Setup

library(pacman); p_load(psych, lavaan, EGAnet, sna, ggplot2, egg)

ZREG <- function(B1, B2, SEB1, SEB2) {
  Z = (B1-B2)/sqrt((SEB1)^2 + (SEB2)^2)
  return(Z)}

#Automatic Kaiser-Guttman Test

KGA <- function(x){
  SL = x$e.values
  which.min(SL >= 1) - 1}

#Automatic Warne & Larsen (2014) Kaiser-Guttman revision

MAPA <- function(x, a = 0.05, s = 2, d = 3){
  LE = x$e.values[x$factors]; LECIL = LE - abs((qnorm(a/s) * sqrt((2*LE^2)/(x$n.obs)))); LECIU = LE + abs((qnorm(a/s) * sqrt((2*LE^2)/(x$n.obs)))) 
  DEC <- ifelse(LECIL < 1, "dropped.", "retained.")
  S1 <- cat(paste("The smallest factor had an eigenvalue of", round((LE), d), "with a confidence interval of", round((LECIL), d), "to", round((LECIU), d), "so the factor should be", DEC))}

#Automatic Percent of the Total Variance

PTV <- function(x){
  TV = x$e.values/length(x$e.values)
  return(TV)}

estimate.ED <- function (x, sample.size = NULL, rel.values = NULL, cov.mat = FALSE, small.sample.c = FALSE, round.digits = 2, print.summary = TRUE) {

indefinite.matrix = FALSE

if (is.data.frame(x) == TRUE) {
    sample.size = nrow(x)
    if (cov.mat == FALSE) {
        matrix = cor(x, use="pairwise.complete.obs")}
    else matrix = cov(x, use="pairwise.complete.obs")}
else {
    matrix = x
    if ( ((sum(diag(matrix)) != nrow(matrix) ) | (var(diag(matrix)) != 0)) & (cov.mat == FALSE) ) { 
        matrix = cov2cor(matrix)}}
if ( (cov.mat == FALSE) & (is.null(rel.values) == FALSE) ) {
    rel.matrix = sqrt(crossprod(t(rel.values), t(rel.values)))
    diag(rel.matrix) = 1
    matrix = matrix/rel.matrix}
output = list()
if (sum(eigen(matrix)$values < 0) > 0) {
    indefinite.matrix = TRUE
    matrix = nearPD(matrix, corr=!cov.mat)$mat}
eigen_val = sort(eigen(matrix)$values)
eigen_val.c = NULL
if (small.sample.c == TRUE) {
    if (is.data.frame(x) == TRUE) {  
        if(cov.mat == FALSE) {
            if(is.null(rel.values) == TRUE) {
                suppress = file()
                sink(file = suppress)  
                tmp = tau_estimate(as.matrix(scale(x)))
                sink()
                close(suppress)
                eigen_val.c = tmp } else {  
                sink("NUL") 
                tmp = nlshrink_cov(as.matrix(scale(x)))
                sink()
                matrix.c = tmp/rel.matrix 
                if (sum(eigen(matrix.c)$values < 0) > 0) {
                    indefinite.matrix = TRUE
                    matrix.c = nearPD(matrix.c, corr=TRUE)$mat }
                eigen_val.c = sort(eigen(matrix.c)$values)}} else {
            suppress = file()
            sink(file = suppress)  
            tmp = tau_estimate(as.matrix(x))
            sink()
            close(suppress)
            eigen_val.c = tmp   }}
    else if (is.null(sample.size) == FALSE) {  
        eigen_val.rounded = round(eigen_val, 6) 
        eigen_val.c = eigen_val
        function.body = paste(eigen_val.rounded[1],"/(",eigen_val.rounded[1],"-x)")
        for(index in 2:length(eigen_val.rounded)) {
            function.body = paste(function.body, "+",eigen_val.rounded[index],"/(",eigen_val.rounded[index],"-x)")}
        function.body = paste(function.body,"-",sample.size)
        eval(parse(text = paste("f = function(x) {", function.body,"}")))
        unique.eigen = sum(!duplicated(eigen_val.rounded[eigen_val.rounded != 0]) ) 
        mu_val = uniroot.all(f, interval=c(0, max(eigen_val.rounded)), n=10000000) 
        mu_val = mu_val[which( abs(f(mu_val)) %in% sort(abs(f(mu_val)))[1:unique.eigen]  ) ]   
        mu.index = 1
            for (index in 1:length(eigen_val.rounded)) {   
                if (eigen_val.rounded[index] != 0) {
                    if (duplicated(eigen_val.rounded)[index] == FALSE) {
                        eigen_val.c[index] = sample.size * (eigen_val.rounded[index] - mu_val[mu.index])
                        mu.index = mu.index + 1
                    } else {
                        eigen_val.c[index] = eigen_val.c[index-1]}}}}}

K = length(eigen_val)   
eigen_sum = sum(eigen_val)
norm_eigen_val = eigen_val/eigen_sum
eigen_var = var(eigen_val)*((K-1)/K)
output$n1 = prod(norm_eigen_val^(-norm_eigen_val))  
output$n2 = (eigen_sum^2)/sum(eigen_val^2) 
output$nInf = eigen_sum/max(eigen_val)    
output$nC = K - ((K^2)/(eigen_sum^2))*eigen_var  

if ( (small.sample.c == TRUE) & (is.null(eigen_val.c) == FALSE) ) { 
    eigen_sum.c = sum(eigen_val.c)
    norm_eigen_val.c = eigen_val.c/eigen_sum.c
    eigen_var.c = var(eigen_val.c)*((K-1)/K)
    output$n1.c = max(prod(norm_eigen_val.c^(-norm_eigen_val.c)), output$n1)
    output$n2.c = max((eigen_sum.c^2)/sum(eigen_val.c^2), output$n2)
    output$nInf.c = max(eigen_sum.c/max(eigen_val.c), output$nInf) 
    output$nC.c = max(K - ((K^2)/(eigen_sum.c^2))*eigen_var.c, output$nC) }

if (print.summary == TRUE) {
    description = "ED estimated from the"
    if (cov.mat == TRUE) {description = paste(description, "covariance matrix;")}
    else {description = paste(description, "correlation matrix;")}
    if (is.null(rel.values) == FALSE) {description = paste(description, "disattenuated;")}
    else {description = paste(description, "no disattenuation;")}
    if ( (small.sample.c == TRUE) & (is.null(eigen_val.c) == FALSE) ) {
        if (is.data.frame(x) == TRUE) {description = paste(description, "corrected for small-sample bias (Ledoit & Wolf 2015).")}
        else {description = paste(description, "corrected for small-sample bias (Mestre 2008).")}}
    else {description = paste(description, "no small-sample correction.")}
    if (indefinite.matrix == TRUE) {description = paste(description, "Warning: an indefinite matrix was detected and replaced with the nearest positive definite matrix.")} 
    print(description, quote = FALSE)
    cat("\n")}
return(lapply(output,round,round.digits))}

FITM <- c("chisq", "df", "nPar", "cfi", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "aic", "bic", "srmr")

#Fleishman & Hempel (1954)

lowerFH54 <- ' 
1                                                                                                   
0.75    1                                                                                               
0.73    0.85    1                                                                                           
0.66    0.85    0.85    1                                                                                       
0.64    0.84    0.83    0.9 1                                                                                   
0.57    0.79    0.79    0.88    0.9 1                                                                               
0.63    0.77    0.81    0.86    0.87    0.85    1                                                                           
0.59    0.79    0.79    0.85    0.86    0.86    0.9 1                                                                       
0.28    0.3 0.3 0.26    0.22    0.23    0.23    0.24    1                                                                   
0.51    0.46    0.45    0.4 0.37    0.34    0.36    0.34    0.63    1                                                               
0.49    0.4 0.39    0.36    0.36    0.29    0.33    0.3 0.32    0.54    1                                                           
0.38    0.31    0.29    0.27    0.25    0.2 0.25    0.24    0.23    0.43    0.52    1                                                       
0.5 0.45    0.46    0.41    0.37    0.31    0.32    0.35    0.44    0.61    0.46    0.29    1                                                   
0.55    0.41    0.44    0.38    0.37    0.27    0.33    0.29    0.34    0.59    0.52    0.3 0.57    1                                               
0.43    0.47    0.45    0.42    0.39    0.34    0.36    0.38    0.23    0.4 0.34    0.17    0.44    0.43    1                                           
0.5 0.38    0.39    0.34    0.32    0.24    0.29    0.29    0.45    0.61    0.43    0.32    0.58    0.6 0.33    1                                       
0.44    0.38    0.42    0.35    0.31    0.27    0.28    0.3 0.42    0.51    0.3 0.3 0.4 0.44    0.35    0.53    1                                   
0.47    0.39    0.46    0.4 0.38    0.31    0.39    0.35    0.31    0.54    0.44    0.32    0.58    0.49    0.46    0.59    0.46    1                               
0.46    0.41    0.44    0.4 0.36    0.33    0.39    0.34    0.37    0.49    0.33    0.17    0.55    0.45    0.32    0.41    0.34    0.49    1                           
0.33    0.32    0.35    0.34    0.33    0.28    0.31    0.28    0.4 0.5 0.26    0.23    0.48    0.39    0.32    0.32    0.22    0.37    0.55    1                       
0.51    0.51    0.59    0.51    0.5 0.47    0.5 0.49    0.22    0.38    0.27    0.26    0.31    0.32    0.29    0.24    0.28    0.4 0.26    0.27    1                   
0.4 0.45    0.44    0.44    0.42    0.39    0.39    0.36    0.08    0.22    0.22    0.29    0.23    0.31    0.2 0.19    0.29    0.21    0.18    0.19    0.35    1               
0.5 0.44    0.48    0.42    0.38    0.33    0.35    0.33    0.39    0.54    0.37    0.3 0.52    0.56    0.38    0.55    0.47    0.41    0.43    0.33    0.34    0.36    1           
0.36    0.3 0.31    0.32    0.28    0.25    0.24    0.26    0.13    0.28    0.27    0.3 0.31    0.3 0.24    0.22    0.31    0.26    0.2 0.18    0.28    0.2 0.22    1       
0.08    0.22    0.27    0.3 0.3 0.27    0.33    0.27    0.09    0.05    -0.05   0.02    0.15    0.03    0.1 0.08    0.11    0.06    0.14    0.23    0.26    0.2 0.23    0.015   1   
0.25    0.32    0.31    0.28    0.34    0.37    0.3 0.32    0.12    0.24    0.12    0.04    0.22    0.26    0.16    0.18    0.24    0.15    0.28    0.26    0.28    0.2 0.23    0.14    0.3 1'

#Fleishman & Hempel (1955)

lowerFH55 <- ' 
1                                                                                                       
0.74    1                                                                                                   
0.71    0.82    1                                                                                               
0.69    0.78    0.83    1                                                                                           
0.62    0.74    0.79    0.8 1                                                                                       
0.59    0.68    0.72    0.74    0.77    1                                                                                   
0.57    0.66    0.72    0.72    0.73    0.74    1                                                                               
0.56    0.64    0.71    0.74    0.77    0.8 0.79    1                                                                           
0.33    0.36    0.38    0.35    0.3 0.3 0.31    0.28    1                                                                       
0.34    0.4 0.4 0.38    0.36    0.33    0.37    0.3 0.71    1                                                                   
0.37    0.39    0.37    0.37    0.35    0.34    0.39    0.38    0.5 0.5 1                                                               
0.3 0.27    0.29    0.22    0.24    0.23    0.24    0.26    0.53    0.48    0.6 1                                                           
0.24    0.25    0.24    0.18    0.2 0.17    0.19    0.18    0.33    0.34    0.58    0.71    1                                                       
0.38    0.44    0.44    0.39    0.37    0.39    0.43    0.4 0.42    0.48    0.41    0.27    0.28    1                                                   
0.41    0.44    0.46    0.36    0.37    0.34    0.4 0.34    0.5 0.55    0.54    0.41    0.42    0.52    1                                               
0.45    0.42    0.47    0.44    0.42    0.4 0.38    0.43    0.44    0.45    0.58    0.47    0.42    0.45    0.51    1                                           
0.21    0.23    0.24    0.21    0.2 0.16    0.17    0.22    0.17    0.16    0.33    0.23    0.27    0.32    0.31    0.32    1                                       
0.23    0.28    0.32    0.31    0.34    0.3 0.34    0.32    0.24    0.24    0.25    0.19    0.21    0.46    0.36    0.33    0.27    1                                   
0.34    0.47    0.41    0.38    0.36    0.32    0.42    0.36    0.26    0.25    0.2 0.19    0.15    0.38    0.27    0.29    0.2 0.4 1                               
0.18    0.24    0.2 0.28    0.3 0.23    0.23    0.25    0.19    0.18    0.2 0.16    0.14    0.16    0.19    0.2 0.17    0.16    0.24    1                           
0   0.11    0.16    0.14    0.19    0.19    0.15    0.23    0.05    0.03    0.07    0.06    -0.01   0.25    0.07    0.13    0.23    0.27    0.31    0.32    1                       
0.12    0.14    0.17    0.24    0.26    0.21    0.2 0.25    -0.04   -0.02   -0.09   -0.1    -0.11   0.08    -0.06   0.04    0.03    0.04    0.14    0.1 0.21    1                   
0.04    0.09    0.12    0.13    0.14    0.14    0.14    0.2 0.02    0.02    -0.01   0   0   0.06    -0.04   0.05    -0.03   0.05    0.08    0.06    0.17    0.57    1               
0.19    0.26    0.24    0.32    0.35    0.3 0.31    0.37    0.11    0.14    0.09    0.04    -0.03   0.23    0.08    0.19    0.19    0.26    0.3 0.24    0.34    0.61    0.44    1           
0.09    0.24    0.22    0.29    0.3 0.28    0.27    0.33    0.09    0.1 0.07    -0.04   -0.07   0.25    0.08    0.14    0.15    0.21    0.3 0.2 0.3 0.49    0.49    0.73    1       
0.44    0.48    0.45    0.44    0.41    0.37    0.43    0.38    0.23    0.24    0.46    0.29    0.33    0.39    0.4 0.47    0.38    0.34    0.38    0.2 0.24    0.16    0   0.28    0.19    1   
0.29    0.28    0.3 0.31    0.31    0.25    0.27    0.24    0.15    0.06    0.25    0.21    0.23    0.27    0.23    0.24    0.32    0.22    0.35    0.2 0.24    0.15    0.1 0.23    0.2 0.4 1'

