+430). Also when the market goes up its correct 92.07% (557/(557+48)) and then its incorrect 11.16% (54/(430+54)) most of the time.

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

Training=(Year<2009)
Weekly0910=Weekly[!Training, ]
Trainingfit=glm(Direction~Lag2,data=Weekly,family=binomial,subset=Training)
Correctprob=predict(Trainingfit,Weekly0910,type="response")
Correctpred=rep("Down",length(Correctprob))
Correctpred[Correctprob>0.5]="Up"
Direction0910=Direction[!Training]
table(Correctpred,Direction0910)
##            Direction0910
## Correctpred Down Up
##        Down    9  5
##        Up     34 56
mean(Correctpred==Direction0910)
## [1] 0.625

This shows that the correct predictions for the test data is 62.5%.

(e) Repeat (d) using LDA.

TrainingLDA=lda(Direction~Lag2,data=Weekly,subset=Training)
PredLDA=predict(TrainingLDA,Weekly0910)
table(PredLDA$class,Direction0910)
##       Direction0910
##        Down Up
##   Down    9  5
##   Up     34 56
mean(PredLDA$class==Direction0910)
## [1] 0.625

Using LDA shows that the correct predictions for the test data is also 62.5%.

(f) Repeat (d) using QDA.

TrainingQDA=qda(Direction~Lag2,data=Weekly,subset=Training)
PredQDA=predict(TrainingQDA,Weekly0910)$class
table(PredQDA,Direction0910)
##        Direction0910
## PredQDA Down Up
##    Down    0  0
##    Up     43 61
mean(PredQDA==Direction0910)
## [1] 0.5865385

Using QDA shows that the correct predictions for the test data is 58.65%.

(g) Repeat (d) using KNN with K = 1.

Training1=as.matrix(Lag2[Training])
Test1=as.matrix(Lag2[!Training])
Trainingdirect=Direction[Training]
set.seed(1)
PredKNN=knn(Training1,Test1,Trainingdirect,k=1)
table(PredKNN,Direction0910)
##        Direction0910
## PredKNN Down Up
##    Down   21 30
##    Up     22 31
mean(PredKNN==Direction0910)
## [1] 0.5

Using KNN shows that the correct preditions for the test data is 50%.

(h) Which of these methods appears to provide the best results on this data? Logistical regression and LDA have the best results with 62.5%.

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

# Logistic Regression with Lag2:Lag3
Directionfit2=glm(Direction~Lag2:Lag3,data=Weekly,family=binomial,subset=Training)
Prob2=predict(Directionfit2,Weekly0910,type="response")
Pred2=rep("Down",length(Prob2))
Pred2[Prob2>0.5]="Up"
Direction0910=Direction[!Training]
table(Pred2, Direction0910)
##      Direction0910
## Pred2 Down Up
##    Up   43 61
mean(Pred2==Direction0910)
## [1] 0.5865385
# LDA with Lag2 and Lag3
TrainingLDA2=lda(Direction~Lag2:Lag3,data=Weekly,subset=Training)
PredLDA2=predict(TrainingLDA2,Weekly0910)
mean(PredLDA2$class==Direction0910)
## [1] 0.5865385
# QDA with sqrt of Lag3
TrainQDA2=qda(Direction~Lag3+sqrt(abs(Lag3)),data=Weekly,subset=Training)
PredQDA2=predict(TrainQDA2,Weekly0910)
table(PredQDA2$class,Direction0910)
##       Direction0910
##        Down Up
##   Down    9  8
##   Up     34 53
mean(PredQDA2$class==Direction0910)
## [1] 0.5961538
#KNN where k=5
PredKNN2=knn(Training1,Test1,Trainingdirect,k=5)
table(PredKNN2,Direction0910)
##         Direction0910
## PredKNN2 Down Up
##     Down   15 20
##     Up     28 41
mean(PredKNN2==Direction0910)
## [1] 0.5384615
#KNN where k=50
PredKNN3=knn(Training1,Test1,Trainingdirect,k=50)
table(PredKNN3,Direction0910)
##         Direction0910
## PredKNN3 Down Up
##     Down   21 20
##     Up     22 41
mean(PredKNN3==Direction0910)
## [1] 0.5961538

Using all these different combinations the Logistic Regression and LDA still have the best test error rates at 62.5%.

Question 11.

