data prep

import libraries and data sets

library(psych)
library(lme4)
## Loading required package: Matrix
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(lmSupport)
library(sjPlot)
## Registered S3 methods overwritten by 'parameters':
##   method                           from      
##   as.double.parameters_kurtosis    datawizard
##   as.double.parameters_skewness    datawizard
##   as.double.parameters_smoothness  datawizard
##   as.numeric.parameters_kurtosis   datawizard
##   as.numeric.parameters_skewness   datawizard
##   as.numeric.parameters_smoothness datawizard
##   print.parameters_distribution    datawizard
##   print.parameters_kurtosis        datawizard
##   print.parameters_skewness        datawizard
##   summary.parameters_kurtosis      datawizard
##   summary.parameters_skewness      datawizard
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.3     v purrr   0.3.4
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x ggplot2::%+%()   masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x tidyr::expand()  masks Matrix::expand()
## x dplyr::filter()  masks stats::filter()
## x dplyr::lag()     masks stats::lag()
## x tidyr::pack()    masks Matrix::pack()
## x tidyr::unpack()  masks Matrix::unpack()
library(irr)
## Loading required package: lpSolve
library(optimx)
library(parallel)
library(minqa)
library(dfoptim)
library(ggcorrplot)

#import wave 1 survey data
d1.usa <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Cleaned1.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import wave 2 survey data
d2.usa <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Wave2_Cleaned.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import wave 3 survey data
d3.usa <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/wave3_raw.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import LIWC csv USA
liwc <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_w1w2_Dec_2021.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

LIWC set up

wave 1

#move over measures of interest
w1 <- data.frame(liwc[liwc$Wave == 1,])
w1 <- w1[,c("mediaOutlet", "analytic")]

# create wide data set for wave 1
w1w = w1 %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

### calculate averages for each ratings

#analytic 
analytic <- data.frame(w1w[paste0("analytic_",1:21)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)
#add them all to new data.frame
w1 <- data.frame(w1w$mediaOutlet)
colnames(w1)[colnames(w1)=="w1w.mediaOutlet"] <- "mediaOutlet"

w1$analytic <- AN
w1$analytic.s <- scale(AN)
w1$analytic.s.c <- w1$analytic - mean(w1$analytic)

wave 2

#move over measures of interest
w2 <- data.frame(liwc[liwc$Wave == 2,])
w2 <- w2[,c("mediaOutlet", "analytic")]

# create wide data set for wave 2
w2w = w2 %>% 
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

### calculate averages for wave 2 ratings

#analytic 
analytic <- data.frame(w2w[paste0("analytic_",1:21)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w2 <- data.frame(w2w$mediaOutlet)
colnames(w2)[colnames(w2)=="w2w.mediaOutlet"] <- "mediaOutlet"

w2$analytic <- AN
w2$analytic.s <- scale(AN)
w2$analytic.s.c <- w2$analytic - mean(w2$analytic)

data set up

wave 1

d1 <- d1.usa[,c("s3", "party", "demStrength", "repStrength", "partyClose",
                "vaxxAttitudes", "race", "area",
                "mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
                "mediaExposure_5", "mediaExposure_6", "mediaExposure_7", 
                "mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
                "mediaExposure_13",  "mediaExposure_14", "mediaExposure_15")]

colnames(d1)[colnames(d1) == "s3"]  <- "participant"
colnames(d1)[colnames(d1) == "vaxxAttitudes"]  <- "vaxxAttitudes_w1"

#rename exposure
colnames(d1)[colnames(d1)=="mediaExposure_1"] <- "NYT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d1)[colnames(d1)=="mediaExposure_4"] <- "USAT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_5"] <- "Fox_exp"
colnames(d1)[colnames(d1)=="mediaExposure_6"] <- "CNN_exp"
colnames(d1)[colnames(d1)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_10"] <-"AOL_exp"
colnames(d1)[colnames(d1)=="mediaExposure_11"] <-"NPR_exp"
colnames(d1)[colnames(d1)=="mediaExposure_12"] <-"ABC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_13"] <-"NBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_14"] <-"CBS_exp"
colnames(d1)[colnames(d1)=="mediaExposure_15"] <-"PBS_exp"

#change to 0-4 rating
d1$ABC_exp   <- d1$ABC_exp   - 1
d1$AOL_exp   <- d1$AOL_exp   - 1
d1$CBS_exp   <- d1$CBS_exp   - 1
d1$CNN_exp   <- d1$CNN_exp   - 1
d1$Fox_exp   <- d1$Fox_exp   - 1
d1$MSNBC_exp <- d1$MSNBC_exp - 1
d1$NBC_exp   <- d1$NBC_exp   - 1
d1$NPR_exp   <- d1$NPR_exp   - 1
d1$NYT_exp   <- d1$NYT_exp   - 1
d1$PBS_exp   <- d1$PBS_exp   - 1
d1$USAT_exp  <- d1$USAT_exp  - 1
d1$WSJ_exp   <- d1$WSJ_exp   - 1

x <- cbind(d1$ABC_exp, 
           d1$CBS_exp, 
           d1$CNN_exp, 
           d1$Fox_exp, 
           d1$MSNBC_exp, 
           d1$NBC_exp, 
           d1$NPR_exp, 
           d1$NYT_exp, 
           d1$PBS_exp, 
           d1$USAT_exp, 
           d1$WSJ_exp, 
           d1$AOL_exp)

d1$sum.media.exp_w1 <- rowSums(x, na.rm = T)

# create stand alone scores

## analytic thinking
d1$ABC_AN   <- w1$analytic[w1$mediaOutlet == "ABC"]
d1$CBS_AN   <- w1$analytic[w1$mediaOutlet == "CBS"]
d1$CNN_AN   <- w1$analytic[w1$mediaOutlet == "CNN"]
d1$Fox_AN   <- w1$analytic[w1$mediaOutlet == "Fox"]
d1$MSNBC_AN <- w1$analytic[w1$mediaOutlet == "MSNBC"]
d1$NBC_AN   <- w1$analytic[w1$mediaOutlet == "NBC"]
d1$NPR_AN   <- w1$analytic[w1$mediaOutlet == "NPR"]
d1$NYT_AN   <- w1$analytic[w1$mediaOutlet == "NYT"]
d1$PBS_AN   <- w1$analytic[w1$mediaOutlet == "PBS"]
d1$USAT_AN  <- w1$analytic[w1$mediaOutlet == "USAToday"]
d1$WSJ_AN   <- w1$analytic[w1$mediaOutlet == "WSJ"]
d1$AOL_AN   <- w1$analytic[w1$mediaOutlet == "AOL"]

#individual media analytic thinking
d1$ABC_ANexp <- d1$ABC_AN * d1$ABC_exp
d1$CBS_ANexp <- d1$CBS_AN * d1$CBS_exp
d1$CNN_ANexp <- d1$CNN_AN * d1$CNN_exp
d1$Fox_ANexp <- d1$Fox_AN * d1$Fox_exp
d1$MSNBC_ANexp <- d1$MSNBC_AN * d1$MSNBC_exp
d1$NBC_ANexp <- d1$NBC_AN * d1$NBC_exp
d1$NPR_ANexp <- d1$NPR_AN * d1$NPR_exp
d1$NYT_ANexp <- d1$NYT_AN * d1$NYT_exp
d1$PBS_ANexp <- d1$PBS_AN * d1$PBS_exp
d1$USAT_ANexp <- d1$USAT_AN * d1$USAT_exp
d1$WSJ_ANexp <- d1$WSJ_AN * d1$WSJ_exp
d1$AOL_ANexp <- d1$AOL_AN * d1$AOL_exp

x <- cbind(d1$ABC_ANexp, 
           d1$CBS_ANexp, 
           d1$CNN_ANexp, 
           d1$Fox_ANexp, 
           d1$MSNBC_ANexp, 
           d1$NBC_ANexp, 
           d1$NPR_ANexp, 
           d1$NYT_ANexp, 
           d1$PBS_ANexp, 
           d1$USAT_ANexp, 
           d1$WSJ_ANexp, 
           d1$AOL_ANexp)

d1$index_ANexp_w1 <- rowMeans(x, na.rm = T)

# making party ID
d1$partyCont <- NA
d1$partyCont[d1$demStrength == 1] <- -3
d1$partyCont[d1$demStrength == 2] <- -2
d1$partyCont[d1$partyClose  == 1] <- -1
d1$partyCont[d1$partyClose  == 3] <- 0
d1$partyCont[d1$partyClose  == 2] <- 1
d1$partyCont[d1$repStrength == 2] <- 2
d1$partyCont[d1$repStrength == 1] <- 3

## party factor
d1$party_factor <- NA
d1$party_factor[d1$partyCont < 0]  <- 'Democrat'
d1$party_factor[d1$partyCont == 0] <- 'Independent'
d1$party_factor[d1$partyCont > 0]  <- 'Republican'

## Order of party variable
d1$party_factor <- factor(d1$party_factor, 
                          levels = c('Democrat', 
                                     'Republican', 
                                     'Independent'))

## contrast codes
d1$DvR <- NA
d1$DvR[d1$party_factor == 'Democrat']    <- -.5
d1$DvR[d1$party_factor == 'Independent'] <- 0
d1$DvR[d1$party_factor == 'Republican']  <- .5

d1$IvDR <- NA
d1$IvDR[d1$party_factor == 'Democrat']    <- .33
d1$IvDR[d1$party_factor == 'Independent'] <- -.67
d1$IvDR[d1$party_factor == 'Republican']  <- .33

## dummy codes
d1$Rep_1[d1$party_factor == 'Democrat']    <- 0
d1$Rep_1[d1$party_factor == 'Republican']  <- 1
d1$Rep_1[d1$party_factor == 'Independent'] <- 0

d1$Ind_1[d1$party_factor == 'Democrat']    <- 0
d1$Ind_1[d1$party_factor == 'Republican']  <- 0
d1$Ind_1[d1$party_factor == 'Independent'] <- 1

d1$Dem_1[d1$party_factor == 'Democrat']    <- 1
d1$Dem_1[d1$party_factor == 'Republican']  <- 0
d1$Dem_1[d1$party_factor == 'Independent'] <- 0

#race coding
d1$race_bw <- NA
d1$race_bw[d1$race == 1] <- "other"
d1$race_bw[d1$race == 2] <- "black"
d1$race_bw[d1$race == 3] <- "other"
d1$race_bw[d1$race == 4] <- "other"
d1$race_bw[d1$race == 5] <- "other"
d1$race_bw[d1$race == 6] <- "white"

#c1: Black = -0.5, White = +.5; all other ethnicity = 0;
d1$bVw <- 0 #other
d1$bVw[d1$race == 6] <- .5 #white
d1$bVw[d1$race == 2] <- -.5 #black