nFH54 <- 197
nFH55 <- 264

FH54.cor = getCov(lowerFH54, names = c("P1CC", "P2CC", "P3CC", "P4CC", "P5CC", "P6CC", "P7CC", "P8CC", "NumOpII", "DTR", "MP", "GenMec", "SpId", "PatCom", "VisPur", "Deco", "InsCom", "SpaOri", "SpeMar", "LogAcc", "RotPur", "PlaCon", "DisReac", "NutBolt", "ReaTim", "ROM"))
FH55.cor = getCov(lowerFH55, names = c("T1DRT", "T3DRT", "T5DRT", "T7DRT", "T9DRT", "T11DRT", "T13DRT", "T15DRT", "Wknow", "Caff", "MechPri", "GenMec", "TooFun", "SpId", "PatCom", "InsCom", "VisPur", "PurPegA", "SADEx", "ROMov", "RotAi", "VisRea", "AudRea", "JuViRea", "JuAuRea", "CoCo", "RoPu"))

Analyses

Fleishman & Hempel (1955)

Exploratory

fa.parallel(FH55.cor, n.obs = nFH55)

## Parallel analysis suggests that the number of factors =  5  and the number of components =  4
FAFH <- fa(FH55.cor, n.obs = nFH55, nfactors = 5)
## Loading required namespace: GPArotation
nfactors(FH55.cor, n.obs = nFH55); KGA(FAFH); MAPA(FAFH); PTV(FAFH); estimate.ED(FH55.cor); EGA(FH55.cor, plot.ega = T, n = nFH55)

## 
## Number of factors
## Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm, 
##     n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
## VSS complexity 1 achieves a maximimum of 0.8  with  1  factors
## VSS complexity 2 achieves a maximimum of 0.88  with  2  factors
## The Velicer MAP achieves a minimum of 0.02  with  3  factors 
## Empirical BIC achieves a minimum of  -1114.05  with  4  factors
## Sample Size adjusted BIC achieves a minimum of  -185.79  with  7  factors
## 
## Statistics by number of factors 
##    vss1 vss2   map dof  chisq     prob sqresid  fit  RMSEA  BIC   SABIC complex
## 1  0.80 0.00 0.040 324 1859.1 2.5e-213    23.6 0.80 0.1339   53 1079.75     1.0
## 2  0.54 0.88 0.032 298 1274.9 8.5e-121    13.8 0.88 0.1114 -387  558.06     1.5
## 3  0.61 0.86 0.017 273  736.3  3.2e-44     9.5 0.92 0.0801 -786   79.63     1.6
## 4  0.56 0.81 0.018 249  597.9  1.0e-30     7.6 0.93 0.0728 -791   -1.08     1.6
## 5  0.52 0.74 0.018 226  440.7  5.4e-16     6.3 0.95 0.0599 -819 -102.88     1.8
## 6  0.52 0.72 0.020 204  314.5  1.0e-06     5.7 0.95 0.0451 -823 -176.18     1.9
## 7  0.50 0.68 0.023 183  254.4  3.8e-04     5.2 0.96 0.0383 -766 -185.79     2.0
## 8  0.49 0.65 0.025 163  216.3  3.3e-03     4.7 0.96 0.0350 -693 -175.83     2.1
## 9  0.49 0.71 0.031 144  167.3  9.0e-02     4.3 0.96 0.0244 -636 -179.11     2.1
## 10 0.48 0.67 0.037 126  132.1  3.4e-01     4.0 0.97 0.0130 -570 -171.01     2.1
## 11 0.48 0.70 0.043 109  114.9  3.3e-01     3.8 0.97 0.0138 -493 -147.32     2.1
## 12 0.48 0.70 0.050  93   95.6  4.1e-01     3.3 0.97 0.0095 -423 -128.16     2.1
## 13 0.48 0.67 0.056  78   74.6  5.9e-01     3.1 0.97 0.0000 -360 -113.06     2.2
## 14 0.49 0.69 0.067  64   60.1  6.1e-01     2.8 0.98 0.0000 -297  -93.82     2.2
## 15 0.49 0.69 0.078  51   45.3  7.0e-01     2.3 0.98 0.0000 -239  -77.33     2.2
## 16 0.49 0.66 0.085  39   28.8  8.8e-01     2.5 0.98 0.0000 -189  -65.03     2.3
## 17 0.49 0.69 0.088  28   20.8  8.3e-01     2.4 0.98 0.0000 -135  -46.58     2.3
## 18 0.49 0.68 0.102  18    9.2  9.5e-01     2.2 0.98 0.0000  -91  -34.07     2.2
## 19 0.48 0.67 0.118   9    4.9  8.5e-01     2.1 0.98 0.0000  -45  -16.78     2.3
## 20 0.47 0.64 0.141   1    1.6  2.1e-01     1.9 0.98 0.0458   -4   -0.85     2.3
##     eChisq    SRMR eCRMS    eBIC
## 1  2790.36 0.12270 0.128   983.7
## 2  1140.61 0.07845 0.085  -521.0
## 3   463.60 0.05002 0.057 -1058.6
## 4   274.36 0.03848 0.046 -1114.0
## 5   154.73 0.02889 0.036 -1105.4
## 6   105.01 0.02380 0.031 -1032.5
## 7    73.19 0.01987 0.028  -947.2
## 8    52.45 0.01682 0.025  -856.4
## 9    37.38 0.01420 0.022  -765.6
## 10   28.57 0.01242 0.021  -674.0
## 11   23.09 0.01116 0.020  -584.7
## 12   16.94 0.00956 0.019  -501.6
## 13   11.36 0.00783 0.017  -423.6
## 14    8.38 0.00672 0.016  -348.5
## 15    5.50 0.00545 0.014  -278.9
## 16    3.89 0.00458 0.014  -213.6
## 17    2.81 0.00390 0.014  -153.3
## 18    1.14 0.00248 0.011   -99.2
## 19    0.56 0.00173 0.011   -49.6
## 20    0.16 0.00094 0.018    -5.4
## [1] 5
## The smallest factor had an eigenvalue of 1.159 with a confidence interval of 0.961 to 1.356 so the factor should be dropped.
##  [1] 0.357216410 0.117773799 0.077767620 0.053951925 0.042911576 0.036659075
##  [7] 0.030002944 0.029192929 0.023995615 0.022658151 0.022102412 0.021036276
## [13] 0.018900390 0.018111880 0.016314323 0.015800280 0.014816278 0.012395111
## [19] 0.011294804 0.010202092 0.008869764 0.007739236 0.007237241 0.006538120
## [25] 0.006405234 0.005364654 0.004741861
## [1] ED estimated from the correlation matrix; no disattenuation; no small-sample correction.
## $n1
## [1] 12.3
## 
## $n2
## [1] 6.27
## 
## $nInf
## [1] 2.8
## 
## $nC
## [1] 23.69
## Warning in EGA(FH55.cor, plot.ega = T, n = nFH55): Previous versions of EGAnet
## (<= 0.9.8) checked unidimensionality using uni.method = "expand" as the
## default
## 
## Exploratory Graph Analysis
## 
##  • model = glasso
##  • algorithm = walktrap
##  • correlation = cor_auto
##  • unidimensional check = leading eigenvalue
## Network estimated with:
##  • gamma = 0.5
##  • lambda.min.ratio = 0.1
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2

## EGA Results:
## 
## Number of Dimensions:
## [1] 4
## 
## Items per Dimension:
##           items dimension
## Wknow     Wknow         1
## Caff       Caff         1
## MechPri MechPri         1
## GenMec   GenMec         1
## TooFun   TooFun         1
## PatCom   PatCom         1
## InsCom   InsCom         1
## SpId       SpId         2
## VisPur   VisPur         2
## PurPegA PurPegA         2
## SADEx     SADEx         2
## ROMov     ROMov         2
## RotAi     RotAi         2
## CoCo       CoCo         2
## RoPu       RoPu         2
## VisRea   VisRea         3
## AudRea   AudRea         3
## JuViRea JuViRea         3
## JuAuRea JuAuRea         3
## T1DRT     T1DRT         4
## T3DRT     T3DRT         4
## T5DRT     T5DRT         4
## T7DRT     T7DRT         4
## T9DRT     T9DRT         4
## T11DRT   T11DRT         4
## T13DRT   T13DRT         4
## T15DRT   T15DRT         4
NUM <- seq(1, 27, 1); EVS <- FAFH$e.values; TVP <- PTV(FAFH); bpdf <- data.frame("NUM" = NUM, "EVS" = EVS, "TVP" = TVP)

EVP <- ggplot(bpdf, aes(x = NUM, y = EVS, fill = as.factor(NUM))) + geom_bar(stat = "identity", show.legend = F) + xlab("Number") + ylab("Eigenvalue") + theme_bw() + scale_fill_hue(c = 30) + theme(text = element_text(size = 12, family = "serif"),  plot.title = element_text(hjust = 0.5)) + geom_hline(yintercept = 1, color = "darkgray", linetype = "dashed", size = 1)

VPT <- ggplot(bpdf, aes(x = factor(1), y = TVP, fill = as.factor(NUM))) + geom_bar(stat = "identity", show.legend = F) + ylab("Percentage of Total Variance") + theme_bw() + scale_fill_hue(c = 50) + theme(text = element_text(size = 12, family = "serif"),  plot.title = element_text(hjust = 0.5), axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank()) + coord_polar("y")
ggarrange(EVP, VPT, ncol = 2)