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

mpg01=rep(0,length(mpg))
mpg01[mpg>median(mpg)]=1
Auto=data.frame(Auto,mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

cor(Auto[, -9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(Auto)

boxplot(cylinders~mpg01,data=Auto,main="Cylinders vs mpg01")

boxplot(displacement~mpg01,data=Auto,main="Displacement vs mpg01")

boxplot(horsepower~mpg01,data=Auto,main="Horsepower vs mpg01")

boxplot(weight~mpg01, data=Auto,main="Weight vs mpg01")

boxplot(acceleration~mpg01,data=Auto,main = "Acceleration vs mpg01")

boxplot(year~mpg01,data=Auto,main="Year vs mpg01")

Looking at the boxplots show that there is some associations between mpg01, cylinders, weight, displacement and horsepower.

(c) Split the data into a training set and a test set.

training=(year %% 2 == 0)
Autotraining=Auto[training, ]
Autotesting=Auto[!training, ]
mpg01test=mpg01[!training]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

trainingLDA=lda(mpg01~cylinders+weight+displacement+horsepower,data=Auto,subset=training)
trainingLDA
## Call:
## lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, 
##     subset = training)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4571429 0.5428571 
## 
## Group means:
##   cylinders   weight displacement horsepower
## 0  6.812500 3604.823     271.7396  133.14583
## 1  4.070175 2314.763     111.6623   77.92105
## 
## Coefficients of linear discriminants:
##                        LD1
## cylinders    -0.6741402638
## weight       -0.0011465750
## displacement  0.0004481325
## horsepower    0.0059035377
predLDA=predict(trainingLDA, Autotesting)
table(predLDA$class, mpg01test)
##    mpg01test
##      0  1
##   0 86  9
##   1 14 73
mean(predLDA$class != mpg01test)
## [1] 0.1263736

The test error rate of this model is 12.63%

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

trainingQDA=qda(mpg01~cylinders+weight+displacement+horsepower,data=Auto,subset=training)
trainingQDA
## Call:
## qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, 
##     subset = training)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4571429 0.5428571 
## 
## Group means:
##   cylinders   weight displacement horsepower
## 0  6.812500 3604.823     271.7396  133.14583
## 1  4.070175 2314.763     111.6623   77.92105
predQDA=predict(trainingQDA,Autotesting)
table(predQDA$class,mpg01test)
##    mpg01test
##      0  1
##   0 89 13
##   1 11 69
mean(predQDA$class != mpg01test)
## [1] 0.1318681

The test error rate of this model is 13.19%

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

trainingfit=glm(mpg01~cylinders+weight+displacement+horsepower,data=Auto,family=binomial,subset=training)
summary(trainingfit)
## 
## Call:
## glm(formula = mpg01 ~ cylinders + weight + displacement + horsepower, 
##     family = binomial, data = Auto, subset = training)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.48027  -0.03413   0.10583   0.29634   2.57584  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  17.658730   3.409012   5.180 2.22e-07 ***
## cylinders    -1.028032   0.653607  -1.573   0.1158    
## weight       -0.002922   0.001137  -2.569   0.0102 *  
## displacement  0.002462   0.015030   0.164   0.8699    
## horsepower   -0.050611   0.025209  -2.008   0.0447 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 289.58  on 209  degrees of freedom
## Residual deviance:  83.24  on 205  degrees of freedom
## AIC: 93.24
## 
## Number of Fisher Scoring iterations: 7
trainingprob=predict(trainingfit, Autotesting,type="response")
trainingpred=rep(0, length(trainingprob))
trainingpred[trainingprob>0.5]=1
table(trainingpred, mpg01test)
##             mpg01test
## trainingpred  0  1
##            0 89 11
##            1 11 71
mean(trainingpred != mpg01test)
## [1] 0.1208791

The test error rate of this model is 12.09%

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

training1=cbind(cylinders,weight,displacement,horsepower)[training, ]
testing1=cbind(cylinders, weight, displacement, horsepower)[!training, ]
trainingmpg01=mpg01[training]
set.seed(1)
predknn=knn(training1,testing1,trainingmpg01,k=1)
table(predknn, mpg01test)
##        mpg01test
## predknn  0  1
##       0 83 11
##       1 17 71
mean(predknn != mpg01test)
## [1] 0.1538462

The test error rate of this model is 15.38% with K = 1

predknn=knn(training1,testing1,trainingmpg01,k=10)
table(predknn, mpg01test)
##        mpg01test
## predknn  0  1
##       0 77  7
##       1 23 75
mean(predknn != mpg01test)
## [1] 0.1648352

The test error rate of this model is 16.48% with K = 10

predknn=knn(training1,testing1,trainingmpg01,k=100)
table(predknn, mpg01test)
##        mpg01test
## predknn  0  1
##       0 81  7
##       1 19 75
mean(predknn != mpg01test)
## [1] 0.1428571

The test error of this model is 14.29% with K = 100 and shows that a if K is 100 then it will perform the best.