#c2: Black = -.5, White = -.5, all other ethnicity = 1
d1$bwVo <- 1 #other
d1$bwVo[d1$race == 6] <- -.5 #white
d1$bwVo[d1$race == 2] <- -.5 #black

# 1 = Urban
# 2 = Suburban
# 3 = Rural

d1$area_factor <- NA
d1$area_factor[d1$area == 1] <- "other"
d1$area_factor[d1$area == 2] <- "other"
d1$area_factor[d1$area == 3] <- "rural"

d1$ruralVother <- NA
d1$ruralVother[d1$area == 3] <- -1/2
d1$ruralVother[d1$area == 1] <- 1/2
d1$ruralVother[d1$area == 2] <- 1/2

wave 2

d2 <- d2.usa[,c("s3", "vaxxAttitudes",
                "mediaExposure_1", "mediaExposure_2", 
                "mediaExposure_4", "mediaExposure_5", 
                "mediaExposure_6", "mediaExposure_7", 
                "mediaExposure_10", "mediaExposure_11", 
                "mediaExposure_12", "mediaExposure_13", 
                "mediaExposure_14", "mediaExposure_15")]

colnames(d2)[colnames(d2) == "s3"]  <- "participant"
colnames(d2)[colnames(d2) == "vaxxAttitudes"]  <- "vaxxAttitudes_w2"

#rename exposure
colnames(d2)[colnames(d2)=="mediaExposure_1"] <- "NYT_exp"
colnames(d2)[colnames(d2)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d2)[colnames(d2)=="mediaExposure_4"] <- "USAT_exp"
colnames(d2)[colnames(d2)=="mediaExposure_5"] <- "Fox_exp"
colnames(d2)[colnames(d2)=="mediaExposure_6"] <- "CNN_exp"
colnames(d2)[colnames(d2)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d2)[colnames(d2)=="mediaExposure_10"] <-"AOL_exp"
colnames(d2)[colnames(d2)=="mediaExposure_11"] <-"NPR_exp"
colnames(d2)[colnames(d2)=="mediaExposure_12"] <-"ABC_exp"
colnames(d2)[colnames(d2)=="mediaExposure_13"] <-"NBC_exp"
colnames(d2)[colnames(d2)=="mediaExposure_14"] <-"CBS_exp"
colnames(d2)[colnames(d2)=="mediaExposure_15"] <-"PBS_exp"

#change to 0-4 rating
d2$ABC_exp   <- d2$ABC_exp   - 1
d2$AOL_exp   <- d2$AOL_exp   - 1
d2$CBS_exp   <- d2$CBS_exp   - 1
d2$CNN_exp   <- d2$CNN_exp   - 1
d2$Fox_exp   <- d2$Fox_exp   - 1
d2$MSNBC_exp <- d2$MSNBC_exp - 1
d2$NBC_exp   <- d2$NBC_exp   - 1
d2$NPR_exp   <- d2$NPR_exp   - 1
d2$NYT_exp   <- d2$NYT_exp   - 1
d2$PBS_exp   <- d2$PBS_exp   - 1
d2$USAT_exp  <- d2$USAT_exp  - 1
d2$WSJ_exp   <- d2$WSJ_exp   - 1

x <- cbind(d2$ABC_exp, 
           d2$CBS_exp, 
           d2$CNN_exp, 
           d2$Fox_exp, 
           d2$MSNBC_exp, 
           d2$NBC_exp, 
           d2$NPR_exp, 
           d2$NYT_exp, 
           d2$PBS_exp, 
           d2$USAT_exp, 
           d2$WSJ_exp, 
           d2$AOL_exp)

d2$sum.media.exp_w2 <- rowSums(x, na.rm = T)

## analytic thinking
d2$ABC_AN   <- w2$analytic[w2$mediaOutlet == "ABC"]
d2$CBS_AN   <- w2$analytic[w2$mediaOutlet == "CBS"]
d2$CNN_AN   <- w2$analytic[w2$mediaOutlet == "CNN"]
d2$Fox_AN   <- w2$analytic[w2$mediaOutlet == "Fox"]
d2$MSNBC_AN <- w2$analytic[w2$mediaOutlet == "MSNBC"]
d2$NBC_AN   <- w2$analytic[w2$mediaOutlet == "NBC"]
d2$NPR_AN   <- w2$analytic[w2$mediaOutlet == "NPR"]
d2$NYT_AN   <- w2$analytic[w2$mediaOutlet == "NYT"]
d2$PBS_AN   <- w2$analytic[w2$mediaOutlet == "PBS"]
d2$USAT_AN  <- w2$analytic[w2$mediaOutlet == "USAToday"]
d2$WSJ_AN   <- w2$analytic[w2$mediaOutlet == "WSJ"]
d2$AOL_AN   <- w2$analytic[w2$mediaOutlet == "AOL"]

#individual media analytic thinking
d2$ABC_ANexp <- d2$ABC_AN * d2$ABC_exp
d2$CBS_ANexp <- d2$CBS_AN * d2$CBS_exp
d2$CNN_ANexp <- d2$CNN_AN * d2$CNN_exp
d2$Fox_ANexp <- d2$Fox_AN * d2$Fox_exp
d2$MSNBC_ANexp <- d2$MSNBC_AN * d2$MSNBC_exp
d2$NBC_ANexp <- d2$NBC_AN * d2$NBC_exp
d2$NPR_ANexp <- d2$NPR_AN * d2$NPR_exp
d2$NYT_ANexp <- d2$NYT_AN * d2$NYT_exp
d2$PBS_ANexp <- d2$PBS_AN * d2$PBS_exp
d2$USAT_ANexp <- d2$USAT_AN * d2$USAT_exp
d2$WSJ_ANexp <- d2$WSJ_AN * d2$WSJ_exp
d2$AOL_ANexp <- d2$AOL_AN * d2$AOL_exp

x <- cbind(d2$ABC_ANexp, 
           d2$CBS_ANexp, 
           d2$CNN_ANexp, 
           d2$Fox_ANexp, 
           d2$MSNBC_ANexp, 
           d2$NBC_ANexp, 
           d2$NPR_ANexp, 
           d2$NYT_ANexp, 
           d2$PBS_ANexp, 
           d2$USAT_ANexp, 
           d2$WSJ_ANexp, 
           d2$AOL_ANexp)

d2$index_ANexp_w2 <- rowMeans(x, na.rm = T)

wave 3

d3 <- d3.usa[,c("s3", 
                "vaxx_type", "boost_type", "mp_dose", "other_vaxx",
            "media_exposure_1", "media_exposure_2", 
            "media_exposure_4", "media_exposure_5", 
            "media_exposure_6", "media_exposure_7", 
            "media_exposure_10", "media_exposure_11",
            "media_exposure_12", "media_exposure_13", 
            "media_exposure_14", "media_exposure_15")]

colnames(d3)[colnames(d3) == "s3"]  <- "participant"

#rename exposure
colnames(d3)[colnames(d3)=="media_exposure_1"] <- "NYT_exp"
colnames(d3)[colnames(d3)=="media_exposure_2"] <- "WSJ_exp"
colnames(d3)[colnames(d3)=="media_exposure_4"] <- "USAT_exp"
colnames(d3)[colnames(d3)=="media_exposure_5"] <- "Fox_exp"
colnames(d3)[colnames(d3)=="media_exposure_6"] <- "CNN_exp"
colnames(d3)[colnames(d3)=="media_exposure_7"] <- "MSNBC_exp"
colnames(d3)[colnames(d3)=="media_exposure_10"] <-"AOL_exp"
colnames(d3)[colnames(d3)=="media_exposure_11"] <-"NPR_exp"
colnames(d3)[colnames(d3)=="media_exposure_12"] <-"ABC_exp"
colnames(d3)[colnames(d3)=="media_exposure_13"] <-"NBC_exp"
colnames(d3)[colnames(d3)=="media_exposure_14"] <-"CBS_exp"
colnames(d3)[colnames(d3)=="media_exposure_15"] <-"PBS_exp"

#change to 0-4 rating
d3$ABC_exp   <- 2/3*(d3$ABC_exp   - 1)
d3$AOL_exp   <- 2/3*(d3$AOL_exp   - 1)
d3$CBS_exp   <- 2/3*(d3$CBS_exp   - 1)
d3$CNN_exp   <- 2/3*(d3$CNN_exp   - 1)
d3$Fox_exp   <- 2/3*(d3$Fox_exp   - 1)
d3$MSNBC_exp <- 2/3*(d3$MSNBC_exp - 1)
d3$NBC_exp   <- 2/3*(d3$NBC_exp   - 1)
d3$NPR_exp   <- 2/3*(d3$NPR_exp   - 1)
d3$NYT_exp   <- 2/3*(d3$NYT_exp   - 1)
d3$PBS_exp   <- 2/3*(d3$PBS_exp   - 1)
d3$USAT_exp  <- 2/3*(d3$USAT_exp  - 1)
d3$WSJ_exp   <- 2/3*(d3$WSJ_exp   - 1)

x <- cbind(d3$ABC_exp, 
           d3$CBS_exp, 
           d3$CNN_exp, 
           d3$Fox_exp, 
           d3$MSNBC_exp, 
           d3$NBC_exp, 
           d3$NPR_exp, 
           d3$NYT_exp, 
           d3$PBS_exp, 
           d3$USAT_exp, 
           d3$WSJ_exp, 
           d3$AOL_exp)

d3$sum.media.exp_w3 <- rowSums(x, na.rm = T)

## analytic thinking
d3$ABC_AN   <- w2$analytic[w2$mediaOutlet == "ABC"]
d3$CBS_AN   <- w2$analytic[w2$mediaOutlet == "CBS"]
d3$CNN_AN   <- w2$analytic[w2$mediaOutlet == "CNN"]
d3$Fox_AN   <- w2$analytic[w2$mediaOutlet == "Fox"]
d3$MSNBC_AN <- w2$analytic[w2$mediaOutlet == "MSNBC"]
d3$NBC_AN   <- w2$analytic[w2$mediaOutlet == "NBC"]
d3$NPR_AN   <- w2$analytic[w2$mediaOutlet == "NPR"]
d3$NYT_AN   <- w2$analytic[w2$mediaOutlet == "NYT"]
d3$PBS_AN   <- w2$analytic[w2$mediaOutlet == "PBS"]
d3$USAT_AN  <- w2$analytic[w2$mediaOutlet == "USAToday"]
d3$WSJ_AN   <- w2$analytic[w2$mediaOutlet == "WSJ"]
d3$AOL_AN   <- w2$analytic[w2$mediaOutlet == "AOL"]