Confirmatory

Separate Models

#T1

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T1DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               393.004
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2266.902
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.855
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6545.028
##   Loglikelihood unrestricted model (H1)      -6348.526
##                                                       
##   Akaike (AIC)                               13206.056
##   Bayesian (BIC)                             13413.461
##   Sample-size adjusted Bayesian (BIC)        13229.571
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.077
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.087
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.077
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.711    0.057   12.466    0.000    0.711    0.712
##     AudRea            0.600    0.060   10.042    0.000    0.600    0.601
##     JuViRea           0.842    0.052   16.091    0.000    0.842    0.844
##     JuAuRea           0.783    0.054   14.458    0.000    0.783    0.785
##   SPA =~                                                                
##     Wknow             0.242    0.057    4.224    0.000    0.242    0.243
##     Caff              0.165    0.055    3.000    0.003    0.165    0.165
##     MechPri           0.302    0.057    5.312    0.000    0.302    0.302
##     GenMec            0.848    0.075   11.337    0.000    0.848    0.850
##     TooFun            0.556    0.072    7.764    0.000    0.556    0.557
##     InsCom            0.143    0.054    2.656    0.008    0.143    0.144
##   ROT =~                                                                
##     SpId              0.235    0.062    3.784    0.000    0.235    0.235
##     VisPur            0.296    0.072    4.099    0.000    0.296    0.297
##     PurPegA           0.359    0.070    5.126    0.000    0.359    0.359
##     SADEx             0.461    0.071    6.518    0.000    0.461    0.462
##     ROMov             0.307    0.075    4.065    0.000    0.307    0.307
##     RotAi             0.613    0.079    7.768    0.000    0.613    0.614
##     CoCo              0.334    0.066    5.050    0.000    0.334    0.335
##     RoPu              0.417    0.073    5.683    0.000    0.417    0.418
##   g =~                                                                  
##     VisRea            0.007    0.066    0.106    0.916    0.007    0.007
##     AudRea            0.005    0.066    0.080    0.936    0.005    0.005
##     JuViRea           0.229    0.065    3.515    0.000    0.229    0.230
##     JuAuRea           0.190    0.066    2.901    0.004    0.190    0.190
##     Wknow             0.644    0.059   10.902    0.000    0.644    0.645
##     Caff              0.681    0.058   11.773    0.000    0.681    0.682
##     MechPri           0.696    0.058   12.028    0.000    0.696    0.697
##     GenMec            0.496    0.065    7.648    0.000    0.496    0.497
##     TooFun            0.474    0.065    7.303    0.000    0.474    0.475
##     PatCom            0.759    0.055   13.682    0.000    0.759    0.760
##     InsCom            0.699    0.057   12.195    0.000    0.699    0.700
##     SpId              0.660    0.058   11.333    0.000    0.660    0.662
##     VisPur            0.390    0.064    6.116    0.000    0.390    0.391
##     PurPegA           0.444    0.063    7.037    0.000    0.444    0.444
##     SADEx             0.399    0.064    6.241    0.000    0.399    0.400
##     ROMov             0.249    0.066    3.804    0.000    0.249    0.250
##     RotAi             0.108    0.067    1.617    0.106    0.108    0.109
##     CoCo              0.552    0.061    9.054    0.000    0.552    0.553
##     RoPu              0.309    0.065    4.753    0.000    0.309    0.310
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T1DRT ~                                                               
##     g                 0.568    0.060    9.429    0.000    0.568    0.569
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.491    0.052    9.431    0.000    0.491    0.492
##    .AudRea            0.637    0.061   10.400    0.000    0.637    0.639
##    .JuViRea           0.234    0.042    5.553    0.000    0.234    0.235
##    .JuAuRea           0.346    0.045    7.778    0.000    0.346    0.348
##    .Wknow             0.523    0.050   10.516    0.000    0.523    0.525
##    .Caff              0.505    0.050   10.170    0.000    0.505    0.507
##    .MechPri           0.421    0.042   10.067    0.000    0.421    0.423
##    .GenMec            0.031    0.106    0.292    0.770    0.031    0.031
##    .TooFun            0.462    0.058    7.964    0.000    0.462    0.464
##    .InsCom            0.487    0.049    9.974    0.000    0.487    0.489
##    .SpId              0.505    0.050   10.009    0.000    0.505    0.507
##    .VisPur            0.756    0.070   10.745    0.000    0.756    0.759
##    .PurPegA           0.671    0.065   10.276    0.000    0.671    0.673
##    .SADEx             0.624    0.067    9.381    0.000    0.624    0.627
##    .ROMov             0.840    0.078   10.810    0.000    0.840    0.843
##    .RotAi             0.609    0.086    7.098    0.000    0.609    0.611
##    .CoCo              0.580    0.057   10.098    0.000    0.580    0.583
##    .RoPu              0.726    0.073   10.010    0.000    0.726    0.729
##    .PatCom            0.421    0.047    8.880    0.000    0.421    0.422
##    .T1DRT             0.674    0.064   10.603    0.000    0.674    0.676
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T3

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T3DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               397.239
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2291.615
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.883
##   Tucker-Lewis Index (TLI)                       0.854
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6534.789
##   Loglikelihood unrestricted model (H1)      -6336.169
##                                                       
##   Akaike (AIC)                               13185.577
##   Bayesian (BIC)                             13392.982
##   Sample-size adjusted Bayesian (BIC)        13209.093
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.078
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.088
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.078
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.713    0.057   12.500    0.000    0.713    0.715
##     AudRea            0.602    0.060   10.078    0.000    0.602    0.603
##     JuViRea           0.835    0.052   15.967    0.000    0.835    0.836
##     JuAuRea           0.776    0.054   14.362    0.000    0.776    0.777
##   SPA =~                                                                
##     Wknow             0.259    0.057    4.588    0.000    0.259    0.260
##     Caff              0.182    0.054    3.338    0.001    0.182    0.182
##     MechPri           0.328    0.056    5.899    0.000    0.328    0.329
##     GenMec            0.851    0.069   12.386    0.000    0.851    0.853
##     TooFun            0.574    0.068    8.475    0.000    0.574    0.576
##     InsCom            0.171    0.054    3.151    0.002    0.171    0.171
##   ROT =~                                                                
##     SpId              0.208    0.063    3.311    0.001    0.208    0.208
##     VisPur            0.294    0.074    4.001    0.000    0.294    0.295
##     PurPegA           0.340    0.071    4.789    0.000    0.340    0.341
##     SADEx             0.434    0.071    6.067    0.000    0.434    0.434
##     ROMov             0.300    0.077    3.914    0.000    0.300    0.301
##     RotAi             0.603    0.081    7.435    0.000    0.603    0.604
##     CoCo              0.321    0.067    4.786    0.000    0.321    0.322
##     RoPu              0.421    0.075    5.613    0.000    0.421    0.422
##   g =~                                                                  
##     VisRea            0.020    0.066    0.295    0.768    0.020    0.020
##     AudRea            0.017    0.066    0.251    0.802    0.017    0.017
##     JuViRea           0.249    0.065    3.832    0.000    0.249    0.250
##     JuAuRea           0.222    0.065    3.402    0.001    0.222    0.222
##     Wknow             0.638    0.059   10.789    0.000    0.638    0.639
##     Caff              0.680    0.058   11.772    0.000    0.680    0.682
##     MechPri           0.682    0.058   11.730    0.000    0.682    0.683
##     GenMec            0.474    0.065    7.308    0.000    0.474    0.475
##     TooFun            0.458    0.065    7.058    0.000    0.458    0.459
##     PatCom            0.753    0.056   13.564    0.000    0.753    0.755
##     InsCom            0.683    0.058   11.828    0.000    0.683    0.684
##     SpId              0.672    0.058   11.604    0.000    0.672    0.674
##     VisPur            0.390    0.064    6.111    0.000    0.390    0.391
##     PurPegA           0.455    0.063    7.233    0.000    0.455    0.455
##     SADEx             0.429    0.063    6.767    0.000    0.429    0.430
##     ROMov             0.261    0.065    3.981    0.000    0.261    0.261
##     RotAi             0.131    0.067    1.963    0.050    0.131    0.132
##     CoCo              0.559    0.061    9.193    0.000    0.559    0.560
##     RoPu              0.310    0.065    4.768    0.000    0.310    0.311
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T3DRT ~                                                               
##     g                 0.625    0.059   10.609    0.000    0.625    0.626
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.487    0.052    9.365    0.000    0.487    0.489
##    .AudRea            0.633    0.061   10.365    0.000    0.633    0.636
##    .JuViRea           0.237    0.042    5.652    0.000    0.237    0.238
##    .JuAuRea           0.345    0.044    7.804    0.000    0.345    0.346
##    .Wknow             0.522    0.050   10.542    0.000    0.522    0.524
##    .Caff              0.500    0.049   10.193    0.000    0.500    0.502
##    .MechPri           0.423    0.042   10.128    0.000    0.423    0.425
##    .GenMec            0.047    0.092    0.506    0.613    0.047    0.047
##    .TooFun            0.457    0.056    8.196    0.000    0.457    0.458
##    .InsCom            0.501    0.049   10.160    0.000    0.501    0.503
##    .SpId              0.501    0.050   10.008    0.000    0.501    0.503
##    .VisPur            0.757    0.071   10.716    0.000    0.757    0.760
##    .PurPegA           0.674    0.065   10.317    0.000    0.674    0.676
##    .SADEx             0.624    0.066    9.499    0.000    0.624    0.626
##    .ROMov             0.838    0.078   10.793    0.000    0.838    0.841
##    .RotAi             0.615    0.088    7.017    0.000    0.615    0.618
##    .CoCo              0.581    0.057   10.107    0.000    0.581    0.583
##    .RoPu              0.723    0.073    9.857    0.000    0.723    0.726
##    .PatCom            0.429    0.048    8.994    0.000    0.429    0.430
##    .T3DRT             0.606    0.059   10.298    0.000    0.606    0.608
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T5

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T5DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               384.566
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2280.231
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.861
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6534.144
##   Loglikelihood unrestricted model (H1)      -6341.861
##                                                       
##   Akaike (AIC)                               13184.289
##   Bayesian (BIC)                             13391.694
##   Sample-size adjusted Bayesian (BIC)        13207.804
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.076
##   90 Percent confidence interval - lower         0.067
##   90 Percent confidence interval - upper         0.086
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.077
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.711    0.057   12.454    0.000    0.711    0.713
##     AudRea            0.600    0.060   10.036    0.000    0.600    0.601
##     JuViRea           0.836    0.052   15.970    0.000    0.836    0.838
##     JuAuRea           0.777    0.054   14.373    0.000    0.777    0.779
##   SPA =~                                                                
##     Wknow             0.252    0.057    4.452    0.000    0.252    0.253
##     Caff              0.177    0.055    3.225    0.001    0.177    0.177
##     MechPri           0.334    0.056    5.956    0.000    0.334    0.334
##     GenMec            0.837    0.068   12.224    0.000    0.837    0.839
##     TooFun            0.582    0.068    8.556    0.000    0.582    0.583
##     InsCom            0.163    0.054    2.987    0.003    0.163    0.163
##   ROT =~                                                                
##     SpId              0.208    0.063    3.298    0.001    0.208    0.208
##     VisPur            0.295    0.074    4.003    0.000    0.295    0.295
##     PurPegA           0.337    0.071    4.739    0.000    0.337    0.337
##     SADEx             0.447    0.072    6.217    0.000    0.447    0.448
##     ROMov             0.303    0.077    3.930    0.000    0.303    0.303
##     RotAi             0.582    0.080    7.237    0.000    0.582    0.583
##     CoCo              0.331    0.068    4.910    0.000    0.331    0.332
##     RoPu              0.427    0.075    5.682    0.000    0.427    0.427
##   g =~                                                                  
##     VisRea            0.024    0.066    0.367    0.714    0.024    0.024
##     AudRea            0.023    0.066    0.340    0.734    0.023    0.023
##     JuViRea           0.245    0.065    3.770    0.000    0.245    0.246
##     JuAuRea           0.217    0.065    3.331    0.001    0.217    0.218
##     Wknow             0.643    0.059   10.920    0.000    0.643    0.645
##     Caff              0.683    0.058   11.824    0.000    0.683    0.684
##     MechPri           0.677    0.058   11.623    0.000    0.677    0.679
##     GenMec            0.481    0.065    7.430    0.000    0.481    0.482
##     TooFun            0.455    0.065    7.012    0.000    0.455    0.456
##     PatCom            0.758    0.055   13.692    0.000    0.758    0.760
##     InsCom            0.692    0.057   12.056    0.000    0.692    0.694
##     SpId              0.672    0.058   11.599    0.000    0.672    0.673
##     VisPur            0.390    0.064    6.113    0.000    0.390    0.391
##     PurPegA           0.460    0.063    7.339    0.000    0.460    0.461
##     SADEx             0.417    0.064    6.558    0.000    0.417    0.418
##     ROMov             0.254    0.065    3.875    0.000    0.254    0.254
##     RotAi             0.142    0.067    2.118    0.034    0.142    0.142
##     CoCo              0.550    0.061    9.034    0.000    0.550    0.551
##     RoPu              0.311    0.065    4.774    0.000    0.311    0.311
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T5DRT ~                                                               
##     g                 0.626    0.059   10.644    0.000    0.626    0.628
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.490    0.052    9.394    0.000    0.490    0.491
##    .AudRea            0.636    0.061   10.381    0.000    0.636    0.638
##    .JuViRea           0.237    0.042    5.633    0.000    0.237    0.238
##    .JuAuRea           0.345    0.044    7.782    0.000    0.345    0.346
##    .Wknow             0.519    0.049   10.512    0.000    0.519    0.521
##    .Caff              0.499    0.049   10.183    0.000    0.499    0.501
##    .MechPri           0.426    0.042   10.146    0.000    0.426    0.428
##    .GenMec            0.064    0.089    0.721    0.471    0.064    0.064
##    .TooFun            0.451    0.056    7.993    0.000    0.451    0.452
##    .InsCom            0.490    0.049   10.078    0.000    0.490    0.492
##    .SpId              0.502    0.050   10.020    0.000    0.502    0.503
##    .VisPur            0.757    0.071   10.706    0.000    0.757    0.760
##    .PurPegA           0.671    0.065   10.323    0.000    0.671    0.674
##    .SADEx             0.622    0.067    9.347    0.000    0.622    0.625
##    .ROMov             0.840    0.078   10.774    0.000    0.840    0.843
##    .RotAi             0.638    0.086    7.442    0.000    0.638    0.640
##    .CoCo              0.583    0.058   10.064    0.000    0.583    0.586
##    .RoPu              0.718    0.073    9.780    0.000    0.718    0.720
##    .PatCom            0.421    0.047    8.925    0.000    0.421    0.423
##    .T5DRT             0.604    0.059   10.293    0.000    0.604    0.606
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T7