Question 13.

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
crime13=rep(0,length(crim))
crime13[crim>median(crim)]=1
Boston=data.frame(Boston, crime13)
train13=1:(length(crim) /2)
test13=(length(crim) /2 + 1):length(crim)
Bostontraining=Boston[train13, ]
Bostontesting=Boston[test13, ]
crime13testing=crime13[test13]
Bostonfit=glm(crime13 ~ . - crime13 - crim,data=Boston,family=binomial,subset=train13)
#Logistic Regression
prob13=predict(Bostonfit,Bostontesting,type="response")
pred13=rep(0,length(prob13))
pred13[prob13>0.5]=1
table(pred13,crime13testing)
##       crime13testing
## pred13   0   1
##      0  68  24
##      1  22 139
mean(pred13 != crime13testing)
## [1] 0.1818182

This shows that we have a test error rate of 18.18% for logistic regression.

Bostonfit=glm(crime13 ~ . - crime13-crim-chas-nox,data=Boston,family=binomial,subset=train13)
#Logistic Regression
prob13=predict(Bostonfit, Bostontesting,type="response")
pred13=rep(0, length(prob13))
pred13[prob13>0.5]=1
mean(pred13 != crime13testing)
## [1] 0.1581028

This shows that we have a test error rate of 15.81% for logistic regression.

#LDA
BostonLDA=lda(crime13 ~ . - crime13-crim,data=Boston,subset=train13)
pred13LDA=predict(BostonLDA,Bostontesting)
table(pred13LDA$class, crime13testing)
##    crime13testing
##       0   1
##   0  80  24
##   1  10 139
mean(pred13LDA$class != crime13testing)
## [1] 0.1343874

This shows that we have a test error rate of 13.44% for LDA.

BostonLDA=lda(crime13 ~ . - crime13-crim-chas-nox,data=Boston,subset=train13)
pred13LDA=predict(BostonLDA,Bostontesting)
table(pred13LDA$class, crime13testing)
##    crime13testing
##       0   1
##   0  82  30
##   1   8 133
mean(pred13LDA$class != crime13testing)
## [1] 0.1501976

This shows that we have a test error rate of 15.02% for LDA.

#KNN = 1
KNNtrain=cbind(zn,indus,chas,nox,rm,age,dis,rad,tax,ptratio,black,lstat,medv)[train13, ]
KNNtest=cbind(zn,indus,chas,nox,rm,age,dis,rad,tax,ptratio,black,lstat,medv)[test13, ]
crime13train=crime13[train13]
set.seed(1)
KNNpred=knn(KNNtrain, KNNtest, crime13train, k=1)
table(KNNpred, crime13testing)
##        crime13testing
## KNNpred   0   1
##       0  85 111
##       1   5  52
mean(KNNpred != crime13testing)
## [1] 0.458498

This shows that we have a test error rate of 45.85% if KNN = 1.

#KNN = 10
KNNpred=knn(KNNtrain, KNNtest, crime13train, k=10)
table(KNNpred, crime13testing)
##        crime13testing
## KNNpred   0   1
##       0  83  23
##       1   7 140
mean(KNNpred != crime13testing)
## [1] 0.1185771

This shows that we have a test error rate of 11.86% if KNN = 10.

#KNN = 100
KNNpred=knn(KNNtrain, KNNtest, crime13train, k=100)
table(KNNpred, crime13testing)
##        crime13testing
## KNNpred   0   1
##       0  86 120
##       1   4  43
mean(KNNpred != crime13testing)
## [1] 0.4901186

This shows that we have a test error rate of 11.86% if KNN = 100.

Looking at these different models we can see that using the KNN method actually performed the best and would be a good fit to predict whether a given suburb has a crime rate above or below the median.