# analytic thinking
d3$ABC_ANexp <- d3$ABC_AN * d3$ABC_exp
d3$CBS_ANexp <- d3$CBS_AN * d3$CBS_exp
d3$CNN_ANexp <- d3$CNN_AN * d3$CNN_exp
d3$Fox_ANexp <- d3$Fox_AN * d3$Fox_exp
d3$MSNBC_ANexp <- d3$MSNBC_AN * d3$MSNBC_exp
d3$NBC_ANexp <- d3$NBC_AN * d3$NBC_exp
d3$NPR_ANexp <- d3$NPR_AN * d3$NPR_exp
d3$NYT_ANexp <- d3$NYT_AN * d3$NYT_exp
d3$PBS_ANexp <- d3$PBS_AN * d3$PBS_exp
d3$USAT_ANexp <- d3$USAT_AN * d3$USAT_exp
d3$WSJ_ANexp <- d3$WSJ_AN * d3$WSJ_exp
d3$AOL_ANexp <- d3$AOL_AN * d3$AOL_exp

x <- cbind(d3$ABC_ANexp, 
           d3$CBS_ANexp, 
           d3$CNN_ANexp, 
           d3$Fox_ANexp, 
           d3$MSNBC_ANexp, 
           d3$NBC_ANexp, 
           d3$NPR_ANexp, 
           d3$NYT_ANexp, 
           d3$PBS_ANexp, 
           d3$USAT_ANexp, 
           d3$WSJ_ANexp, 
           d3$AOL_ANexp)

d3$index_ANexp_w3 <- rowMeans(x, na.rm = T)

# vaccine behavior scale
d3$vaxxBehavior <- NA
d3$vaxxBehavior[d3$vaxx_type == 1] <- 0 #not vaxxed
d3$vaxxBehavior[d3$mp_dose == 1] <- 1 #partial vaxxed with M or P
d3$vaxxBehavior[d3$other_vaxx == 4] <- 1 #partial vaxxed with other
d3$vaxxBehavior[d3$vaxx_type == 2] <- 2 #fully vaxxed with J&J
d3$vaxxBehavior[d3$mp_dose == 2] <- 2 #fully vaxxed with M or P
d3$vaxxBehavior[d3$other_vaxx == 4] <- 2 #fully vaxxed with other
d3$vaxxBehavior[d3$boost_type != 1] <- 3 #vaxxed + boosted

wide merged data

d.1 <- d1[
  c("participant", 
    "vaxxAttitudes_w1", 
    "party_factor",
    "DvR", 
    "IvDR", 
    "Rep_1", 
    "Ind_1", 
    "Dem_1",
    "race_bw",
    "bVw",
    "bwVo",
    "area_factor",
    "ruralVother",
    "index_ANexp_w1", 
    "sum.media.exp_w1")]

d.2 <- d2[
  c("participant", 
    "vaxxAttitudes_w2", 
    "index_ANexp_w2", 
    "sum.media.exp_w2")]

d.3 <- d3[
  c("participant", 
    "vaxxBehavior", 
    "index_ANexp_w3",
    "sum.media.exp_w3")]

dw <- merge(d.1, d.2, by = c("participant"), all.x = T, all.y = T)
dw <- merge(dw, d.3, by = c("participant"), all.x = T, all.y = T)

dw <- dw[,c("participant", 
            "party_factor", "DvR", "IvDR",
            "Rep_1", "Dem_1", "Ind_1",
            "race_bw", "bVw", "bwVo", 
            "area_factor", "ruralVother",
            "index_ANexp_w1", "index_ANexp_w2", "index_ANexp_w3", 
            "sum.media.exp_w1", "sum.media.exp_w2", "sum.media.exp_w3",
            "vaxxAttitudes_w1", "vaxxAttitudes_w2", "vaxxBehavior")]

dw$avgVaxxAttitudes <- (dw$vaxxAttitudes_w1 + dw$vaxxAttitudes_w2)/2
dw$avgANexp <- (dw$index_ANexp_w1 + dw$index_ANexp_w2)/2

# mean center variables
dw$vaxxAttitudes_w1.c <- dw$vaxxAttitudes_w1 - mean(dw$vaxxAttitudes_w1, na.rm = T)
dw$vaxxAttitudes_w2.c <- dw$vaxxAttitudes_w2 - mean(dw$vaxxAttitudes_w2, na.rm = T)
dw$avgVaxxAttitudes.c <- dw$avgVaxxAttitudes - mean(dw$avgVaxxAttitudes, na.rm = T)
dw$avgANexp.c <- dw$avgANexp - mean(dw$avgANexp, na.rm = T)
dw$index_ANexp_w1.c <- dw$index_ANexp_w1 - mean(dw$index_ANexp_w1, na.rm = T)
dw$index_ANexp_w2.c <- dw$index_ANexp_w2 - mean(dw$index_ANexp_w2, na.rm = T)
dw$index_ANexp_w3.c <- dw$index_ANexp_w3 - mean(dw$index_ANexp_w3, na.rm = T)

descriptives

- w1 LIWC media ratings

##    mediaOutlet analytic
## 1          ABC   79.108
## 2          AOL   95.420
## 3          CBS   78.760
## 4          CNN   73.610
## 5          Fox   60.430
## 6        MSNBC   70.520
## 7          NBC   80.545
## 8          NPR   71.830
## 9          NYT   93.494
## 10         PBS   78.860
## 11    USAToday   91.280
## 12         WSJ   96.598

- w2 LIWC media ratings

##    mediaOutlet analytic
## 1          ABC   75.978
## 2          AOL   95.313
## 3          CBS   84.055
## 4          CNN   64.720
## 5          Fox   61.095
## 6        MSNBC   69.560
## 7          NBC   78.120
## 8          NPR   70.815
## 9          NYT   93.364
## 10         PBS   77.060
## 11    USAToday   91.855
## 12         WSJ   96.432

correlations

- LIWC ratings

## 
##  Pearson's product-moment correlation
## 
## data:  w1$analytic and w2$analytic
## t = 11.662, df = 10, p-value = 3.821e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8770272 0.9904423
## sample estimates:
##      cor 
## 0.965145

- media index scores

- vaxx attitudes/behavior

means & SDs

- across partyID

##                     M   SD Min Max
## vaxxAttitudes_w1 0.60 2.15  -3   3
## vaxxAttitudes_w2 0.35 2.11  -3   3
## vaxxBehavior     2.22 1.18   0   3

- by partyID

## 
##    Democrat  Republican Independent 
##        1534        1237         674
## 
##    Democrat  Republican Independent 
##       0.445       0.359       0.196
## 
##  Descriptive statistics by group 
## party_factor: Democrat
##                  vars    n mean   sd median trimmed  mad min max range  skew
## vaxxAttitudes_w1    1 1498 1.16 1.91      2    1.42 1.48  -3   3     6 -0.81
## vaxxAttitudes_w2    2 1114 0.73 1.91      1    0.91 1.48  -3   3     6 -0.51
## vaxxBehavior        3  476 2.59 0.88      3    2.84 0.00   0   3     3 -2.21
##                  kurtosis   se
## vaxxAttitudes_w1    -0.41 0.05
## vaxxAttitudes_w2    -0.70 0.06
## vaxxBehavior         3.61 0.04
## ------------------------------------------------------------ 
## party_factor: Republican
##                  vars    n mean   sd median trimmed  mad min max range  skew
## vaxxAttitudes_w1    1 1197 0.17 2.31      0    0.21 2.97  -3   3     6 -0.19
## vaxxAttitudes_w2    2  958 0.15 2.26      0    0.18 2.97  -3   3     6 -0.18
## vaxxBehavior        3  402 1.87 1.30      2    1.97 1.48   0   3     3 -0.59
##                  kurtosis   se
## vaxxAttitudes_w1    -1.47 0.07
## vaxxAttitudes_w2    -1.39 0.07
## vaxxBehavior        -1.43 0.07
## ------------------------------------------------------------ 
## party_factor: Independent
##                  vars   n  mean   sd median trimmed  mad min max range  skew
## vaxxAttitudes_w1    1 641  0.11 2.11      0    0.13 2.97  -3   3     6 -0.14
## vaxxAttitudes_w2    2 433 -0.08 2.06      0   -0.10 2.97  -3   3     6 -0.01
## vaxxBehavior        3 175  2.06 1.27      3    2.19 0.00   0   3     3 -0.86
##                  kurtosis   se
## vaxxAttitudes_w1    -1.21 0.08
## vaxxAttitudes_w2    -1.08 0.10
## vaxxBehavior        -1.06 0.10

Wave 1 (Aug 2020)

1. vaxxAttitudes ~ ANALYTIC + party

a. contrast model

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ DvR + IvDR + index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1950 -1.6670  0.1858  1.8062  3.3141 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.0350259  0.0577811   0.606    0.544    
## DvR            -0.7605102  0.0829941  -9.163  < 2e-16 ***
## IvDR            0.5210279  0.0908982   5.732 1.08e-08 ***
## index_ANexp_w1  0.0052624  0.0005153  10.213  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3332 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.08295,    Adjusted R-squared:  0.08212 
## F-statistic: 100.5 on 3 and 3332 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ Rep_1 + Ind_1 + index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1950 -1.6670  0.1858  1.8062  3.3141 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.5872202  0.0771280   7.614 3.45e-14 ***
## Rep_1          -0.7605102  0.0829941  -9.163  < 2e-16 ***
## Ind_1          -0.9012830  0.0985170  -9.149  < 2e-16 ***
## index_ANexp_w1  0.0052624  0.0005153  10.213  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3332 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.08295,    Adjusted R-squared:  0.08212 
## F-statistic: 100.5 on 3 and 3332 DF,  p-value: < 2.2e-16

c. simple effects Rep

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ Dem_1 + Ind_1 + index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1950 -1.6670  0.1858  1.8062  3.3141 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.1732900  0.0685448  -2.528   0.0115 *  
## Dem_1           0.7605102  0.0829941   9.163   <2e-16 ***
## Ind_1          -0.1407728  0.1013083  -1.390   0.1648    
## index_ANexp_w1  0.0052624  0.0005153  10.213   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3332 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.08295,    Adjusted R-squared:  0.08212 
## F-statistic: 100.5 on 3 and 3332 DF,  p-value: < 2.2e-16