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T7DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               401.716
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2278.863
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.880
##   Tucker-Lewis Index (TLI)                       0.851
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6543.403
##   Loglikelihood unrestricted model (H1)      -6342.545
##                                                       
##   Akaike (AIC)                               13202.806
##   Bayesian (BIC)                             13410.211
##   Sample-size adjusted Bayesian (BIC)        13226.321
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.070
##   90 Percent confidence interval - upper         0.088
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.080
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.712    0.057   12.462    0.000    0.712    0.713
##     AudRea            0.602    0.060   10.070    0.000    0.602    0.603
##     JuViRea           0.832    0.052   15.925    0.000    0.832    0.834
##     JuAuRea           0.774    0.054   14.328    0.000    0.774    0.776
##   SPA =~                                                                
##     Wknow             0.256    0.057    4.526    0.000    0.256    0.257
##     Caff              0.179    0.054    3.295    0.001    0.179    0.179
##     MechPri           0.321    0.056    5.713    0.000    0.321    0.322
##     GenMec            0.863    0.071   12.184    0.000    0.863    0.864
##     TooFun            0.572    0.069    8.247    0.000    0.572    0.573
##     InsCom            0.164    0.054    3.044    0.002    0.164    0.164
##   ROT =~                                                                
##     SpId              0.214    0.063    3.388    0.001    0.214    0.215
##     VisPur            0.296    0.074    4.017    0.000    0.296    0.297
##     PurPegA           0.340    0.071    4.788    0.000    0.340    0.341
##     SADEx             0.454    0.072    6.290    0.000    0.454    0.454
##     ROMov             0.289    0.077    3.765    0.000    0.289    0.289
##     RotAi             0.584    0.080    7.262    0.000    0.584    0.585
##     CoCo              0.332    0.068    4.915    0.000    0.332    0.332
##     RoPu              0.426    0.075    5.671    0.000    0.426    0.426
##   g =~                                                                  
##     VisRea            0.030    0.066    0.459    0.646    0.030    0.030
##     AudRea            0.022    0.066    0.331    0.741    0.022    0.022
##     JuViRea           0.257    0.065    3.948    0.000    0.257    0.257
##     JuAuRea           0.228    0.065    3.484    0.000    0.228    0.228
##     Wknow             0.644    0.059   10.904    0.000    0.644    0.646
##     Caff              0.685    0.058   11.860    0.000    0.685    0.687
##     MechPri           0.688    0.058   11.818    0.000    0.688    0.689
##     GenMec            0.471    0.065    7.194    0.000    0.471    0.472
##     TooFun            0.452    0.065    6.909    0.000    0.452    0.453
##     PatCom            0.744    0.056   13.296    0.000    0.744    0.745
##     InsCom            0.694    0.058   12.060    0.000    0.694    0.695
##     SpId              0.667    0.058   11.455    0.000    0.667    0.668
##     VisPur            0.389    0.064    6.077    0.000    0.389    0.390
##     PurPegA           0.459    0.063    7.298    0.000    0.459    0.460
##     SADEx             0.411    0.064    6.427    0.000    0.411    0.411
##     ROMov             0.268    0.065    4.086    0.000    0.268    0.268
##     RotAi             0.137    0.067    2.047    0.041    0.137    0.137
##     CoCo              0.551    0.061    9.028    0.000    0.551    0.552
##     RoPu              0.311    0.065    4.768    0.000    0.311    0.311
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T7DRT ~                                                               
##     g                 0.580    0.060    9.659    0.000    0.580    0.581
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.488    0.052    9.373    0.000    0.488    0.490
##    .AudRea            0.633    0.061   10.358    0.000    0.633    0.636
##    .JuViRea           0.237    0.042    5.657    0.000    0.237    0.238
##    .JuAuRea           0.345    0.044    7.803    0.000    0.345    0.347
##    .Wknow             0.515    0.049   10.482    0.000    0.515    0.517
##    .Caff              0.494    0.049   10.114    0.000    0.494    0.496
##    .MechPri           0.420    0.042   10.077    0.000    0.420    0.422
##    .GenMec            0.030    0.099    0.302    0.762    0.030    0.030
##    .TooFun            0.464    0.057    8.159    0.000    0.464    0.466
##    .InsCom            0.488    0.049   10.017    0.000    0.488    0.490
##    .SpId              0.506    0.050   10.014    0.000    0.506    0.507
##    .VisPur            0.757    0.071   10.707    0.000    0.757    0.760
##    .PurPegA           0.670    0.065   10.307    0.000    0.670    0.672
##    .SADEx             0.622    0.067    9.298    0.000    0.622    0.624
##    .ROMov             0.841    0.078   10.846    0.000    0.841    0.844
##    .RotAi             0.636    0.086    7.402    0.000    0.636    0.638
##    .CoCo              0.582    0.058   10.060    0.000    0.582    0.585
##    .RoPu              0.718    0.073    9.806    0.000    0.718    0.721
##    .PatCom            0.443    0.049    9.080    0.000    0.443    0.445
##    .T7DRT             0.660    0.063   10.530    0.000    0.660    0.662
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T9

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T9DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               402.447
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2270.231
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.880
##   Tucker-Lewis Index (TLI)                       0.850
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6548.084
##   Loglikelihood unrestricted model (H1)      -6346.861
##                                                       
##   Akaike (AIC)                               13212.169
##   Bayesian (BIC)                             13419.574
##   Sample-size adjusted Bayesian (BIC)        13235.685
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.070
##   90 Percent confidence interval - upper         0.088
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.081
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.713    0.057   12.473    0.000    0.713    0.714
##     AudRea            0.602    0.060   10.070    0.000    0.602    0.603
##     JuViRea           0.832    0.052   15.933    0.000    0.832    0.834
##     JuAuRea           0.774    0.054   14.327    0.000    0.774    0.776
##   SPA =~                                                                
##     Wknow             0.254    0.057    4.440    0.000    0.254    0.254
##     Caff              0.174    0.055    3.171    0.002    0.174    0.174
##     MechPri           0.318    0.057    5.627    0.000    0.318    0.319
##     GenMec            0.854    0.071   11.939    0.000    0.854    0.855
##     TooFun            0.569    0.070    8.148    0.000    0.569    0.571
##     InsCom            0.159    0.054    2.934    0.003    0.159    0.160
##   ROT =~                                                                
##     SpId              0.213    0.064    3.347    0.001    0.213    0.213
##     VisPur            0.296    0.074    4.002    0.000    0.296    0.296
##     PurPegA           0.335    0.071    4.712    0.000    0.335    0.336
##     SADEx             0.459    0.073    6.333    0.000    0.459    0.460
##     ROMov             0.284    0.077    3.690    0.000    0.284    0.285
##     RotAi             0.571    0.080    7.101    0.000    0.571    0.572
##     CoCo              0.337    0.068    4.969    0.000    0.337    0.338
##     RoPu              0.431    0.075    5.724    0.000    0.431    0.432
##   g =~                                                                  
##     VisRea            0.029    0.066    0.434    0.665    0.029    0.029
##     AudRea            0.021    0.066    0.322    0.748    0.021    0.021
##     JuViRea           0.258    0.065    3.969    0.000    0.258    0.259
##     JuAuRea           0.226    0.065    3.461    0.001    0.226    0.227
##     Wknow             0.641    0.059   10.816    0.000    0.641    0.642
##     Caff              0.686    0.058   11.863    0.000    0.686    0.687
##     MechPri           0.688    0.058   11.825    0.000    0.688    0.690
##     GenMec            0.480    0.065    7.339    0.000    0.480    0.481
##     TooFun            0.460    0.065    7.029    0.000    0.460    0.461
##     PatCom            0.752    0.056   13.490    0.000    0.752    0.754
##     InsCom            0.693    0.058   12.033    0.000    0.693    0.694
##     SpId              0.666    0.058   11.438    0.000    0.666    0.668
##     VisPur            0.389    0.064    6.084    0.000    0.389    0.390
##     PurPegA           0.464    0.063    7.392    0.000    0.464    0.465
##     SADEx             0.406    0.064    6.350    0.000    0.406    0.407
##     ROMov             0.270    0.065    4.126    0.000    0.270    0.271
##     RotAi             0.145    0.067    2.165    0.030    0.145    0.145
##     CoCo              0.546    0.061    8.932    0.000    0.546    0.548
##     RoPu              0.309    0.065    4.738    0.000    0.309    0.310
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T9DRT ~                                                               
##     g                 0.552    0.061    9.092    0.000    0.552    0.553
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.488    0.052    9.367    0.000    0.488    0.490
##    .AudRea            0.633    0.061   10.359    0.000    0.633    0.636
##    .JuViRea           0.237    0.042    5.648    0.000    0.237    0.237
##    .JuAuRea           0.346    0.044    7.812    0.000    0.346    0.347
##    .Wknow             0.521    0.050   10.505    0.000    0.521    0.523
##    .Caff              0.496    0.049   10.101    0.000    0.496    0.498
##    .MechPri           0.421    0.042   10.072    0.000    0.421    0.423
##    .GenMec            0.038    0.099    0.380    0.704    0.038    0.038
##    .TooFun            0.461    0.057    8.070    0.000    0.461    0.462
##    .InsCom            0.491    0.049   10.014    0.000    0.491    0.492
##    .SpId              0.507    0.051   10.018    0.000    0.507    0.509
##    .VisPur            0.757    0.071   10.700    0.000    0.757    0.760
##    .PurPegA           0.668    0.065   10.319    0.000    0.668    0.671
##    .SADEx             0.620    0.067    9.210    0.000    0.620    0.623
##    .ROMov             0.842    0.078   10.861    0.000    0.842    0.846
##    .RotAi             0.649    0.085    7.634    0.000    0.649    0.652
##    .CoCo              0.584    0.058   10.029    0.000    0.584    0.586
##    .RoPu              0.715    0.073    9.725    0.000    0.715    0.717
##    .PatCom            0.431    0.048    8.932    0.000    0.431    0.432
##    .T9DRT             0.692    0.065   10.658    0.000    0.692    0.695
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T11

