# Opciones de la moneda
moneda <- c("cara", "sello")
# Un lanzamiento al aire de la moneda
set.seed(1) # semilla que garantiza la replicabilidad
sample(x = moneda, size = 1)
## [1] "cara"
set.seed(1)
lanzamientos_10 <- replicate(n = 10, expr = sample(x = moneda, size = 1))
lanzamientos_10
## [1] "cara" "sello" "cara" "cara" "sello" "cara" "cara" "cara" "sello"
## [10] "sello"
prop.table(table(lanzamientos_10))[1]
## cara
## 0.6
resultados <- c()
set.seed(1)
for (i in 1:100) {
muestra <- replicate(n = i, expr = sample(x = moneda, size = 1))
resultados[i] = prop.table(table(muestra))[1]
}
resultados
## [1] 1.0000000 0.5000000 0.6666667 0.5000000 1.0000000 0.3333333 0.8571429
## [8] 0.5000000 0.2222222 0.4000000 0.2727273 0.4166667 0.5384615 0.5000000
## [15] 0.5333333 0.5625000 0.4705882 0.5555556 0.5789474 0.4500000 0.5238095
## [22] 0.4545455 0.6086957 0.2083333 0.7200000 0.3461538 0.5185185 0.6428571
## [29] 0.6551724 0.4000000 0.5806452 0.6562500 0.4545455 0.4705882 0.5428571
## [36] 0.3611111 0.4324324 0.5000000 0.5641026 0.6000000 0.3414634 0.5238095
## [43] 0.4186047 0.4545455 0.5555556 0.4347826 0.4893617 0.4791667 0.4693878
## [50] 0.5200000 0.4509804 0.4423077 0.5471698 0.4814815 0.5272727 0.6428571
## [57] 0.5789474 0.5344828 0.5423729 0.4833333 0.4098361 0.4516129 0.5873016
## [64] 0.4062500 0.4923077 0.4545455 0.4776119 0.4264706 0.5217391 0.5428571
## [71] 0.5211268 0.4722222 0.5068493 0.5540541 0.5600000 0.4210526 0.5194805
## [78] 0.4487179 0.5063291 0.4500000 0.4567901 0.5121951 0.4939759 0.5000000
## [85] 0.5058824 0.5930233 0.5402299 0.4772727 0.3820225 0.4888889 0.5494505
## [92] 0.4239130 0.5053763 0.4468085 0.4947368 0.4687500 0.3711340 0.4591837
## [99] 0.4040404 0.5400000
plot(resultados, type = "l")
abline(h = 0.5, col = "red")
library(tidyverse)
resultados %>%
enframe(name = "lanzamiento", value = "proporcion") %>%
ggplot(aes(x = lanzamiento, y = proporcion)) +
geom_line() +
geom_hline(yintercept = 0.5, color = "red")
resultados2 <- c()
set.seed(1)
for (i in 1:5000) {
muestra2 <- replicate(n = i, expr = sample(x = moneda, size = 1))
resultados2[i] = prop.table(table(muestra2))[1]
}
resultados2 %>%
enframe(name = "lanzamiento", value = "proporcion") %>%
ggplot(aes(x = lanzamiento, y = proporcion)) +
geom_line() +
geom_hline(yintercept = 0.5, color = "red")
dado <- c(1, 2, 3, 4, 5, 6)
resultados_dado <- c()
set.seed(1)
for (i in 1:5000) {
muestra_dado <- replicate(n = i, expr = sample(x = dado, size = 1))
resultados_dado[i] = prop.table(table(muestra_dado))[1]
}
resultados_dado %>%
enframe(name = "lanzamiento", value = "proporcion") %>%
ggplot(aes(x = lanzamiento, y = proporcion)) +
geom_line() +
geom_hline(yintercept = 1/6, color = "red")
n <- 4
r <- 2
factorial(n) / (factorial(r) * (factorial(n - r)))
## [1] 6
choose(n = n, k = r)
## [1] 6
library(gtools)
combinations(n = 4, r = 2, v = c("persona1", "persona2", "persona3", "persona4"))
## [,1] [,2]
## [1,] "persona1" "persona2"
## [2,] "persona1" "persona3"
## [3,] "persona1" "persona4"
## [4,] "persona2" "persona3"
## [5,] "persona2" "persona4"
## [6,] "persona3" "persona4"
choose(n = 4, k = 2) * factorial(2)
## [1] 12
permutations(n = 4, r = 2, v = c("persona1", "persona2", "persona3", "persona4"))
## [,1] [,2]
## [1,] "persona1" "persona2"
## [2,] "persona1" "persona3"
## [3,] "persona1" "persona4"
## [4,] "persona2" "persona1"
## [5,] "persona2" "persona3"
## [6,] "persona2" "persona4"
## [7,] "persona3" "persona1"
## [8,] "persona3" "persona2"
## [9,] "persona3" "persona4"
## [10,] "persona4" "persona1"
## [11,] "persona4" "persona2"
## [12,] "persona4" "persona3"
numerador <- choose(n = 7, k = 2)
numerador
## [1] 21
denominador <- 2 ^ 7
denominador
## [1] 128
numerador / denominador
## [1] 0.1640625
denominador <- choose(n = 15, k = 5)
denominador
## [1] 3003
toros_a <- choose(n = 6, k = 3)
toros_a
## [1] 20
toros_b <- choose(n = 9, k = 2)
toros_b
## [1] 36
(toros_a * toros_b) / denominador
## [1] 0.2397602
library(VennDiagram)
source("diagramas_venn.R")
diagramas_venn(
tipo = "doble",
A = 70,
B = 40,
AB = 30,
nombreA = "Público",
nombreB = "Particular",
colorA = "skyblue",
colorB = "firebrick2"
)
\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ = 0.7 + 0.4 - 0.3 \\ = 0.8\]
diagramas_venn(
tipo = "doble",
A = 5,
B = 7,
AB = 2,
nombreA = "Largo",
nombreB = "Diámetro",
colorA = "skyblue",
colorB = "firebrick2"
)
\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ =0.05 + 0.07 − 0.02 \\ = 0.10\]
\[P(A - B) = P(A) - P(A \cap B) \\ =0.05 − 0.02 \\ = 0.03\]
\[P(B - A) = P(B) - P(A \cap B) \\ =0.07 − 0.02 \\ = 0.05\]
\[P(A - B) + P(B - A) = 0.03 + 0.05 = 0.08\]
\[P(A \cup B)^c = 1 - P(A \cup B) \\ =1 - 0.10 \\ = 0.90\]
diagramas_venn(
tipo = "triple",
A = 25,
B = 20,
C = 30,
AB = 12,
AC = 10,
BC = 11,
ABC = 5,
nombreA = "Enfermedad A",
nombreB = "Enfermedad B",
nombreC = "Enfermedad C",
colorA = "skyblue",
colorB = "firebrick2",
colorC = "yellow2"
)