d. simple effects Indep

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ Rep_1 + Dem_1 + index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1950 -1.6670  0.1858  1.8062  3.3141 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.3140628  0.0913277  -3.439 0.000591 ***
## Rep_1           0.1407728  0.1013083   1.390 0.164759    
## Dem_1           0.9012830  0.0985170   9.149  < 2e-16 ***
## index_ANexp_w1  0.0052624  0.0005153  10.213  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3332 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.08295,    Adjusted R-squared:  0.08212 
## F-statistic: 100.5 on 3 and 3332 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (DvR + IvDR) * index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7434 -1.5968  0.2297  1.8072  3.4032 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.0430505  0.0586318   0.734    0.463    
## DvR                 -1.2623716  0.1282334  -9.844  < 2e-16 ***
## IvDR                 0.5603220  0.1368667   4.094 4.34e-05 ***
## index_ANexp_w1       0.0056720  0.0005404  10.496  < 2e-16 ***
## DvR:index_ANexp_w1   0.0060268  0.0011752   5.128 3.09e-07 ***
## IvDR:index_ANexp_w1  0.0002692  0.0012664   0.213    0.832    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 3330 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.09015,    Adjusted R-squared:  0.08878 
## F-statistic: 65.99 on 5 and 3330 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (Rep_1 + Ind_1) * index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7434 -1.5968  0.2297  1.8072  3.4032 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.859143   0.096951   8.862  < 2e-16 ***
## Rep_1                -1.262372   0.128233  -9.844  < 2e-16 ***
## Ind_1                -1.191508   0.154987  -7.688 1.96e-14 ***
## index_ANexp_w1        0.002747   0.000750   3.663 0.000253 ***
## Rep_1:index_ANexp_w1  0.006027   0.001175   5.128 3.09e-07 ***
## Ind_1:index_ANexp_w1  0.002744   0.001349   2.034 0.042066 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 3330 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.09015,    Adjusted R-squared:  0.08878 
## F-statistic: 65.99 on 5 and 3330 DF,  p-value: < 2.2e-16

c. simple effects Rep

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (Dem_1 + Ind_1) * index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7434 -1.5968  0.2297  1.8072  3.4032 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.4032290  0.0839304  -4.804 1.62e-06 ***
## Dem_1                 1.2623716  0.1282334   9.844  < 2e-16 ***
## Ind_1                 0.0708638  0.1471932   0.481   0.6302    
## index_ANexp_w1        0.0087743  0.0009049   9.697  < 2e-16 ***
## Dem_1:index_ANexp_w1 -0.0060268  0.0011752  -5.128 3.09e-07 ***
## Ind_1:index_ANexp_w1 -0.0032827  0.0014412  -2.278   0.0228 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 3330 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.09015,    Adjusted R-squared:  0.08878 
## F-statistic: 65.99 on 5 and 3330 DF,  p-value: < 2.2e-16

d. simple effects Indep

## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (Rep_1 + Dem_1) * index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7434 -1.5968  0.2297  1.8072  3.4032 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.332365   0.120920  -2.749  0.00602 ** 
## Rep_1                -0.070864   0.147193  -0.481  0.63024    
## Dem_1                 1.191508   0.154987   7.688 1.96e-14 ***
## index_ANexp_w1        0.005492   0.001122   4.895 1.03e-06 ***
## Rep_1:index_ANexp_w1  0.003283   0.001441   2.278  0.02281 *  
## Dem_1:index_ANexp_w1 -0.002744   0.001349  -2.034  0.04207 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.057 on 3330 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.09015,    Adjusted R-squared:  0.08878 
## F-statistic: 65.99 on 5 and 3330 DF,  p-value: < 2.2e-16

Wave 2 (Nov 2020)

1. vaxxAttitudes ~ ANALYTIC + party

a. contrast model

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ DvR + IvDR + index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6077 -1.4822  0.0818  1.7580  3.4297 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.1111178  0.0647065  -1.717 0.086056 .  
## DvR            -0.3596209  0.0950270  -3.784 0.000158 ***
## IvDR            0.4755160  0.1085504   4.381 1.23e-05 ***
## index_ANexp_w2  0.0049401  0.0006166   8.012 1.72e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2494 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05007,    Adjusted R-squared:  0.04893 
## F-statistic: 43.82 on 3 and 2494 DF,  p-value: < 2.2e-16

plot

## Warning: Removed 36 row(s) containing missing values (geom_path).

b. simple effects Dem

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ Rep_1 + Ind_1 + index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6077 -1.4822  0.0818  1.7580  3.4297 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2256130  0.0880724   2.562 0.010475 *  
## Rep_1          -0.3596209  0.0950270  -3.784 0.000158 ***
## Ind_1          -0.6553265  0.1177255  -5.567 2.88e-08 ***
## index_ANexp_w2  0.0049401  0.0006166   8.012 1.72e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2494 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05007,    Adjusted R-squared:  0.04893 
## F-statistic: 43.82 on 3 and 2494 DF,  p-value: < 2.2e-16

c. simple effects Rep

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ Dem_1 + Ind_1 + index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6077 -1.4822  0.0818  1.7580  3.4297 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.1340079  0.0744488  -1.800 0.071981 .  
## Dem_1           0.3596209  0.0950270   3.784 0.000158 ***
## Ind_1          -0.2957055  0.1192567  -2.480 0.013220 *  
## index_ANexp_w2  0.0049401  0.0006166   8.012 1.72e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2494 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05007,    Adjusted R-squared:  0.04893 
## F-statistic: 43.82 on 3 and 2494 DF,  p-value: < 2.2e-16

d. simple effects Indep

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ Rep_1 + Dem_1 + index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6077 -1.4822  0.0818  1.7580  3.4297 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.4297135  0.1080046  -3.979 7.13e-05 ***
## Rep_1           0.2957055  0.1192567   2.480   0.0132 *  
## Dem_1           0.6553265  0.1177255   5.567 2.88e-08 ***
## index_ANexp_w2  0.0049401  0.0006166   8.012 1.72e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2494 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05007,    Adjusted R-squared:  0.04893 
## F-statistic: 43.82 on 3 and 2494 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ (DvR + IvDR) * index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5128 -1.4390  0.0884  1.7604  3.5610 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.1289291  0.0661540  -1.949  0.05142 .  
## DvR                 -0.4642664  0.1410609  -3.291  0.00101 ** 
## IvDR                 0.6448787  0.1570213   4.107 4.14e-05 ***
## index_ANexp_w2       0.0053366  0.0006604   8.080 9.96e-16 ***
## DvR:index_ANexp_w2   0.0011434  0.0014130   0.809  0.41850    
## IvDR:index_ANexp_w2 -0.0021478  0.0015643  -1.373  0.16988    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2492 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05114,    Adjusted R-squared:  0.04923 
## F-statistic: 26.86 on 5 and 2492 DF,  p-value: < 2.2e-16

plot

b. simple effects Dem

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ (Rep_1 + Ind_1) * index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5128 -1.4390  0.0884  1.7604  3.5610 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.3160141  0.1086072   2.910  0.00365 ** 
## Rep_1                -0.4642664  0.1410609  -3.291  0.00101 ** 
## Ind_1                -0.8770119  0.1774167  -4.943 8.19e-07 ***
## index_ANexp_w2        0.0040562  0.0008754   4.633 3.78e-06 ***
## Rep_1:index_ANexp_w2  0.0011434  0.0014130   0.809  0.41850    
## Ind_1:index_ANexp_w2  0.0027194  0.0016475   1.651  0.09894 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2492 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05114,    Adjusted R-squared:  0.04923 
## F-statistic: 26.86 on 5 and 2492 DF,  p-value: < 2.2e-16

c. simple effects Rep

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ (Dem_1 + Ind_1) * index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5128 -1.4390  0.0884  1.7604  3.5610 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.148252   0.090015  -1.647  0.09969 .  
## Dem_1                 0.464266   0.141061   3.291  0.00101 ** 
## Ind_1                -0.412745   0.166685  -2.476  0.01334 *  
## index_ANexp_w2        0.005200   0.001109   4.688 2.91e-06 ***
## Dem_1:index_ANexp_w2 -0.001143   0.001413  -0.809  0.41850    
## Ind_1:index_ANexp_w2  0.001576   0.001783   0.884  0.37673    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2492 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05114,    Adjusted R-squared:  0.04923 
## F-statistic: 26.86 on 5 and 2492 DF,  p-value: < 2.2e-16

d. simple effects Indep

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ (Rep_1 + Dem_1) * index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5128 -1.4390  0.0884  1.7604  3.5610 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -0.560998   0.140290  -3.999 6.55e-05 ***
## Rep_1                 0.412745   0.166685   2.476   0.0133 *  
## Dem_1                 0.877012   0.177417   4.943 8.19e-07 ***
## index_ANexp_w2        0.006776   0.001396   4.855 1.28e-06 ***
## Rep_1:index_ANexp_w2 -0.001576   0.001783  -0.884   0.3767    
## Dem_1:index_ANexp_w2 -0.002719   0.001648  -1.651   0.0989 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.049 on 2492 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.05114,    Adjusted R-squared:  0.04923 
## F-statistic: 26.86 on 5 and 2492 DF,  p-value: < 2.2e-16

Wave 3 (March 2022)

1. vaxxBehavior ~ ANALYTIC + party

a. contrast model

## 
## Call:
## lm(formula = vaxxBehavior ~ (DvR + IvDR) + index_ANexp_w3, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0875 -0.3853  0.3471  0.7290  1.2970 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.9475600  0.0518457  37.565  < 2e-16 ***
## DvR            -0.5680482  0.0792272  -7.170 1.44e-12 ***
## IvDR            0.1195534  0.0928706   1.287    0.198    
## index_ANexp_w3  0.0034163  0.0005139   6.647 4.86e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1019 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1214, Adjusted R-squared:  0.1188 
## F-statistic: 46.92 on 3 and 1019 DF,  p-value: < 2.2e-16

- plot

## Warning: Removed 36 row(s) containing missing values (geom_path).

b. simple effects Dem

## 
## Call:
## lm(formula = vaxxBehavior ~ (Rep_1 + Ind_1) + index_ANexp_w3, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0875 -0.3853  0.3471  0.7290  1.2970 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2.2710367  0.0710720  31.954  < 2e-16 ***
## Rep_1          -0.5680482  0.0792272  -7.170 1.44e-12 ***
## Ind_1          -0.4035775  0.1004236  -4.019 6.28e-05 ***
## index_ANexp_w3  0.0034163  0.0005139   6.647 4.86e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1019 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1214, Adjusted R-squared:  0.1188 
## F-statistic: 46.92 on 3 and 1019 DF,  p-value: < 2.2e-16

c. simple effects Rep

## 
## Call:
## lm(formula = vaxxBehavior ~ (Dem_1 + Ind_1) + index_ANexp_w3, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0875 -0.3853  0.3471  0.7290  1.2970 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1.7029885  0.0614216  27.726  < 2e-16 ***
## Dem_1          0.5680482  0.0792272   7.170 1.44e-12 ***
## Ind_1          0.1644707  0.1015061   1.620    0.105    
## index_ANexp_w3 0.0034163  0.0005139   6.647 4.86e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1019 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1214, Adjusted R-squared:  0.1188 
## F-statistic: 46.92 on 3 and 1019 DF,  p-value: < 2.2e-16

d. simple effects Indep

## 
## Call:
## lm(formula = vaxxBehavior ~ (Rep_1 + Dem_1) + index_ANexp_w3, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0875 -0.3853  0.3471  0.7290  1.2970 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.8674592  0.0902916  20.683  < 2e-16 ***
## Rep_1          -0.1644707  0.1015061  -1.620    0.105    
## Dem_1           0.4035775  0.1004236   4.019 6.28e-05 ***
## index_ANexp_w3  0.0034163  0.0005139   6.647 4.86e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1019 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1214, Adjusted R-squared:  0.1188 
## F-statistic: 46.92 on 3 and 1019 DF,  p-value: < 2.2e-16