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T11DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               383.050
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2240.754
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.887
##   Tucker-Lewis Index (TLI)                       0.859
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6553.124
##   Loglikelihood unrestricted model (H1)      -6361.600
##                                                       
##   Akaike (AIC)                               13222.249
##   Bayesian (BIC)                             13429.654
##   Sample-size adjusted Bayesian (BIC)        13245.765
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.076
##   90 Percent confidence interval - lower         0.066
##   90 Percent confidence interval - upper         0.085
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.080
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.714    0.057   12.504    0.000    0.714    0.715
##     AudRea            0.601    0.060   10.058    0.000    0.601    0.602
##     JuViRea           0.835    0.052   15.970    0.000    0.835    0.837
##     JuAuRea           0.776    0.054   14.363    0.000    0.776    0.778
##   SPA =~                                                                
##     Wknow             0.248    0.057    4.332    0.000    0.248    0.248
##     Caff              0.169    0.055    3.087    0.002    0.169    0.170
##     MechPri           0.315    0.057    5.537    0.000    0.315    0.316
##     GenMec            0.852    0.073   11.748    0.000    0.852    0.854
##     TooFun            0.570    0.071    8.043    0.000    0.570    0.571
##     InsCom            0.159    0.055    2.898    0.004    0.159    0.159
##   ROT =~                                                                
##     SpId              0.216    0.063    3.439    0.001    0.216    0.217
##     VisPur            0.304    0.074    4.138    0.000    0.304    0.305
##     PurPegA           0.343    0.071    4.844    0.000    0.343    0.344
##     SADEx             0.468    0.072    6.490    0.000    0.468    0.469
##     ROMov             0.291    0.077    3.789    0.000    0.291    0.291
##     RotAi             0.562    0.079    7.097    0.000    0.562    0.563
##     CoCo              0.351    0.068    5.185    0.000    0.351    0.352
##     RoPu              0.445    0.075    5.938    0.000    0.445    0.446
##   g =~                                                                  
##     VisRea            0.017    0.066    0.263    0.792    0.017    0.018
##     AudRea            0.019    0.066    0.290    0.772    0.019    0.019
##     JuViRea           0.248    0.065    3.797    0.000    0.248    0.248
##     JuAuRea           0.220    0.065    3.364    0.001    0.220    0.221
##     Wknow             0.648    0.059   10.958    0.000    0.648    0.649
##     Caff              0.690    0.058   11.937    0.000    0.690    0.691
##     MechPri           0.691    0.058   11.860    0.000    0.691    0.692
##     GenMec            0.482    0.066    7.357    0.000    0.482    0.483
##     TooFun            0.459    0.066    6.983    0.000    0.459    0.459
##     PatCom            0.753    0.056   13.491    0.000    0.753    0.754
##     InsCom            0.691    0.058   11.985    0.000    0.691    0.693
##     SpId              0.672    0.058   11.546    0.000    0.672    0.673
##     VisPur            0.383    0.064    5.975    0.000    0.383    0.384
##     PurPegA           0.458    0.063    7.272    0.000    0.458    0.459
##     SADEx             0.398    0.064    6.203    0.000    0.398    0.399
##     ROMov             0.259    0.066    3.949    0.000    0.259    0.260
##     RotAi             0.142    0.067    2.125    0.034    0.142    0.143
##     CoCo              0.537    0.061    8.749    0.000    0.537    0.538
##     RoPu              0.297    0.065    4.532    0.000    0.297    0.297
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T11DRT ~                                                              
##     g                 0.517    0.061    8.424    0.000    0.517    0.518
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.487    0.052    9.361    0.000    0.487    0.488
##    .AudRea            0.634    0.061   10.373    0.000    0.634    0.637
##    .JuViRea           0.237    0.042    5.643    0.000    0.237    0.238
##    .JuAuRea           0.345    0.044    7.803    0.000    0.345    0.347
##    .Wknow             0.515    0.049   10.451    0.000    0.515    0.517
##    .Caff              0.492    0.049   10.049    0.000    0.492    0.494
##    .MechPri           0.420    0.042   10.047    0.000    0.420    0.422
##    .GenMec            0.037    0.101    0.368    0.713    0.037    0.037
##    .TooFun            0.461    0.058    7.974    0.000    0.461    0.463
##    .InsCom            0.493    0.049   10.013    0.000    0.493    0.495
##    .SpId              0.498    0.050    9.959    0.000    0.498    0.500
##    .VisPur            0.757    0.071   10.681    0.000    0.757    0.760
##    .PurPegA           0.669    0.065   10.305    0.000    0.669    0.671
##    .SADEx             0.619    0.067    9.187    0.000    0.619    0.621
##    .ROMov             0.845    0.078   10.851    0.000    0.845    0.848
##    .RotAi             0.661    0.083    7.925    0.000    0.661    0.663
##    .CoCo              0.584    0.059    9.984    0.000    0.584    0.587
##    .RoPu              0.710    0.074    9.639    0.000    0.710    0.713
##    .PatCom            0.430    0.048    8.890    0.000    0.430    0.431
##    .T11DRT            0.729    0.068   10.790    0.000    0.729    0.731
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T13

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T13DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               396.962
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2273.928
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.882
##   Tucker-Lewis Index (TLI)                       0.853
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6543.493
##   Loglikelihood unrestricted model (H1)      -6345.012
##                                                       
##   Akaike (AIC)                               13202.986
##   Bayesian (BIC)                             13410.391
##   Sample-size adjusted Bayesian (BIC)        13226.502
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.078
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.088
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.079
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.713    0.057   12.492    0.000    0.713    0.715
##     AudRea            0.602    0.060   10.062    0.000    0.602    0.603
##     JuViRea           0.833    0.052   15.939    0.000    0.833    0.835
##     JuAuRea           0.774    0.054   14.331    0.000    0.774    0.776
##   SPA =~                                                                
##     Wknow             0.261    0.057    4.587    0.000    0.261    0.262
##     Caff              0.182    0.055    3.320    0.001    0.182    0.183
##     MechPri           0.332    0.056    5.940    0.000    0.332    0.332
##     GenMec            0.846    0.068   12.394    0.000    0.846    0.847
##     TooFun            0.584    0.068    8.587    0.000    0.584    0.585
##     InsCom            0.176    0.055    3.195    0.001    0.176    0.176
##   ROT =~                                                                
##     SpId              0.203    0.063    3.225    0.001    0.203    0.204
##     VisPur            0.303    0.074    4.096    0.000    0.303    0.304
##     PurPegA           0.330    0.071    4.643    0.000    0.330    0.330
##     SADEx             0.445    0.072    6.173    0.000    0.445    0.446
##     ROMov             0.297    0.077    3.857    0.000    0.297    0.298
##     RotAi             0.581    0.081    7.206    0.000    0.581    0.582
##     CoCo              0.335    0.068    4.939    0.000    0.335    0.335
##     RoPu              0.434    0.075    5.762    0.000    0.434    0.435
##   g =~                                                                  
##     VisRea            0.025    0.066    0.376    0.707    0.025    0.025
##     AudRea            0.023    0.066    0.342    0.733    0.023    0.023
##     JuViRea           0.256    0.065    3.935    0.000    0.256    0.257
##     JuAuRea           0.226    0.065    3.464    0.001    0.226    0.227
##     Wknow             0.637    0.059   10.739    0.000    0.637    0.638
##     Caff              0.683    0.058   11.799    0.000    0.683    0.684
##     MechPri           0.686    0.058   11.781    0.000    0.686    0.687
##     GenMec            0.472    0.065    7.236    0.000    0.472    0.473
##     TooFun            0.449    0.065    6.876    0.000    0.449    0.450
##     PatCom            0.753    0.056   13.525    0.000    0.753    0.755
##     InsCom            0.680    0.058   11.734    0.000    0.680    0.681
##     SpId              0.677    0.058   11.675    0.000    0.677    0.678
##     VisPur            0.382    0.064    5.964    0.000    0.382    0.383
##     PurPegA           0.467    0.063    7.444    0.000    0.467    0.468
##     SADEx             0.419    0.064    6.566    0.000    0.419    0.420
##     ROMov             0.259    0.066    3.952    0.000    0.259    0.260
##     RotAi             0.141    0.067    2.100    0.036    0.141    0.141
##     CoCo              0.548    0.061    8.970    0.000    0.548    0.550
##     RoPu              0.305    0.065    4.664    0.000    0.305    0.305
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T13DRT ~                                                              
##     g                 0.580    0.060    9.653    0.000    0.580    0.581
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.487    0.052    9.357    0.000    0.487    0.489
##    .AudRea            0.634    0.061   10.365    0.000    0.634    0.636
##    .JuViRea           0.237    0.042    5.652    0.000    0.237    0.238
##    .JuAuRea           0.346    0.044    7.813    0.000    0.346    0.347
##    .Wknow             0.522    0.050   10.521    0.000    0.522    0.524
##    .Caff              0.497    0.049   10.137    0.000    0.497    0.498
##    .MechPri           0.416    0.041   10.057    0.000    0.416    0.417
##    .GenMec            0.058    0.090    0.653    0.514    0.058    0.059
##    .TooFun            0.453    0.056    8.067    0.000    0.453    0.455
##    .InsCom            0.503    0.050   10.153    0.000    0.503    0.505
##    .SpId              0.497    0.050    9.959    0.000    0.497    0.499
##    .VisPur            0.758    0.071   10.672    0.000    0.758    0.761
##    .PurPegA           0.669    0.065   10.351    0.000    0.669    0.672
##    .SADEx             0.623    0.066    9.376    0.000    0.623    0.625
##    .ROMov             0.841    0.078   10.801    0.000    0.841    0.844
##    .RotAi             0.639    0.086    7.446    0.000    0.639    0.642
##    .CoCo              0.583    0.058   10.041    0.000    0.583    0.586
##    .RoPu              0.715    0.074    9.701    0.000    0.715    0.717
##    .PatCom            0.429    0.048    8.922    0.000    0.429    0.430
##    .T13DRT            0.660    0.063   10.526    0.000    0.660    0.663
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000
#T15

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T15DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               401.208
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2262.678
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.880
##   Tucker-Lewis Index (TLI)                       0.850
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6551.241
##   Loglikelihood unrestricted model (H1)      -6350.637
##                                                       
##   Akaike (AIC)                               13218.483
##   Bayesian (BIC)                             13425.888
##   Sample-size adjusted Bayesian (BIC)        13241.998
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.088
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.082
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.714    0.057   12.503    0.000    0.714    0.715
##     AudRea            0.601    0.060   10.047    0.000    0.601    0.602
##     JuViRea           0.832    0.052   15.920    0.000    0.832    0.833
##     JuAuRea           0.773    0.054   14.306    0.000    0.773    0.774
##   SPA =~                                                                
##     Wknow             0.253    0.058    4.380    0.000    0.253    0.253
##     Caff              0.176    0.056    3.162    0.002    0.176    0.176
##     MechPri           0.316    0.057    5.588    0.000    0.316    0.317
##     GenMec            0.842    0.071   11.795    0.000    0.842    0.844
##     TooFun            0.575    0.070    8.178    0.000    0.575    0.576
##     InsCom            0.155    0.055    2.821    0.005    0.155    0.155
##   ROT =~                                                                
##     SpId              0.205    0.064    3.233    0.001    0.205    0.206
##     VisPur            0.292    0.074    3.950    0.000    0.292    0.293
##     PurPegA           0.334    0.071    4.675    0.000    0.334    0.334
##     SADEx             0.461    0.073    6.340    0.000    0.461    0.462
##     ROMov             0.288    0.077    3.723    0.000    0.288    0.288
##     RotAi             0.557    0.080    6.943    0.000    0.557    0.558
##     CoCo              0.341    0.068    5.011    0.000    0.341    0.342
##     RoPu              0.444    0.076    5.860    0.000    0.444    0.445
##   g =~                                                                  
##     VisRea            0.026    0.066    0.396    0.692    0.026    0.026
##     AudRea            0.028    0.066    0.425    0.670    0.028    0.028
##     JuViRea           0.261    0.065    4.011    0.000    0.261    0.262
##     JuAuRea           0.231    0.065    3.526    0.000    0.231    0.231
##     Wknow             0.638    0.059   10.756    0.000    0.638    0.640
##     Caff              0.678    0.058   11.671    0.000    0.678    0.679
##     MechPri           0.695    0.058   11.969    0.000    0.695    0.696
##     GenMec            0.485    0.065    7.421    0.000    0.485    0.486
##     TooFun            0.458    0.066    6.994    0.000    0.458    0.459
##     PatCom            0.749    0.056   13.399    0.000    0.749    0.750
##     InsCom            0.698    0.058   12.129    0.000    0.698    0.699
##     SpId              0.673    0.058   11.582    0.000    0.673    0.675
##     VisPur            0.394    0.064    6.165    0.000    0.394    0.395
##     PurPegA           0.464    0.063    7.376    0.000    0.464    0.465
##     SADEx             0.406    0.064    6.345    0.000    0.406    0.407
##     ROMov             0.264    0.066    4.021    0.000    0.264    0.264
##     RotAi             0.153    0.067    2.289    0.022    0.153    0.154
##     CoCo              0.544    0.061    8.879    0.000    0.544    0.545
##     RoPu              0.301    0.065    4.591    0.000    0.301    0.301
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T15DRT ~                                                              
##     g                 0.533    0.061    8.732    0.000    0.533    0.534
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.486    0.052    9.339    0.000    0.486    0.487
##    .AudRea            0.634    0.061   10.367    0.000    0.634    0.637
##    .JuViRea           0.237    0.042    5.656    0.000    0.237    0.237
##    .JuAuRea           0.346    0.044    7.825    0.000    0.346    0.347
##    .Wknow             0.525    0.050   10.512    0.000    0.525    0.527
##    .Caff              0.506    0.050   10.165    0.000    0.506    0.508
##    .MechPri           0.413    0.041   10.005    0.000    0.413    0.415
##    .GenMec            0.052    0.096    0.537    0.591    0.052    0.052
##    .TooFun            0.456    0.058    7.907    0.000    0.456    0.457
##    .InsCom            0.486    0.049    9.954    0.000    0.486    0.487
##    .SpId              0.501    0.050    9.975    0.000    0.501    0.503
##    .VisPur            0.755    0.071   10.706    0.000    0.755    0.758
##    .PurPegA           0.670    0.065   10.323    0.000    0.670    0.672
##    .SADEx             0.619    0.067    9.172    0.000    0.619    0.621
##    .ROMov             0.844    0.078   10.839    0.000    0.844    0.847
##    .RotAi             0.663    0.084    7.882    0.000    0.663    0.665
##    .CoCo              0.583    0.058    9.997    0.000    0.583    0.586
##    .RoPu              0.709    0.074    9.573    0.000    0.709    0.711
##    .PatCom            0.435    0.049    8.960    0.000    0.435    0.437
##    .T15DRT            0.712    0.066   10.727    0.000    0.712    0.714
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000

