Los datos son tomados del libro Diseño y análisis de experimentos de Douglas Montgomery. Página 604.
\(x\): covariable.
\(y\): variable dependiente.
ma (máquina): tratamiento (variable categórica)
ma<-c(rep(1,5),rep(2,5),rep(3,5))
y<-c(36,41,39,42,49,40,48,39,45,44,35,37,42,34,32)
x<-c(20,25,24,25,32,22,28,22,30,28,21,23,26,21,15)
dato<-data.frame(ma,y,x);dato
## ma y x
## 1 1 36 20
## 2 1 41 25
## 3 1 39 24
## 4 1 42 25
## 5 1 49 32
## 6 2 40 22
## 7 2 48 28
## 8 2 39 22
## 9 2 45 30
## 10 2 44 28
## 11 3 35 21
## 12 3 37 23
## 13 3 42 26
## 14 3 34 21
## 15 3 32 15
maq<-factor(ma)
doi<-data.frame(x,y,maq)
leveneTest(y,maq)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.0617 0.9405
## 12
inde<-aov(x~ma)
summary(inde)
## Df Sum Sq Mean Sq F value Pr(>F)
## ma 1 40.0 40.00 2.345 0.15
## Residuals 13 221.7 17.06
Anova(inde,type="III")
## Anova Table (Type III tests)
##
## Response: x
## Sum Sq Df F value Pr(>F)
## (Intercept) 1696.04 1 99.4370 1.859e-07 ***
## ma 40.00 1 2.3452 0.1496
## Residuals 221.73 13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
homo<-aov(y~x*maq)
summary(homo)
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 305.13 305.13 108.765 2.52e-06 ***
## maq 2 13.28 6.64 2.368 0.149
## x:maq 2 2.74 1.37 0.488 0.629
## Residuals 9 25.25 2.81
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
scatterplot(y~x|maq,regLine=TRUE,smooth=FALSE)
anco<-ancova(y~x+maq,data=doi)
summary(anco)
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 305.13 305.13 119.933 2.96e-07 ***
## maq 2 13.28 6.64 2.611 0.118
## Residuals 11 27.99 2.54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anava<-aov(y~x+maq)
summary(anava)
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 305.13 305.13 119.933 2.96e-07 ***
## maq 2 13.28 6.64 2.611 0.118
## Residuals 11 27.99 2.54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
compa<-TukeyHSD(anava)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: x
## Warning in TukeyHSD.aov(anava): 'which' specified some non-factors which will be
## dropped
compa
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = y ~ x + maq)
##
## $maq
## diff lwr upr p adj
## 2-1 0.9362201 -1.788393 3.6608327 0.6346957
## 3-1 -1.0811004 -3.805713 1.6435123 0.5499734
## 3-2 -2.0173204 -4.741933 0.7072922 0.1582999
pre<-predict(anava);pre
## 1 2 3 4 5 6 7 8
## 36.43926 41.20920 40.25521 41.20920 47.88712 39.38405 45.10798 39.38405
## 9 10 11 12 13 14 15
## 47.01595 45.10798 35.80920 37.71718 40.57914 35.80920 30.08528
error<-resid(anava);error
## 1 2 3 4 5 6 7
## -0.4392638 -0.2092025 -1.2552147 0.7907975 1.1128834 0.6159509 2.8920245
## 8 9 10 11 12 13 14
## -0.3840491 -2.0159509 -1.1079755 -0.8092025 -0.7171779 1.4208589 -1.8092025
## 15
## 1.9147239
qqnorm(error)
qqline(error)
shapiro.test(error)
##
## Shapiro-Wilk normality test
##
## data: error
## W = 0.96159, p-value = 0.7201
plot(pre,error)
abline(h=0)
|—|
O.M.F.
|-|-|-|