2. vaxxBehavior ~ ANALYTIC * party

a. contrast model

## 
## Call:
## lm(formula = vaxxBehavior ~ (DvR + IvDR) * index_ANexp_w3, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2238 -0.4878  0.3781  0.5716  1.4001 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.9468528  0.0527960  36.875  < 2e-16 ***
## DvR                 -0.8249592  0.1119466  -7.369 3.55e-13 ***
## IvDR                 0.1985083  0.1257554   1.579  0.11476    
## index_ANexp_w3       0.0038596  0.0005589   6.906 8.77e-12 ***
## DvR:index_ANexp_w3   0.0036566  0.0011586   3.156  0.00165 ** 
## IvDR:index_ANexp_w3 -0.0006433  0.0013492  -0.477  0.63362    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.095 on 1017 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1304, Adjusted R-squared:  0.1261 
## F-statistic: 30.51 on 5 and 1017 DF,  p-value: < 2.2e-16

- plot

b. simple effects Dem

## 
## Call:
## lm(formula = vaxxBehavior ~ (Rep_1 + Ind_1) * index_ANexp_w3, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2238 -0.4878  0.3781  0.5716  1.4001 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.4248401  0.0859067  28.226  < 2e-16 ***
## Rep_1                -0.8249592  0.1119466  -7.369 3.55e-13 ***
## Ind_1                -0.6109879  0.1416382  -4.314 1.76e-05 ***
## index_ANexp_w3        0.0018190  0.0007195   2.528  0.01161 *  
## Rep_1:index_ANexp_w3  0.0036566  0.0011586   3.156  0.00165 ** 
## Ind_1:index_ANexp_w3  0.0024715  0.0014150   1.747  0.08100 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.095 on 1017 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1304, Adjusted R-squared:  0.1261 
## F-statistic: 30.51 on 5 and 1017 DF,  p-value: < 2.2e-16

c. simple effects Rep

## 
## Call:
## lm(formula = vaxxBehavior ~ (Dem_1 + Ind_1) * index_ANexp_w3, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2238 -0.4878  0.3781  0.5716  1.4001 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.5998810  0.0717779  22.289  < 2e-16 ***
## Dem_1                 0.8249592  0.1119466   7.369 3.55e-13 ***
## Ind_1                 0.2139713  0.1335421   1.602  0.10941    
## index_ANexp_w3        0.0054756  0.0009082   6.029 2.30e-09 ***
## Dem_1:index_ANexp_w3 -0.0036566  0.0011586  -3.156  0.00165 ** 
## Ind_1:index_ANexp_w3 -0.0011850  0.0015197  -0.780  0.43571    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.095 on 1017 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1304, Adjusted R-squared:  0.1261 
## F-statistic: 30.51 on 5 and 1017 DF,  p-value: < 2.2e-16

d. simple effects Indep

## 
## Call:
## lm(formula = vaxxBehavior ~ (Rep_1 + Dem_1) * index_ANexp_w3, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2238 -0.4878  0.3781  0.5716  1.4001 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.813852   0.112612  16.107  < 2e-16 ***
## Rep_1                -0.213971   0.133542  -1.602 0.109405    
## Dem_1                 0.610988   0.141638   4.314 1.76e-05 ***
## index_ANexp_w3        0.004291   0.001218   3.521 0.000449 ***
## Rep_1:index_ANexp_w3  0.001185   0.001520   0.780 0.435707    
## Dem_1:index_ANexp_w3 -0.002472   0.001415  -1.747 0.081005 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.095 on 1017 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1304, Adjusted R-squared:  0.1261 
## F-statistic: 30.51 on 5 and 1017 DF,  p-value: < 2.2e-16

longitudinal: vaxx attitudes wave 2

2. controlling model

a. contrast coded model

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 + (DvR + IvDR) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3922 -0.8126  0.0527  0.9417  5.3563 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.2243326  0.0487478   4.602  4.4e-06 ***
## index_ANexp_w2      0.0018731  0.0005873   3.190  0.00144 ** 
## DvR                 0.1976645  0.0676764   2.921  0.00352 ** 
## IvDR                0.1634885  0.0762188   2.145  0.03205 *  
## index_ANexp_w1     -0.0009377  0.0005667  -1.655  0.09808 .  
## vaxxAttitudes_w1.c  0.7133174  0.0139803  51.023  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2475 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.5374, Adjusted R-squared:  0.5365 
## F-statistic: 575.1 on 5 and 2475 DF,  p-value: < 2.2e-16

- plot

## Warning: Removed 36 row(s) containing missing values (geom_path).

b. simple effects for Dem

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 + (Rep_1 + Ind_1) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3922 -0.8126  0.0527  0.9417  5.3563 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.1794515  0.0647671   2.771  0.00564 ** 
## index_ANexp_w2      0.0018731  0.0005873   3.190  0.00144 ** 
## Rep_1               0.1976645  0.0676764   2.921  0.00352 ** 
## Ind_1              -0.0646563  0.0832405  -0.777  0.43739    
## index_ANexp_w1     -0.0009377  0.0005667  -1.655  0.09808 .  
## vaxxAttitudes_w1.c  0.7133174  0.0139803  51.023  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2475 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.5374, Adjusted R-squared:  0.5365 
## F-statistic: 575.1 on 5 and 2475 DF,  p-value: < 2.2e-16

c. simple effects for Rep

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 + (Dem_1 + Ind_1) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3922 -0.8126  0.0527  0.9417  5.3563 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.3771160  0.0550935   6.845 9.61e-12 ***
## index_ANexp_w2      0.0018731  0.0005873   3.190  0.00144 ** 
## Dem_1              -0.1976645  0.0676764  -2.921  0.00352 ** 
## Ind_1              -0.2623208  0.0835444  -3.140  0.00171 ** 
## index_ANexp_w1     -0.0009377  0.0005667  -1.655  0.09808 .  
## vaxxAttitudes_w1.c  0.7133174  0.0139803  51.023  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2475 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.5374, Adjusted R-squared:  0.5365 
## F-statistic: 575.1 on 5 and 2475 DF,  p-value: < 2.2e-16

d. simple effects for Ind

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 + (Dem_1 + Rep_1) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3922 -0.8126  0.0527  0.9417  5.3563 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.1147953  0.0779642   1.472  0.14104    
## index_ANexp_w2      0.0018731  0.0005873   3.190  0.00144 ** 
## Dem_1               0.0646563  0.0832405   0.777  0.43739    
## Rep_1               0.2623208  0.0835444   3.140  0.00171 ** 
## index_ANexp_w1     -0.0009377  0.0005667  -1.655  0.09808 .  
## vaxxAttitudes_w1.c  0.7133174  0.0139803  51.023  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2475 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.5374, Adjusted R-squared:  0.5365 
## F-statistic: 575.1 on 5 and 2475 DF,  p-value: < 2.2e-16

2. interacting model

a. contrast coded model

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * (DvR + IvDR) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2202 -0.8507  0.0294  0.9298  5.3813 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.2094864  0.0498096   4.206 2.69e-05 ***
## index_ANexp_w2       0.0018826  0.0006132   3.070  0.00216 ** 
## DvR                  0.2878132  0.1002033   2.872  0.00411 ** 
## IvDR                 0.2511148  0.1104203   2.274  0.02304 *  
## index_ANexp_w1      -0.0008771  0.0005677  -1.545  0.12247    
## vaxxAttitudes_w1.c   0.7138195  0.0139922  51.016  < 2e-16 ***
## index_ANexp_w2:DvR  -0.0013902  0.0009974  -1.394  0.16348    
## index_ANexp_w2:IvDR -0.0014178  0.0010961  -1.294  0.19593    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2473 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.538,  Adjusted R-squared:  0.5367 
## F-statistic: 411.5 on 7 and 2473 DF,  p-value: < 2.2e-16

- plot

b. simple effects for Dem

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * (Rep_1 + Ind_1) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2202 -0.8507  0.0294  0.9298  5.3813 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.1484477  0.0790730   1.877  0.06059 .  
## index_ANexp_w2        0.0021098  0.0007181   2.938  0.00334 ** 
## Rep_1                 0.2878132  0.1002033   2.872  0.00411 ** 
## Ind_1                -0.1072082  0.1253468  -0.855  0.39247    
## index_ANexp_w1       -0.0008771  0.0005677  -1.545  0.12247    
## vaxxAttitudes_w1.c    0.7138195  0.0139922  51.016  < 2e-16 ***
## index_ANexp_w2:Rep_1 -0.0013902  0.0009974  -1.394  0.16348    
## index_ANexp_w2:Ind_1  0.0007227  0.0011530   0.627  0.53085    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2473 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.538,  Adjusted R-squared:  0.5367 
## F-statistic: 411.5 on 7 and 2473 DF,  p-value: < 2.2e-16

c. simple effects for Rep

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * (Dem_1 + Ind_1) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2202 -0.8507  0.0294  0.9298  5.3813 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.4362609  0.0652918   6.682 2.91e-11 ***
## index_ANexp_w2        0.0007196  0.0009008   0.799 0.424472    
## Dem_1                -0.2878132  0.1002033  -2.872 0.004110 ** 
## Ind_1                -0.3950214  0.1170207  -3.376 0.000748 ***
## index_ANexp_w1       -0.0008771  0.0005677  -1.545 0.122472    
## vaxxAttitudes_w1.c    0.7138195  0.0139922  51.016  < 2e-16 ***
## index_ANexp_w2:Dem_1  0.0013902  0.0009974   1.394 0.163485    
## index_ANexp_w2:Ind_1  0.0021129  0.0012532   1.686 0.091918 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2473 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.538,  Adjusted R-squared:  0.5367 
## F-statistic: 411.5 on 7 and 2473 DF,  p-value: < 2.2e-16