Cumulative Model

RegBFModel <- '
REA =~ VisRea + AudRea + JuViRea + JuAuRea
SPA =~ Wknow + Caff + MechPri + GenMec + TooFun + InsCom
ROT =~ SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

g =~ VisRea + AudRea + JuViRea + JuAuRea + Wknow + Caff + MechPri + GenMec + TooFun + PatCom + InsCom + SpId + VisPur + PurPegA + SADEx + ROMov + RotAi + CoCo + RoPu

T1DRT + T3DRT + T5DRT + T7DRT + T9DRT + T11DRT + T13DRT + T15DRT ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH55.cor, sample.nobs = nFH55, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 96 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##                                                       
##   Number of observations                           264
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               585.154
##   Degrees of freedom                               278
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4601.392
##   Degrees of freedom                               351
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.928
##   Tucker-Lewis Index (TLI)                       0.909
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8092.549
##   Loglikelihood unrestricted model (H1)      -7799.972
##                                                       
##   Akaike (AIC)                               16385.098
##   Bayesian (BIC)                             16742.693
##   Sample-size adjusted Bayesian (BIC)        16425.642
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.065
##   90 Percent confidence interval - lower         0.057
##   90 Percent confidence interval - upper         0.072
##   P-value RMSEA <= 0.05                          0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.080
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA =~                                                                
##     VisRea            0.711    0.057   12.435    0.000    0.711    0.712
##     AudRea            0.601    0.060   10.055    0.000    0.601    0.603
##     JuViRea           0.831    0.052   15.913    0.000    0.831    0.833
##     JuAuRea           0.773    0.054   14.312    0.000    0.773    0.775
##   SPA =~                                                                
##     Wknow             0.267    0.057    4.722    0.000    0.267    0.268
##     Caff              0.192    0.055    3.501    0.000    0.192    0.193
##     MechPri           0.345    0.055    6.284    0.000    0.345    0.345
##     GenMec            0.831    0.065   12.725    0.000    0.831    0.833
##     TooFun            0.593    0.066    9.013    0.000    0.593    0.594
##     InsCom            0.173    0.054    3.192    0.001    0.173    0.173
##   ROT =~                                                                
##     SpId              0.194    0.063    3.076    0.002    0.194    0.194
##     VisPur            0.288    0.074    3.895    0.000    0.288    0.289
##     PurPegA           0.325    0.071    4.564    0.000    0.325    0.326
##     SADEx             0.419    0.072    5.835    0.000    0.419    0.420
##     ROMov             0.305    0.077    3.950    0.000    0.305    0.305
##     RotAi             0.614    0.083    7.401    0.000    0.614    0.615
##     CoCo              0.302    0.067    4.499    0.000    0.302    0.303
##     RoPu              0.403    0.075    5.353    0.000    0.403    0.404
##   g =~                                                                  
##     VisRea            0.038    0.066    0.575    0.565    0.038    0.038
##     AudRea            0.027    0.066    0.407    0.684    0.027    0.027
##     JuViRea           0.263    0.065    4.059    0.000    0.263    0.263
##     JuAuRea           0.229    0.065    3.521    0.000    0.229    0.230
##     Wknow             0.628    0.059   10.616    0.000    0.628    0.629
##     Caff              0.669    0.058   11.548    0.000    0.669    0.670
##     MechPri           0.677    0.058   11.657    0.000    0.677    0.678
##     GenMec            0.473    0.064    7.359    0.000    0.473    0.474
##     TooFun            0.448    0.065    6.947    0.000    0.448    0.449
##     PatCom            0.749    0.055   13.499    0.000    0.749    0.751
##     InsCom            0.689    0.057   11.994    0.000    0.689    0.690
##     SpId              0.677    0.058   11.732    0.000    0.677    0.678
##     VisPur            0.392    0.064    6.147    0.000    0.392    0.392
##     PurPegA           0.465    0.063    7.445    0.000    0.465    0.466
##     SADEx             0.441    0.063    6.988    0.000    0.441    0.442
##     ROMov             0.262    0.065    4.014    0.000    0.262    0.263
##     RotAi             0.139    0.067    2.086    0.037    0.139    0.140
##     CoCo              0.571    0.060    9.459    0.000    0.571    0.572
##     RoPu              0.325    0.065    5.024    0.000    0.325    0.326
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   T1DRT ~                                                               
##     g                 0.575    0.060    9.543    0.000    0.575    0.576
##   T3DRT ~                                                               
##     g                 0.630    0.059   10.715    0.000    0.630    0.631
##   T5DRT ~                                                               
##     g                 0.632    0.059   10.762    0.000    0.632    0.633
##   T7DRT ~                                                               
##     g                 0.585    0.060    9.762    0.000    0.585    0.586
##   T9DRT ~                                                               
##     g                 0.558    0.061    9.217    0.000    0.558    0.559
##   T11DRT ~                                                              
##     g                 0.525    0.061    8.567    0.000    0.525    0.526
##   T13DRT ~                                                              
##     g                 0.586    0.060    9.768    0.000    0.586    0.587
##   T15DRT ~                                                              
##     g                 0.538    0.061    8.815    0.000    0.538    0.539
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   REA ~~                                                                
##     SPA               0.000                               0.000    0.000
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   SPA ~~                                                                
##     ROT               0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##   ROT ~~                                                                
##     g                 0.000                               0.000    0.000
##  .T1DRT ~~                                                              
##    .T3DRT             0.375    0.051    7.382    0.000    0.375    0.594
##    .T5DRT             0.344    0.050    6.912    0.000    0.344    0.546
##    .T7DRT             0.351    0.051    6.870    0.000    0.351    0.532
##    .T9DRT             0.297    0.050    5.918    0.000    0.297    0.440
##    .T11DRT            0.286    0.051    5.654    0.000    0.286    0.413
##    .T13DRT            0.231    0.048    4.833    0.000    0.231    0.351
##    .T15DRT            0.249    0.049    5.035    0.000    0.249    0.363
##  .T3DRT ~~                                                              
##    .T5DRT             0.419    0.051    8.183    0.000    0.419    0.700
##    .T7DRT             0.408    0.052    7.892    0.000    0.408    0.652
##    .T9DRT             0.385    0.051    7.487    0.000    0.385    0.602
##    .T11DRT            0.346    0.051    6.815    0.000    0.346    0.527
##    .T13DRT            0.289    0.048    6.016    0.000    0.289    0.461
##    .T15DRT            0.299    0.049    6.066    0.000    0.299    0.459
##  .T5DRT ~~                                                              
##    .T7DRT             0.457    0.053    8.551    0.000    0.457    0.732
##    .T9DRT             0.434    0.053    8.176    0.000    0.434    0.679
##    .T11DRT            0.385    0.052    7.408    0.000    0.385    0.588
##    .T13DRT            0.347    0.050    6.990    0.000    0.347    0.556
##    .T15DRT            0.367    0.051    7.171    0.000    0.367    0.565
##  .T7DRT ~~                                                              
##    .T9DRT             0.470    0.055    8.486    0.000    0.470    0.703
##    .T11DRT            0.430    0.055    7.872    0.000    0.430    0.626
##    .T13DRT            0.375    0.052    7.259    0.000    0.375    0.573
##    .T15DRT            0.422    0.054    7.804    0.000    0.422    0.621
##  .T9DRT ~~                                                              
##    .T11DRT            0.474    0.057    8.359    0.000    0.474    0.675
##    .T13DRT            0.400    0.053    7.554    0.000    0.400    0.599
##    .T15DRT            0.467    0.056    8.304    0.000    0.467    0.671
##  .T11DRT ~~                                                             
##    .T13DRT            0.430    0.055    7.871    0.000    0.430    0.626
##    .T15DRT            0.514    0.059    8.789    0.000    0.514    0.721
##  .T13DRT ~~                                                             
##    .T15DRT            0.472    0.056    8.453    0.000    0.472    0.695
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VisRea            0.490    0.052    9.385    0.000    0.490    0.491
##    .AudRea            0.634    0.061   10.361    0.000    0.634    0.636
##    .JuViRea           0.237    0.042    5.649    0.000    0.237    0.238
##    .JuAuRea           0.346    0.044    7.807    0.000    0.346    0.347
##    .Wknow             0.531    0.050   10.609    0.000    0.531    0.533
##    .Caff              0.511    0.049   10.332    0.000    0.511    0.513
##    .MechPri           0.419    0.041   10.138    0.000    0.419    0.421
##    .GenMec            0.081    0.081    1.000    0.317    0.081    0.081
##    .TooFun            0.444    0.055    8.076    0.000    0.444    0.446
##    .InsCom            0.492    0.048   10.162    0.000    0.492    0.494
##    .SpId              0.501    0.050   10.040    0.000    0.501    0.503
##    .VisPur            0.760    0.071   10.725    0.000    0.760    0.763
##    .PurPegA           0.674    0.065   10.366    0.000    0.674    0.676
##    .SADEx             0.626    0.065    9.566    0.000    0.626    0.629
##    .ROMov             0.835    0.078   10.744    0.000    0.835    0.838
##    .RotAi             0.600    0.091    6.623    0.000    0.600    0.602
##    .CoCo              0.579    0.057   10.164    0.000    0.579    0.581
##    .RoPu              0.728    0.073    9.958    0.000    0.728    0.731
##    .PatCom            0.435    0.048    9.146    0.000    0.435    0.437
##    .T1DRT             0.666    0.063   10.545    0.000    0.666    0.669
##    .T3DRT             0.599    0.058   10.255    0.000    0.599    0.601
##    .T5DRT             0.596    0.058   10.243    0.000    0.596    0.599
##    .T7DRT             0.654    0.062   10.495    0.000    0.654    0.656
##    .T9DRT             0.684    0.064   10.616    0.000    0.684    0.687
##    .T11DRT            0.720    0.067   10.747    0.000    0.720    0.723
##    .T13DRT            0.653    0.062   10.493    0.000    0.653    0.656
##    .T15DRT            0.707    0.066   10.699    0.000    0.707    0.709
##     REA               1.000                               1.000    1.000
##     SPA               1.000                               1.000    1.000
##     ROT               1.000                               1.000    1.000
##     g                 1.000                               1.000    1.000

Differential Prediction?

From the separate models.

#T1 vs T3-T15

ZREG(.568, .625, .060, .059)
## [1] -0.6773725
ZREG(.568, .626, .060, .059)
## [1] -0.6892562
ZREG(.568, .580, .060, .060)
## [1] -0.1414214
ZREG(.568, .552, .060, .061)
## [1] 0.1869971
ZREG(.568, .517, .060, .061)
## [1] 0.5960531
ZREG(.568, .580, .060, .060)
## [1] -0.1414214
ZREG(.568, .533, .060, .061)
## [1] 0.4090561
#T3 vs T5-T15

ZREG(.625, .626, .059, .059)
## [1] -0.01198486
ZREG(.625, .580, .059, .060)
## [1] 0.5347678
ZREG(.625, .552, .059, .061)
## [1] 0.8601938
ZREG(.625, .517, .059, .061)
## [1] 1.272615
ZREG(.625, .580, .059, .060)
## [1] 0.5347678
ZREG(.625, .533, .059, .061)
## [1] 1.08408
#T5 vs T7-T15

ZREG(.626, .580, .059, .060)
## [1] 0.5466515
ZREG(.626, .552, .059, .061)
## [1] 0.8719773
ZREG(.626, .517, .059, .061)
## [1] 1.284399
ZREG(.626, .580, .059, .060)
## [1] 0.5466515
ZREG(.626, .533, .059, .061)
## [1] 1.095863
#T7 vs T9-T15

ZREG(.580, .552, .060, .061)
## [1] 0.3272449
ZREG(.580, .517, .060, .061)
## [1] 0.7363009
ZREG(.580, .580, .060, .060)
## [1] 0
ZREG(.580, .533, .060, .061)
## [1] 0.5493039
#T9 vs T11-T15

ZREG(.552, .517, .061, .061)
## [1] 0.405717
ZREG(.552, .580, .061, .060)
## [1] -0.3272449
ZREG(.552, .533, .061, .061)
## [1] 0.2202464
#T11 vs T13-T15

ZREG(.517, .580, .061, .060)
## [1] -0.7363009
ZREG(.517, .533, .061, .061)
## [1] -0.1854706
#T13 vs T15

ZREG(.580, .533, .060, .061)
## [1] 0.5493039

From the combined model.

#T1 vs T3-T15

ZREG(.575, .630, .060, .059)
## [1] -0.653605
ZREG(.575, .632, .060, .059)
## [1] -0.6773725
ZREG(.575, .585, .060, .060)
## [1] -0.1178511
ZREG(.575, .558, .060, .061)
## [1] 0.1986844
ZREG(.575, .525, .060, .061)
## [1] 0.5843658
ZREG(.575, .586, .060, .060)
## [1] -0.1296362
ZREG(.575, .538, .060, .061)
## [1] 0.4324307
#T3 vs T5-T15

ZREG(.630, .632, .059, .059)
## [1] -0.02396972
ZREG(.630, .585, .059, .060)
## [1] 0.5347678
ZREG(.630, .558, .059, .061)
## [1] 0.8484103
ZREG(.630, .525, .059, .061)
## [1] 1.237265
ZREG(.630, .586, .059, .060)
## [1] 0.522884
ZREG(.630, .538, .059, .061)
## [1] 1.08408
#T5 vs T7-T15

ZREG(.632, .585, .059, .060)
## [1] 0.5585352
ZREG(.632, .558, .059, .061)
## [1] 0.8719773
ZREG(.632, .525, .059, .061)
## [1] 1.260832
ZREG(.632, .586, .059, .060)
## [1] 0.5466515
ZREG(.632, .538, .059, .061)
## [1] 1.107647
#T7 vs T9-T15

ZREG(.585, .558, .060, .061)
## [1] 0.3155575
ZREG(.585, .525, .060, .061)
## [1] 0.701239
ZREG(.585, .586, .060, .060)
## [1] -0.01178511
ZREG(.585, .538, .060, .061)
## [1] 0.5493039
#T9 vs T11-T15

ZREG(.558, .525, .061, .061)
## [1] 0.3825332
ZREG(.558, .586, .061, .060)
## [1] -0.3272449
ZREG(.558, .538, .061, .061)
## [1] 0.2318383
#T11 vs T13-T15

ZREG(.525, .586, .061, .060)
## [1] -0.7129263
ZREG(.525, .538, .061, .061)
## [1] -0.1506949
#T13 vs T15

ZREG(.586, .538, .060, .061)
## [1] 0.5609912

Separate vs combined.

ZREG(.568, .575, .060, .060) #T1
## [1] -0.08249579
ZREG(.625, .630, .059, .059) #T3
## [1] -0.0599243
ZREG(.626, .632, .059, .059) #T5
## [1] -0.07190916
ZREG(.580, .585, .060, .060) #T7
## [1] -0.05892557
ZREG(.552, .558, .061, .061) #T9
## [1] -0.06955149
ZREG(.517, .525, .061, .061) #T11
## [1] -0.09273532
ZREG(.580, .586, .060, .060) #T13
## [1] -0.07071068
ZREG(.533, .538, .061, .061) #T15
## [1] -0.05795957

Extraction of estimates from models separate or together did not make a difference. The average correlation between the three factors used here was r = .469, although in the original manuscript, for the large number of extracted factors, it was .277, which is a crude lower-bound estimate of the outcome correlations. The [1:9] correlations averaged .580. The difference in g correlations between practice sessions was not significant, so this is merely a curiosity and unnecessary for correlated Bonferroni correction.

Discussion and Conclusions

Fleishman & Hempel (1955) extracted a large number of factors from a battery of several tests. They wanted to assess what effect practice had on the intercorrelations of those factors with a discrimination reaction task people were able to do a total of 15 times. This battery apparently had a general factor, or at least substantial general variance, excepting highly specific measures, because they are too easy. They observe that, over trials, the amount of variance specific to the practiced discrimination reaction task increased, suggesting that, as practice continued, a measure should become less g-loaded, perhaps.

Using their correlation matrix, I found that this was not the case. The g computed from the various tests was equally related to the discrimination reaction time task regardless of how many times it was practiced, up to 15 times. It appears that, Fleishman & Hempel extracted many more factors than were indicated with exploratory methods designed to determine the number of factors, and the conclusion of increasing specific variance may not have meant less g variance.

This finding can and should be expanded somewhat. It is presently not very similar to Lievens, Reeve & Heggestad’s (2007), Matton, Vautier & Raufaste’s (2011), te Nijenhuis, Voskuijl & Schijve’s (2001), Zhou & Cao’s (2020), Arendasy et al.’s (2016), Coyle’ (2006), te Nijenhuis, van Vianen & van der Flier’s (2007), Reeve & Lam’s (2005, 2007), or Sommer, Ardensay & Schuetzhoffer’s (2017). But, maybe to Arendasy & Sommer’s (2017), and some of the citations therein.

References

Fleishman, E. A., & Hempel, W. E. (1954). Changes in factor structure of a complex psychomotor test as a function of practice. Psychometrika, 19(3), 239–252. https://doi.org/10.1007/BF02289188

Fleishman, E. A., & Hempel, W. E. (1955). The relation between abilities and improvement with practice in a visual discrimination reaction task. Journal of Experimental Psychology, 49(5), 301–312. https://doi.org/10.1037/h0044697

Lievens, F., Reeve, C. L., & Heggestad, E. D. (2007). An examination of psychometric bias due to retesting on cognitive ability tests in selection settings. Journal of Applied Psychology, 92(6), 1672–1682. https://doi.org/10.1037/0021-9010.92.6.1672

te Nijenhuis, J., Voskuijl, O. F., & Schijve, N. B. (2001). Practice and coaching on IQ tests: Quite a lot of g. International Journal of Selection and Assessment, 9(4), 302–308. https://doi.org/10.1111/1468-2389.00182

Matton, N., Vautier, S., & Raufaste, E. (2011). Test-Specificity of the Advantage of Retaking Cognitive Ability Tests. International Journal of Selection and Assessment, 19(1), 11–17. https://doi.org/10.1111/j.1468-2389.2011.00530.x

Zhou, J., & Cao, Y. (2020). Does Retest Effect Impact Test Performance of Repeaters in Different Subgroups? ETS Research Report Series, 2020(1), 1–15. https://doi.org/10.1002/ets2.12300

Arendasy, M. E., Sommer, M., Gutierrez-Lobos, K., & Punter, J. F. (2016). Do individual differences in test preparation compromise the measurement fairness of admission tests? Intelligence, 55, 44–56. https://doi.org/10.1016/j.intell.2016.01.004

Coyle, T. R. (2006). Test-retest changes on scholastic aptitude tests are not related to g. Intelligence, 34(1), 15–27. https://doi.org/10.1016/j.intell.2005.04.001

te Nijenhuis, J., van Vianen, A. E. M., & van der Flier, H. (2007). Score gains on g-loaded tests: No g. Intelligence, 35(3), 283–300. https://doi.org/10.1016/j.intell.2006.07.006

Reeve, C. L., & Lam, H. (2005). The psychometric paradox of practice effects due to retesting: Measurement invariance and stable ability estimates in the face of observed score changes. Intelligence, 33(5), 535–549. https://doi.org/10.1016/j.intell.2005.05.003

Reeve, C. L., & Lam, H. (2007). The relation between practice effects, test-taker characteristics and degree of g-saturation. International Journal of Testing, 7(2), 225–242. https://doi.org/10.1080/15305050701193595

Sommer, M., Arendasy, M. E., & Schuetzhofer, B. (2017). Psychometric costs of retaking driving-related cognitive ability tests. Transportation Research Part F: Traffic Psychology and Behaviour, 44, 105–119. https://doi.org/10.1016/j.trf.2016.10.014\

Arendasy, M. E., & Sommer, M. (2017). Reducing the effect size of the retest effect: Examining different approaches. Intelligence, 62, 89–98. https://doi.org/10.1016/j.intell.2017.03.003

Woodrow, H. (1939). Factors in improvement with practice. The Journal of Psychology: Interdisciplinary and Applied, 7, 55–70. https://doi.org/10.1080/00223980.1939.9917620

sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.1252 
## [2] LC_CTYPE=English_United States.1252   
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] egg_0.4.5            gridExtra_2.3        ggplot2_3.3.5       
##  [4] sna_2.6              network_1.17.1       statnet.common_4.6.0
##  [7] EGAnet_1.0.0         lavaan_0.6-9         psych_2.1.9         
## [10] pacman_0.5.1        
## 
## loaded via a namespace (and not attached):
##  [1] nlme_3.1-153         RColorBrewer_1.1-2   tools_4.1.2         
##  [4] backports_1.3.0      bslib_0.3.1          utf8_1.2.2          
##  [7] R6_2.5.1             rpart_4.1-15         Hmisc_4.7-0         
## [10] DBI_1.1.2            colorspace_2.0-2     nnet_7.3-16         
## [13] withr_2.4.2          GGally_2.1.2         tidyselect_1.1.1    
## [16] mnormt_2.0.2         compiler_4.1.2       fdrtool_1.2.17      
## [19] qgraph_1.9.2         htmlTable_2.4.0      NetworkToolbox_1.4.2
## [22] labeling_0.4.2       sass_0.4.0           scales_1.1.1        
## [25] checkmate_2.0.0      pbapply_1.5-0        stringr_1.4.0       
## [28] digest_0.6.28        pbivnorm_0.6.0       foreign_0.8-81      
## [31] rmarkdown_2.11       base64enc_0.1-3      jpeg_0.1-9          
## [34] pkgconfig_2.0.3      htmltools_0.5.2      highr_0.9           
## [37] fastmap_1.1.0        htmlwidgets_1.5.4    rlang_0.4.12        
## [40] rstudioapi_0.13      farver_2.1.0         jquerylib_0.1.4     
## [43] generics_0.1.1       jsonlite_1.7.2       gtools_3.9.2        
## [46] dplyr_1.0.7          magrittr_2.0.1       Formula_1.2-4       
## [49] Matrix_1.3-4         Rcpp_1.0.7           munsell_0.5.0       
## [52] fansi_0.5.0          abind_1.4-5          lifecycle_1.0.1     
## [55] stringi_1.7.5        yaml_2.2.1           MASS_7.3-54         
## [58] plyr_1.8.6           grid_4.1.2           parallel_4.1.2      
## [61] crayon_1.4.2         lattice_0.20-45      splines_4.1.2       
## [64] tmvnsim_1.0-2        knitr_1.36           pillar_1.6.4        
## [67] igraph_1.2.7         corpcor_1.6.10       reshape2_1.4.4      
## [70] codetools_0.2-18     stats4_4.1.2         GPArotation_2022.4-1
## [73] glue_1.4.2           evaluate_0.14        latticeExtra_0.6-29 
## [76] data.table_1.14.2    png_0.1-7            vctrs_0.3.8         
## [79] foreach_1.5.1        gtable_0.3.0         purrr_0.3.4         
## [82] reshape_0.8.9        assertthat_0.2.1     xfun_0.27           
## [85] coda_0.19-4          survival_3.2-13      glasso_1.11         
## [88] tibble_3.1.5         iterators_1.0.13     cluster_2.1.2       
## [91] ellipsis_0.3.2

Postscript: Fleishman & Hempel (1954)

This data was far less usable than Fleishman & Hempel (1955) for two major reasons. Firstly and most importantly, content and resulting psychometric sampling error, and secondly, reliability. The latter issue is less important, as it only affects one set of items: reaction and movement time. These were highly correlated with one another, but movement time is generally not correlated with intelligence, and it acts as an age- and sex-related confounder to reaction time correlations. The both of them fail to correlate strongly with the rest of the other items for unknown reasons in the case of reaction time, and likely reasons in the case of movement time. There are all-positive g loadings, but RT and MT almost necessitate a factor all their own if we have group factors, which precludes baseline model identification. The EFAs and EGAs of just unpracticed tests even produce nonsense results and there are clearly cross-loadings that need to be modeled but obfuscate group factor identities even more if they are. The second issue is much more important. Woodrow (1939) had a much more diverse set of tests and found that practice effects were generally directionally consistent for specific factors, with positive correlations between practice and numerical, perceptual, and spatial ability, and negative correlations between practice and verbal, attention, and speed ability. The correlations with general intelligence were null, as others have both contradicted (te Nijenhuis, Voskuijl & Schijve, 2001) and supported (te Nijenhuis, van Vianen & van der Flier, 2007). In Fleishman & Hempel (1954), their battery was loaded with content of a psychomotor nature and little else, which should mostly be expected to yield negative correlations. The phenomenon where a given group factor “contaminates” a general factor occurs when a certain type of content is overrepresented when a factor is extracted, inflating loadings for items with that content, and making the extracted factor more like a mixture of a factor based on that content and what it should have been were it extracted without psychometric sampling error. A common solution is to use higher-order models, as this reduces psychometric sampling error in the face of sufficiently diverse group factors and insufficiently diverse indicators. With Fleishman & Hempel’s 1954 data, this was not possible, and a bifactor model was also inadmissible because it would still suffer severely from the psychometric sampling error a unified model would.

Nevertheless, the less interpretable results of the same analyses applied to that data are provided below, without significance tests.