d. simple effects for Ind

## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * (Dem_1 + Rep_1) + 
##     index_ANexp_w1 + vaxxAttitudes_w1.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2202 -0.8507  0.0294  0.9298  5.3813 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.0412394  0.1005424   0.410 0.681717    
## index_ANexp_w2        0.0028325  0.0010498   2.698 0.007019 ** 
## Dem_1                 0.1072082  0.1253468   0.855 0.392472    
## Rep_1                 0.3950214  0.1170207   3.376 0.000748 ***
## index_ANexp_w1       -0.0008771  0.0005677  -1.545 0.122472    
## vaxxAttitudes_w1.c    0.7138195  0.0139922  51.016  < 2e-16 ***
## index_ANexp_w2:Dem_1 -0.0007227  0.0011530  -0.627 0.530854    
## index_ANexp_w2:Rep_1 -0.0021129  0.0012532  -1.686 0.091918 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.429 on 2473 degrees of freedom
##   (1372 observations deleted due to missingness)
## Multiple R-squared:  0.538,  Adjusted R-squared:  0.5367 
## F-statistic: 411.5 on 7 and 2473 DF,  p-value: < 2.2e-16

longitudinal: vaxx behavior

1. controlling model

a. contrast model

## 
## Call:
## lm(formula = vaxxBehavior ~ DvR + IvDR + index_ANexp_w1 + index_ANexp_w2 + 
##     index_ANexp_w3 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3390 -0.4288  0.1788  0.6060  2.0212 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.0369290  0.0546233  37.290  < 2e-16 ***
## DvR                -0.3432519  0.0753440  -4.556 5.92e-06 ***
## IvDR                0.0166757  0.0858511   0.194  0.84603    
## index_ANexp_w1     -0.0000276  0.0006551  -0.042  0.96641    
## index_ANexp_w2     -0.0005178  0.0007127  -0.727  0.46771    
## index_ANexp_w3      0.0026544  0.0006660   3.985 7.28e-05 ***
## vaxxAttitudes_w1.c  0.1939377  0.0231595   8.374  < 2e-16 ***
## vaxxAttitudes_w2.c  0.0711004  0.0232100   3.063  0.00225 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.964 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3155, Adjusted R-squared:  0.3103 
## F-statistic: 60.45 on 7 and 918 DF,  p-value: < 2.2e-16

- plot

## Warning: Removed 36 row(s) containing missing values (geom_path).

b. simple effects for Dem

## 
## Call:
## lm(formula = vaxxBehavior ~ Rep_1 + Ind_1 + index_ANexp_w1 + 
##     index_ANexp_w2 + index_ANexp_w3 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3390 -0.4288  0.1788  0.6060  2.0212 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.2140580  0.0722644  30.638  < 2e-16 ***
## Rep_1              -0.3432519  0.0753440  -4.556 5.92e-06 ***
## Ind_1              -0.1883017  0.0932665  -2.019  0.04378 *  
## index_ANexp_w1     -0.0000276  0.0006551  -0.042  0.96641    
## index_ANexp_w2     -0.0005178  0.0007127  -0.727  0.46771    
## index_ANexp_w3      0.0026544  0.0006660   3.985 7.28e-05 ***
## vaxxAttitudes_w1.c  0.1939377  0.0231595   8.374  < 2e-16 ***
## vaxxAttitudes_w2.c  0.0711004  0.0232100   3.063  0.00225 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.964 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3155, Adjusted R-squared:  0.3103 
## F-statistic: 60.45 on 7 and 918 DF,  p-value: < 2.2e-16

c. simple effects for Rep

## 
## Call:
## lm(formula = vaxxBehavior ~ Dem_1 + Ind_1 + index_ANexp_w1 + 
##     index_ANexp_w2 + index_ANexp_w3 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3390 -0.4288  0.1788  0.6060  2.0212 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.8708060  0.0609024  30.718  < 2e-16 ***
## Dem_1               0.3432519  0.0753440   4.556 5.92e-06 ***
## Ind_1               0.1549503  0.0942366   1.644  0.10046    
## index_ANexp_w1     -0.0000276  0.0006551  -0.042  0.96641    
## index_ANexp_w2     -0.0005178  0.0007127  -0.727  0.46771    
## index_ANexp_w3      0.0026544  0.0006660   3.985 7.28e-05 ***
## vaxxAttitudes_w1.c  0.1939377  0.0231595   8.374  < 2e-16 ***
## vaxxAttitudes_w2.c  0.0711004  0.0232100   3.063  0.00225 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.964 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3155, Adjusted R-squared:  0.3103 
## F-statistic: 60.45 on 7 and 918 DF,  p-value: < 2.2e-16

d. simple effects for Ind

## 
## Call:
## lm(formula = vaxxBehavior ~ Dem_1 + Rep_1 + index_ANexp_w1 + 
##     index_ANexp_w2 + index_ANexp_w3 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3390 -0.4288  0.1788  0.6060  2.0212 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.0257563  0.0882864  22.945  < 2e-16 ***
## Dem_1               0.1883017  0.0932665   2.019  0.04378 *  
## Rep_1              -0.1549503  0.0942366  -1.644  0.10046    
## index_ANexp_w1     -0.0000276  0.0006551  -0.042  0.96641    
## index_ANexp_w2     -0.0005178  0.0007127  -0.727  0.46771    
## index_ANexp_w3      0.0026544  0.0006660   3.985 7.28e-05 ***
## vaxxAttitudes_w1.c  0.1939377  0.0231595   8.374  < 2e-16 ***
## vaxxAttitudes_w2.c  0.0711004  0.0232100   3.063  0.00225 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.964 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3155, Adjusted R-squared:  0.3103 
## F-statistic: 60.45 on 7 and 918 DF,  p-value: < 2.2e-16

2. interacting model

a. contrast coded model

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (DvR + IvDR) + index_ANexp_w1 + 
##     index_ANexp_w2 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2229 -0.4229  0.1671  0.5958  2.0499 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.0432455  0.0560006  36.486  < 2e-16 ***
## index_ANexp_w3       0.0028999  0.0006972   4.159 3.49e-05 ***
## DvR                 -0.4814893  0.1083585  -4.443 9.93e-06 ***
## IvDR                 0.0254973  0.1171618   0.218  0.82777    
## index_ANexp_w1      -0.0001013  0.0006606  -0.153  0.87810    
## index_ANexp_w2      -0.0005659  0.0007135  -0.793  0.42791    
## vaxxAttitudes_w1.c   0.1894784  0.0232998   8.132 1.36e-15 ***
## vaxxAttitudes_w2.c   0.0730067  0.0232198   3.144  0.00172 ** 
## index_ANexp_w3:DvR   0.0019353  0.0010856   1.783  0.07497 .  
## index_ANexp_w3:IvDR  0.0001644  0.0012387   0.133  0.89445    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9634 on 916 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3179, Adjusted R-squared:  0.3112 
## F-statistic: 47.43 on 9 and 916 DF,  p-value: < 2.2e-16

- plot

b. simple effects for Dem

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (Rep_1 + Ind_1) + 
##     index_ANexp_w1 + index_ANexp_w2 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2229 -0.4229  0.1671  0.5958  2.0499 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.2924042  0.0864780  26.509  < 2e-16 ***
## index_ANexp_w3        0.0019866  0.0008006   2.481  0.01327 *  
## Rep_1                -0.4814893  0.1083585  -4.443 9.93e-06 ***
## Ind_1                -0.2662420  0.1326003  -2.008  0.04495 *  
## index_ANexp_w1       -0.0001013  0.0006606  -0.153  0.87810    
## index_ANexp_w2       -0.0005659  0.0007135  -0.793  0.42791    
## vaxxAttitudes_w1.c    0.1894784  0.0232998   8.132 1.36e-15 ***
## vaxxAttitudes_w2.c    0.0730067  0.0232198   3.144  0.00172 ** 
## index_ANexp_w3:Rep_1  0.0019353  0.0010856   1.783  0.07497 .  
## index_ANexp_w3:Ind_1  0.0008032  0.0013032   0.616  0.53781    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9634 on 916 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3179, Adjusted R-squared:  0.3112 
## F-statistic: 47.43 on 9 and 916 DF,  p-value: < 2.2e-16

c. simple effects for Rep

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (Dem_1 + Ind_1) + 
##     index_ANexp_w1 + index_ANexp_w2 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2229 -0.4229  0.1671  0.5958  2.0499 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.8109149  0.0702822  25.766  < 2e-16 ***
## index_ANexp_w3        0.0039218  0.0010092   3.886 0.000109 ***
## Dem_1                 0.4814893  0.1083585   4.443 9.93e-06 ***
## Ind_1                 0.2152473  0.1254660   1.716 0.086577 .  
## index_ANexp_w1       -0.0001013  0.0006606  -0.153 0.878098    
## index_ANexp_w2       -0.0005659  0.0007135  -0.793 0.427914    
## vaxxAttitudes_w1.c    0.1894784  0.0232998   8.132 1.36e-15 ***
## vaxxAttitudes_w2.c    0.0730067  0.0232198   3.144 0.001719 ** 
## index_ANexp_w3:Dem_1 -0.0019353  0.0010856  -1.783 0.074968 .  
## index_ANexp_w3:Ind_1 -0.0011320  0.0013999  -0.809 0.418911    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9634 on 916 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3179, Adjusted R-squared:  0.3112 
## F-statistic: 47.43 on 9 and 916 DF,  p-value: < 2.2e-16

d. simple effects for Ind

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (Dem_1 + Rep_1) + 
##     index_ANexp_w1 + index_ANexp_w2 + vaxxAttitudes_w1.c + vaxxAttitudes_w2.c, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2229 -0.4229  0.1671  0.5958  2.0499 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.0261623  0.1097898  18.455  < 2e-16 ***
## index_ANexp_w3        0.0027898  0.0011894   2.346  0.01921 *  
## Dem_1                 0.2662420  0.1326003   2.008  0.04495 *  
## Rep_1                -0.2152473  0.1254660  -1.716  0.08658 .  
## index_ANexp_w1       -0.0001013  0.0006606  -0.153  0.87810    
## index_ANexp_w2       -0.0005659  0.0007135  -0.793  0.42791    
## vaxxAttitudes_w1.c    0.1894784  0.0232998   8.132 1.36e-15 ***
## vaxxAttitudes_w2.c    0.0730067  0.0232198   3.144  0.00172 ** 
## index_ANexp_w3:Dem_1 -0.0008032  0.0013032  -0.616  0.53781    
## index_ANexp_w3:Rep_1  0.0011320  0.0013999   0.809  0.41891    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9634 on 916 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3179, Adjusted R-squared:  0.3112 
## F-statistic: 47.43 on 9 and 916 DF,  p-value: < 2.2e-16

longitudinal: vaxx behavior with avg w1 + w2

1. controlling model

a. contrast coded model

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 + (DvR + IvDR) + avgVaxxAttitudes.c + 
##     avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4220 -0.4483  0.1976  0.5982  2.0248 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.0005718  0.0588113  34.017  < 2e-16 ***
## index_ANexp_w3      0.0027630  0.0006653   4.153 3.59e-05 ***
## DvR                -0.3719694  0.0747934  -4.973 7.85e-07 ***
## IvDR                0.0191846  0.0861244   0.223    0.824    
## avgVaxxAttitudes.c  0.2650621  0.0168063  15.772  < 2e-16 ***
## avgANexp.c         -0.0005143  0.0007275  -0.707    0.480    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9673 on 920 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3092, Adjusted R-squared:  0.3055 
## F-statistic: 82.37 on 5 and 920 DF,  p-value: < 2.2e-16

- plot

## Warning: Removed 36 row(s) containing missing values (geom_path).

b. simple effects for Dem

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 + (Rep_1 + Ind_1) + 
##     avgVaxxAttitudes.c + avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4220 -0.4483  0.1976  0.5982  2.0248 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.1928874  0.0705025  31.104  < 2e-16 ***
## index_ANexp_w3      0.0027630  0.0006653   4.153 3.59e-05 ***
## Rep_1              -0.3719694  0.0747934  -4.973 7.85e-07 ***
## Ind_1              -0.2051693  0.0934089  -2.196   0.0283 *  
## avgVaxxAttitudes.c  0.2650621  0.0168063  15.772  < 2e-16 ***
## avgANexp.c         -0.0005143  0.0007275  -0.707   0.4798    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9673 on 920 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3092, Adjusted R-squared:  0.3055 
## F-statistic: 82.37 on 5 and 920 DF,  p-value: < 2.2e-16

c. simple effects for Rep

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 + (Dem_1 + Ind_1) + 
##     avgVaxxAttitudes.c + avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4220 -0.4483  0.1976  0.5982  2.0248 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.8209180  0.0711424  25.595  < 2e-16 ***
## index_ANexp_w3      0.0027630  0.0006653   4.153 3.59e-05 ***
## Dem_1               0.3719694  0.0747934   4.973 7.85e-07 ***
## Ind_1               0.1668001  0.0943749   1.767   0.0775 .  
## avgVaxxAttitudes.c  0.2650621  0.0168063  15.772  < 2e-16 ***
## avgANexp.c         -0.0005143  0.0007275  -0.707   0.4798    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9673 on 920 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3092, Adjusted R-squared:  0.3055 
## F-statistic: 82.37 on 5 and 920 DF,  p-value: < 2.2e-16

d. simple effects for Ind

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 + (Dem_1 + Rep_1) + 
##     avgVaxxAttitudes.c + avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4220 -0.4483  0.1976  0.5982  2.0248 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.9877181  0.0900352  22.077  < 2e-16 ***
## index_ANexp_w3      0.0027630  0.0006653   4.153 3.59e-05 ***
## Dem_1               0.2051693  0.0934089   2.196   0.0283 *  
## Rep_1              -0.1668001  0.0943749  -1.767   0.0775 .  
## avgVaxxAttitudes.c  0.2650621  0.0168063  15.772  < 2e-16 ***
## avgANexp.c         -0.0005143  0.0007275  -0.707   0.4798    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9673 on 920 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3092, Adjusted R-squared:  0.3055 
## F-statistic: 82.37 on 5 and 920 DF,  p-value: < 2.2e-16

2. interaction model

a. contrast coded model

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (DvR + IvDR) + avgVaxxAttitudes.c + 
##     avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2858 -0.4548  0.1777  0.5942  2.0570 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.9964751  0.0592640  33.688  < 2e-16 ***
## index_ANexp_w3       0.0030347  0.0006944   4.370 1.38e-05 ***
## DvR                 -0.5264715  0.1072889  -4.907 1.09e-06 ***
## IvDR                 0.0293396  0.1173679   0.250   0.8027    
## avgVaxxAttitudes.c   0.2621725  0.0168810  15.531  < 2e-16 ***
## avgANexp.c          -0.0006535  0.0007319  -0.893   0.3721    
## index_ANexp_w3:DvR   0.0021859  0.0010850   2.015   0.0442 *  
## index_ANexp_w3:IvDR  0.0001805  0.0012367   0.146   0.8840    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9663 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3123, Adjusted R-squared:  0.307 
## F-statistic: 59.55 on 7 and 918 DF,  p-value: < 2.2e-16

- plot

b. simple effects for Dem

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (Rep_1 + Ind_1) + 
##     avgVaxxAttitudes.c + avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2858 -0.4548  0.1777  0.5942  2.0570 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.2693929  0.0830672  27.320  < 2e-16 ***
## index_ANexp_w3        0.0020013  0.0008025   2.494   0.0128 *  
## Rep_1                -0.5264715  0.1072889  -4.907 1.09e-06 ***
## Ind_1                -0.2925754  0.1323784  -2.210   0.0273 *  
## avgVaxxAttitudes.c    0.2621725  0.0168810  15.531  < 2e-16 ***
## avgANexp.c           -0.0006535  0.0007319  -0.893   0.3721    
## index_ANexp_w3:Rep_1  0.0021859  0.0010850   2.015   0.0442 *  
## index_ANexp_w3:Ind_1  0.0009125  0.0013012   0.701   0.4833    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9663 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3123, Adjusted R-squared:  0.307 
## F-statistic: 59.55 on 7 and 918 DF,  p-value: < 2.2e-16

c. simple effects for Rep

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (Dem_1 + Ind_1) + 
##     avgVaxxAttitudes.c + avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2858 -0.4548  0.1777  0.5942  2.0570 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.7429214  0.0823207  21.172  < 2e-16 ***
## index_ANexp_w3        0.0041872  0.0010072   4.157 3.52e-05 ***
## Dem_1                 0.5264715  0.1072889   4.907 1.09e-06 ***
## Ind_1                 0.2338961  0.1256258   1.862   0.0629 .  
## avgVaxxAttitudes.c    0.2621725  0.0168810  15.531  < 2e-16 ***
## avgANexp.c           -0.0006535  0.0007319  -0.893   0.3721    
## index_ANexp_w3:Dem_1 -0.0021859  0.0010850  -2.015   0.0442 *  
## index_ANexp_w3:Ind_1 -0.0012734  0.0013980  -0.911   0.3626    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9663 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3123, Adjusted R-squared:  0.307 
## F-statistic: 59.55 on 7 and 918 DF,  p-value: < 2.2e-16

d. simple effects for Ind

## 
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * (Dem_1 + Rep_1) + 
##     avgVaxxAttitudes.c + avgANexp.c, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2858 -0.4548  0.1777  0.5942  2.0570 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.9768175  0.1087707  18.174   <2e-16 ***
## index_ANexp_w3        0.0029138  0.0011832   2.463   0.0140 *  
## Dem_1                 0.2925754  0.1323784   2.210   0.0273 *  
## Rep_1                -0.2338961  0.1256258  -1.862   0.0629 .  
## avgVaxxAttitudes.c    0.2621725  0.0168810  15.531   <2e-16 ***
## avgANexp.c           -0.0006535  0.0007319  -0.893   0.3721    
## index_ANexp_w3:Dem_1 -0.0009125  0.0013012  -0.701   0.4833    
## index_ANexp_w3:Rep_1  0.0012734  0.0013980   0.911   0.3626    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9663 on 918 degrees of freedom
##   (2927 observations deleted due to missingness)
## Multiple R-squared:  0.3123, Adjusted R-squared:  0.307 
## F-statistic: 59.55 on 7 and 918 DF,  p-value: < 2.2e-16

race models

wave 1

. vaxxAttitudes ~ ANALYTIC + (black vs. white)

m9.cc <- lm(vaxxAttitudes_w1 ~ (bVw + bwVo) * index_ANexp_w1, data = dw)
summary(m9.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (bVw + bwVo) * index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0772 -1.6377  0.3328  1.8025  3.7097 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.1282494  0.0763902  -1.679 0.093271 .  
## bVw                  0.7147115  0.1864353   3.834 0.000129 ***
## bwVo                 0.4481257  0.1084244   4.133 3.67e-05 ***
## index_ANexp_w1       0.0066100  0.0005854  11.291  < 2e-16 ***
## bVw:index_ANexp_w1   0.0018346  0.0014284   1.284 0.199098    
## bwVo:index_ANexp_w1 -0.0013567  0.0008311  -1.632 0.102684    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.076 on 3340 degrees of freedom
##   (507 observations deleted due to missingness)
## Multiple R-squared:  0.07098,    Adjusted R-squared:  0.06959 
## F-statistic: 51.04 on 5 and 3340 DF,  p-value: < 2.2e-16

- plot

. vaxxAttitudes ~ ANALYTIC * (black vs. white) + party

m10.cc <- lm(vaxxAttitudes_w1 ~ (bVw + bwVo) * index_ANexp_w1 + DvR + IvDR, data = dw)
summary(m10.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (bVw + bwVo) * index_ANexp_w1 + 
##     DvR + IvDR, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3623 -1.6942  0.2234  1.6957  4.4502 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.2380724  0.0753864  -3.158   0.0016 ** 
## bVw                  1.1988647  0.1875947   6.391 1.88e-10 ***
## bwVo                 0.4992539  0.1061180   4.705 2.65e-06 ***
## index_ANexp_w1       0.0054148  0.0005826   9.295  < 2e-16 ***
## DvR                 -0.9927525  0.0850982 -11.666  < 2e-16 ***
## IvDR                 0.5418547  0.0896199   6.046 1.65e-09 ***
## bVw:index_ANexp_w1   0.0006130  0.0014113   0.434   0.6640    
## bwVo:index_ANexp_w1 -0.0011724  0.0008167  -1.436   0.1512    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.025 on 3328 degrees of freedom
##   (517 observations deleted due to missingness)
## Multiple R-squared:  0.1187, Adjusted R-squared:  0.1169 
## F-statistic: 64.05 on 7 and 3328 DF,  p-value: < 2.2e-16

- plot

wave 2

. vaxxAttitudes ~ ANALYTIC + (black vs. white)

m9.cc <- lm(vaxxAttitudes_w2 ~ (bVw + bwVo) * index_ANexp_w2, data = dw)
summary(m9.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ (bVw + bwVo) * index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1494 -1.4225  0.0235  1.7543  3.9451 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.3731620  0.0851781  -4.381 1.23e-05 ***
## bVw                  0.9169914  0.2115370   4.335 1.52e-05 ***
## bwVo                 0.2268305  0.1187656   1.910   0.0563 .  
## index_ANexp_w2       0.0064572  0.0006860   9.413  < 2e-16 ***
## bVw:index_ANexp_w2   0.0002905  0.0017187   0.169   0.8658    
## bwVo:index_ANexp_w2 -0.0004274  0.0009475  -0.451   0.6520    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.043 on 2527 degrees of freedom
##   (1320 observations deleted due to missingness)
## Multiple R-squared:  0.05714,    Adjusted R-squared:  0.05527 
## F-statistic: 30.63 on 5 and 2527 DF,  p-value: < 2.2e-16

- plot

. vaxxAttitudes ~ ANALYTIC * (black vs. white) + party

m10.cc <- lm(vaxxAttitudes_w2 ~ (bVw + bwVo) * index_ANexp_w2 + DvR + IvDR, data = dw)
summary(m10.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ (bVw + bwVo) * index_ANexp_w2 + 
##     DvR + IvDR, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7454 -1.4606  0.0959  1.7625  4.4133 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.4249936  0.0862943  -4.925 8.99e-07 ***
## bVw                  1.1925530  0.2153127   5.539 3.37e-08 ***
## bwVo                 0.3052345  0.1206889   2.529   0.0115 *  
## index_ANexp_w2       0.0054401  0.0006989   7.784 1.02e-14 ***
## DvR                 -0.5750815  0.0976408  -5.890 4.39e-09 ***
## IvDR                 0.4743602  0.1076767   4.405 1.10e-05 ***
## bVw:index_ANexp_w2  -0.0005195  0.0017166  -0.303   0.7622    
## bwVo:index_ANexp_w2 -0.0003607  0.0009537  -0.378   0.7053    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.021 on 2490 degrees of freedom
##   (1355 observations deleted due to missingness)
## Multiple R-squared:  0.07727,    Adjusted R-squared:  0.07468 
## F-statistic: 29.79 on 7 and 2490 DF,  p-value: < 2.2e-16

- plot

wave 3

. vaxxBehavior ~ ANALYTIC + (black vs. white)

m9.cc <- lm(vaxxBehavior ~ (bVw + bwVo) * index_ANexp_w3, data = dw)
summary(m9.cc)
## 
## Call:
## lm(formula = vaxxBehavior ~ (bVw + bwVo) * index_ANexp_w3, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3407 -0.2765  0.4347  0.8526  1.1376 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.9824205  0.0752718  26.337  < 2e-16 ***
## bVw                 -0.2148697  0.1941839  -1.107   0.2688    
## bwVo                 0.0251809  0.1004700   0.251   0.8021    
## index_ANexp_w3       0.0039245  0.0006093   6.441 1.81e-10 ***
## bVw:index_ANexp_w3   0.0028467  0.0015727   1.810   0.0706 .  
## bwVo:index_ANexp_w3  0.0007264  0.0008129   0.894   0.3718    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.127 on 1041 degrees of freedom
##   (2806 observations deleted due to missingness)
## Multiple R-squared:  0.08156,    Adjusted R-squared:  0.07715 
## F-statistic: 18.49 on 5 and 1041 DF,  p-value: < 2.2e-16

- plot

. vaxxBehavior ~ ANALYTIC * (black vs. white) + party

m10.cc <- lm(vaxxBehavior ~ (bVw + bwVo) * index_ANexp_w3 + DvR + IvDR, data = dw)
summary(m10.cc)
## 
## Call:
## lm(formula = vaxxBehavior ~ (bVw + bwVo) * index_ANexp_w3 + DvR + 
##     IvDR, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0033 -0.3820  0.3366  0.7237  1.3182 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.9474228  0.0755492  25.777  < 2e-16 ***
## bVw                  0.0308560  0.1933709   0.160    0.873    
## bwVo                 0.0537625  0.1029014   0.522    0.601    
## index_ANexp_w3       0.0030245  0.0006183   4.892 1.16e-06 ***
## DvR                 -0.5916911  0.0814379  -7.266 7.40e-13 ***
## IvDR                 0.1261486  0.0933416   1.351    0.177    
## bVw:index_ANexp_w3   0.0021947  0.0015477   1.418    0.156    
## bwVo:index_ANexp_w3  0.0007038  0.0008247   0.853    0.394    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.098 on 1015 degrees of freedom
##   (2830 observations deleted due to missingness)
## Multiple R-squared:  0.1284, Adjusted R-squared:  0.1223 
## F-statistic: 21.35 on 7 and 1015 DF,  p-value: < 2.2e-16

- plot

area models

wave 1

. vaxxAttitudes ~ ANALYTIC + (rural vs. other)

m9.cc <- lm(vaxxAttitudes_w1 ~ (ruralVother) * index_ANexp_w1, data = dw)
summary(m9.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ (ruralVother) * index_ANexp_w1, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2457 -1.6085  0.2599  1.8258  3.1401 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -0.0268101  0.0670421  -0.400   0.6893    
## ruralVother                 0.2266196  0.1340843   1.690   0.0911 .  
## index_ANexp_w1              0.0059604  0.0006673   8.933   <2e-16 ***
## ruralVother:index_ANexp_w1  0.0014290  0.0013345   1.071   0.2844    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.095 on 3336 degrees of freedom
##   (513 observations deleted due to missingness)
## Multiple R-squared:  0.05406,    Adjusted R-squared:  0.05321 
## F-statistic: 63.55 on 3 and 3336 DF,  p-value: < 2.2e-16

- plot

. vaxxAttitudes ~ ANALYTIC * (black vs. white) + party

m10.cc <- lm(vaxxAttitudes_w1 ~ ruralVother * index_ANexp_w1 + DvR + IvDR, data = dw)
summary(m10.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w1 ~ ruralVother * index_ANexp_w1 + 
##     DvR + IvDR, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2974 -1.6885  0.2084  1.8092  3.3611 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 0.0238663  0.0678988   0.351    0.725    
## ruralVother                 0.0802455  0.1328275   0.604    0.546    
## index_ANexp_w1              0.0044374  0.0006764   6.561 6.19e-11 ***
## DvR                        -0.7548458  0.0834855  -9.042  < 2e-16 ***
## IvDR                        0.5147483  0.0908241   5.668 1.57e-08 ***
## ruralVother:index_ANexp_w1  0.0021627  0.0013172   1.642    0.101    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3324 degrees of freedom
##   (523 observations deleted due to missingness)
## Multiple R-squared:  0.08652,    Adjusted R-squared:  0.08515 
## F-statistic: 62.97 on 5 and 3324 DF,  p-value: < 2.2e-16

- plot

wave 2

. vaxxAttitudes ~ ANALYTIC + (black vs. white)

m9.cc <- lm(vaxxAttitudes_w2 ~ ruralVother * index_ANexp_w2, data = dw)
summary(m9.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ ruralVother * index_ANexp_w2, 
##     data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7472 -1.3943 -0.0094  1.7752  3.2704 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -0.1445784  0.0727307  -1.988   0.0469 *  
## ruralVother                 0.2516786  0.1454613   1.730   0.0837 .  
## index_ANexp_w2              0.0055989  0.0007881   7.104 1.57e-12 ***
## ruralVother:index_ANexp_w2 -0.0001416  0.0015762  -0.090   0.9284    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.056 on 2480 degrees of freedom
##   (1369 observations deleted due to missingness)
## Multiple R-squared:  0.03881,    Adjusted R-squared:  0.03764 
## F-statistic: 33.37 on 3 and 2480 DF,  p-value: < 2.2e-16

- plot

. vaxxAttitudes ~ ANALYTIC * (black vs. white) + party

m10.cc <- lm(vaxxAttitudes_w2 ~ ruralVother * index_ANexp_w2 + DvR + IvDR, data = dw)
summary(m10.cc)
## 
## Call:
## lm(formula = vaxxAttitudes_w2 ~ ruralVother * index_ANexp_w2 + 
##     DvR + IvDR, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6238 -1.4535  0.0791  1.7289  3.5527 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -0.1464634  0.0754152  -1.942 0.052239 .  
## ruralVother                 0.1866780  0.1454117   1.284 0.199336    
## index_ANexp_w2              0.0046787  0.0008140   5.748 1.02e-08 ***
## DvR                        -0.3602081  0.0957839  -3.761 0.000173 ***
## IvDR                        0.4669786  0.1087877   4.293 1.83e-05 ***
## ruralVother:index_ANexp_w2  0.0002409  0.0015717   0.153 0.878193    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.046 on 2471 degrees of freedom
##   (1376 observations deleted due to missingness)
## Multiple R-squared:  0.05142,    Adjusted R-squared:  0.0495 
## F-statistic: 26.79 on 5 and 2471 DF,  p-value: < 2.2e-16

- plot

wave 3

. vaxxBehavior ~ ANALYTIC + (black vs. white)

m9.cc <- lm(vaxxBehavior ~ ruralVother * index_ANexp_w3, data = dw)
summary(m9.cc)
## 
## Call:
## lm(formula = vaxxBehavior ~ ruralVother * index_ANexp_w3, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2057 -0.2824  0.3934  0.8199  1.3717 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 1.8185788  0.0594456  30.592  < 2e-16 ***
## ruralVother                 0.3805089  0.1188912   3.200  0.00141 ** 
## index_ANexp_w3              0.0048173  0.0007273   6.623 5.71e-11 ***
## ruralVother:index_ANexp_w3 -0.0015632  0.0014547  -1.075  0.28282    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.12 on 1009 degrees of freedom
##   (2840 observations deleted due to missingness)
## Multiple R-squared:  0.08653,    Adjusted R-squared:  0.08382 
## F-statistic: 31.86 on 3 and 1009 DF,  p-value: < 2.2e-16

- plot

. vaxxBehavior ~ ANALYTIC * (black vs. white) + party

m10.cc <- lm(vaxxBehavior ~ ruralVother * index_ANexp_w3 + DvR + IvDR, data = dw)
summary(m10.cc)
## 
## Call:
## lm(formula = vaxxBehavior ~ ruralVother * index_ANexp_w3 + DvR + 
##     IvDR, data = dw)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0854 -0.4130  0.3494  0.7578  1.4898 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 1.8850462  0.0605729  31.120  < 2e-16 ***
## ruralVother                 0.2776550  0.1173689   2.366   0.0182 *  
## index_ANexp_w3              0.0033582  0.0007433   4.518 6.99e-06 ***
## DvR                        -0.5473833  0.0801065  -6.833 1.44e-11 ***
## IvDR                        0.1141358  0.0929579   1.228   0.2198    
## ruralVother:index_ANexp_w3 -0.0004389  0.0014347  -0.306   0.7597    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.096 on 1004 degrees of freedom
##   (2843 observations deleted due to missingness)
## Multiple R-squared:  0.1279, Adjusted R-squared:  0.1236 
## F-statistic: 29.45 on 5 and 1004 DF,  p-value: < 2.2e-16

- plot