Exploratory

fa.parallel(FH54.cor, n.obs = nFH54)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
FAFH <- fa(FH54.cor, n.obs = nFH54, nfactors = 3)

nfactors(FH54.cor, n.obs = nFH54); KGA(FAFH); MAPA(FAFH); PTV(FAFH); estimate.ED(FH54.cor); EGA(FH54.cor, plot.ega = T, n = nFH54)

## 
## Number of factors
## Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm, 
##     n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
## VSS complexity 1 achieves a maximimum of 0.87  with  1  factors
## VSS complexity 2 achieves a maximimum of 0.93  with  2  factors
## The Velicer MAP achieves a minimum of 0.01  with  2  factors 
## Empirical BIC achieves a minimum of  -1167.12  with  2  factors
## Sample Size adjusted BIC achieves a minimum of  -118.44  with  7  factors
## 
## Statistics by number of factors 
##    vss1 vss2   map dof   chisq     prob sqresid  fit RMSEA    BIC  SABIC
## 1  0.87 0.00 0.058 299 1431.03 5.9e-147    18.1 0.87 0.139 -148.6  798.6
## 2  0.66 0.93 0.014 274  504.05  8.2e-16     9.3 0.93 0.065 -943.5  -75.5
## 3  0.64 0.91 0.016 250  425.56  2.8e-11     7.8 0.94 0.059 -895.2 -103.3
## 4  0.57 0.81 0.017 227  369.37  7.0e-09     6.8 0.95 0.056 -829.9 -110.8
## 5  0.52 0.79 0.019 205  315.99  1.0e-06     6.1 0.96 0.052 -767.1 -117.6
## 6  0.57 0.84 0.021 184  272.87  2.3e-05     5.3 0.96 0.049 -699.2 -116.3
## 7  0.52 0.81 0.025 164  228.46  6.6e-04     4.9 0.96 0.044 -638.0 -118.4
## 8  0.52 0.78 0.031 145  192.09  5.4e-03     4.5 0.97 0.040 -574.0 -114.6
## 9  0.52 0.78 0.037 127  162.30  1.9e-02     3.9 0.97 0.037 -508.7 -106.3
## 10 0.51 0.81 0.045 110  145.73  1.3e-02     3.6 0.97 0.040 -435.4  -86.9
## 11 0.49 0.74 0.051  94  124.58  1.9e-02     3.3 0.98 0.040 -372.0  -74.2
## 12 0.47 0.72 0.056  79   96.55  8.7e-02     3.0 0.98 0.033 -320.8  -70.6
## 13 0.50 0.74 0.065  65   54.64  8.2e-01     2.6 0.98 0.000 -288.8  -82.8
## 14 0.47 0.77 0.078  52   44.88  7.5e-01     2.4 0.98 0.000 -229.8  -65.1
## 15 0.43 0.62 0.095  40   30.19  8.7e-01     2.1 0.98 0.000 -181.1  -54.4
## 16 0.42 0.59 0.118  29   21.14  8.5e-01     1.9 0.99 0.000 -132.1  -40.2
## 17 0.42 0.66 0.143  19   10.19  9.5e-01     1.7 0.99 0.000  -90.2  -30.0
## 18 0.44 0.73 0.167  10    5.73  8.4e-01     1.5 0.99 0.000  -47.1  -15.4
## 19 0.40 0.69 0.224   2    1.77  4.1e-01     1.7 0.99 0.000   -8.8   -2.5
## 20 0.37 0.55 0.203  -5    0.52       NA     1.5 0.99    NA     NA     NA
##    complex  eChisq    SRMR  eCRMS  eBIC
## 1      1.0 1.5e+03 0.10953 0.1142   -44
## 2      1.3 2.8e+02 0.04680 0.0510 -1167
## 3      1.6 1.8e+02 0.03723 0.0425 -1143
## 4      1.9 1.3e+02 0.03213 0.0384 -1067
## 5      2.0 1.0e+02 0.02789 0.0351  -983
## 6      2.0 6.7e+01 0.02280 0.0303  -906
## 7      2.1 5.0e+01 0.01966 0.0277  -817
## 8      2.2 3.8e+01 0.01718 0.0257  -728
## 9      2.2 2.9e+01 0.01497 0.0239  -642
## 10     2.2 2.0e+01 0.01257 0.0216  -561
## 11     2.4 1.4e+01 0.01057 0.0196  -482
## 12     2.4 1.0e+01 0.00896 0.0182  -407
## 13     2.3 7.1e+00 0.00746 0.0167  -336
## 14     2.1 4.6e+00 0.00597 0.0149  -270
## 15     2.6 2.2e+00 0.00418 0.0119  -209
## 16     2.6 1.3e+00 0.00318 0.0106  -152
## 17     2.5 5.2e-01 0.00201 0.0083  -100
## 18     2.2 2.6e-01 0.00141 0.0081   -53
## 19     2.3 7.2e-02 0.00075 0.0096   -10
## 20     2.7 1.6e-02 0.00035     NA    NA
## [1] 4
## The smallest factor had an eigenvalue of 1.405 with a confidence interval of 1.128 to 1.683 so the factor should be retained.
##  [1] 0.422641388 0.114365602 0.054056244 0.041773123 0.035797736 0.034762953
##  [7] 0.031538949 0.029626917 0.026888054 0.025176932 0.024578513 0.022496450
## [13] 0.018283928 0.016775805 0.015510938 0.014790540 0.012057180 0.011510330
## [19] 0.009797753 0.009249920 0.007897302 0.005913997 0.004987006 0.003587609
## [25] 0.003274763 0.002660069
## [1] ED estimated from the correlation matrix; no disattenuation; no small-sample correction.
## $n1
## [1] 10.27
## 
## $n2
## [1] 4.88
## 
## $nInf
## [1] 2.37
## 
## $nC
## [1] 21.67
## Warning in EGA(FH54.cor, plot.ega = T, n = nFH54): Previous versions of EGAnet
## (<= 0.9.8) checked unidimensionality using uni.method = "expand" as the
## default
## 
## Exploratory Graph Analysis
## 
##  • model = glasso
##  • algorithm = walktrap
##  • correlation = cor_auto
##  • unidimensional check = leading eigenvalue
## Network estimated with:
##  • gamma = 0.5
##  • lambda.min.ratio = 0.1

## EGA Results:
## 
## Number of Dimensions:
## [1] 3
## 
## Items per Dimension:
##           items dimension
## P1CC       P1CC         1
## P2CC       P2CC         1
## P3CC       P3CC         1
## RotPur   RotPur         1
## PlaCon   PlaCon         1
## ReaTim   ReaTim         1
## ROM         ROM         1
## NumOpII NumOpII         2
## DTR         DTR         2
## MP           MP         2
## GenMec   GenMec         2
## SpId       SpId         2
## PatCom   PatCom         2
## VisPur   VisPur         2
## Deco       Deco         2
## InsCom   InsCom         2
## SpaOri   SpaOri         2
## SpeMar   SpeMar         2
## LogAcc   LogAcc         2
## DisReac DisReac         2
## NutBolt NutBolt         2
## P4CC       P4CC         3
## P5CC       P5CC         3
## P6CC       P6CC         3
## P7CC       P7CC         3
## P8CC       P8CC         3
NUM <- seq(1, 26, 1); EVS <- FAFH$e.values; TVP <- PTV(FAFH); bpdf <- data.frame("NUM" = NUM, "EVS" = EVS, "TVP" = TVP)

EVP <- ggplot(bpdf, aes(x = NUM, y = EVS, fill = as.factor(NUM))) + geom_bar(stat = "identity", show.legend = F) + xlab("Number") + ylab("Eigenvalue") + theme_bw() + scale_fill_hue(c = 30) + theme(text = element_text(size = 12, family = "serif"),  plot.title = element_text(hjust = 0.5)) + geom_hline(yintercept = 1, color = "darkgray", linetype = "dashed", size = 1)

VPT <- ggplot(bpdf, aes(x = factor(1), y = TVP, fill = as.factor(NUM))) + geom_bar(stat = "identity", show.legend = F) + ylab("Percentage of Total Variance") + theme_bw() + scale_fill_hue(c = 50) + theme(text = element_text(size = 12, family = "serif"),  plot.title = element_text(hjust = 0.5), axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank()) + coord_polar("y")
ggarrange(EVP, VPT, ncol = 2)

Confirmatory

Separate Models

#T1

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P1CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               260.724
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1533.676
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.897
##   Tucker-Lewis Index (TLI)                       0.880
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4107.027
##   Loglikelihood unrestricted model (H1)      -3976.665
##                                                       
##   Akaike (AIC)                                8286.055
##   Bayesian (BIC)                              8404.250
##   Sample-size adjusted Bayesian (BIC)         8290.204
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.066
##   90 Percent confidence interval - upper         0.092
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.058
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.278    0.049    5.639    0.000    0.574    0.575
##     DTR               0.392    0.060    6.562    0.000    0.811    0.813
##     SpId              0.370    0.058    6.428    0.000    0.766    0.768
##     PatCom            0.359    0.057    6.352    0.000    0.743    0.745
##     VisPur            0.261    0.048    5.459    0.000    0.541    0.542
##     Deco              0.361    0.057    6.362    0.000    0.746    0.748
##     InsCom            0.297    0.051    5.841    0.000    0.615    0.616
##     SpaOri            0.341    0.055    6.216    0.000    0.704    0.706
##     SpeMar            0.306    0.052    5.918    0.000    0.632    0.633
##     LogAcc            0.268    0.048    5.532    0.000    0.554    0.555
##     RotPur            0.226    0.045    5.007    0.000    0.467    0.469
##     DisReac           0.332    0.054    6.149    0.000    0.687    0.689
##   Spa =~                                                                
##     MP                0.336    0.081    4.148    0.000    0.732    0.734
##     GenMec            0.285    0.069    4.113    0.000    0.622    0.624
##     PlaCon            0.194    0.054    3.609    0.000    0.423    0.424
##     NutBolt           0.205    0.055    3.697    0.000    0.447    0.448
##   g =~                                                                  
##     Num               1.810    0.346    5.226    0.000    0.875    0.875
##     Spa               1.939    0.520    3.726    0.000    0.889    0.889
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P1CC ~                                                                
##     g                 0.777    0.066   11.708    0.000    0.777    0.779
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.666    0.070    9.515    0.000    0.666    0.669
##    .DTR               0.337    0.041    8.300    0.000    0.337    0.339
##    .SpId              0.408    0.047    8.728    0.000    0.408    0.410
##    .PatCom            0.443    0.050    8.889    0.000    0.443    0.445
##    .VisPur            0.703    0.073    9.580    0.000    0.703    0.706
##    .Deco              0.439    0.049    8.871    0.000    0.439    0.441
##    .InsCom            0.617    0.066    9.416    0.000    0.617    0.620
##    .SpaOri            0.499    0.055    9.098    0.000    0.499    0.501
##    .SpeMar            0.596    0.064    9.369    0.000    0.596    0.599
##    .LogAcc            0.688    0.072    9.555    0.000    0.688    0.692
##    .RotPur            0.776    0.080    9.692    0.000    0.776    0.780
##    .DisReac           0.523    0.057    9.176    0.000    0.523    0.526
##    .MP                0.458    0.069    6.647    0.000    0.458    0.461
##    .GenMec            0.608    0.074    8.240    0.000    0.608    0.611
##    .PlaCon            0.816    0.087    9.367    0.000    0.816    0.820
##    .NutBolt           0.795    0.086    9.283    0.000    0.795    0.799
##    .P1CC              0.391    0.061    6.430    0.000    0.391    0.393
##    .Num               1.000                               0.234    0.234
##    .Spa               1.000                               0.210    0.210
##     g                 1.000                               1.000    1.000
#T2

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P2CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               276.906
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1510.930
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.865
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4126.492
##   Loglikelihood unrestricted model (H1)      -3988.039
##                                                       
##   Akaike (AIC)                                8324.983
##   Bayesian (BIC)                              8443.179
##   Sample-size adjusted Bayesian (BIC)         8329.132
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.083
##   90 Percent confidence interval - lower         0.071
##   90 Percent confidence interval - upper         0.096
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.061
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.274    0.058    4.746    0.000    0.583    0.584
##     DTR               0.383    0.073    5.229    0.000    0.816    0.818
##     SpId              0.361    0.070    5.157    0.000    0.768    0.770
##     PatCom            0.346    0.068    5.102    0.000    0.735    0.737
##     VisPur            0.256    0.055    4.626    0.000    0.545    0.546
##     Deco              0.348    0.068    5.111    0.000    0.741    0.742
##     InsCom            0.288    0.060    4.833    0.000    0.614    0.615
##     SpaOri            0.330    0.066    5.040    0.000    0.703    0.705
##     SpeMar            0.297    0.061    4.878    0.000    0.631    0.633
##     LogAcc            0.262    0.056    4.671    0.000    0.558    0.560
##     RotPur            0.219    0.051    4.325    0.000    0.466    0.467
##     DisReac           0.322    0.064    5.004    0.000    0.685    0.687
##   Spa =~                                                                
##     MP                0.346    0.087    4.002    0.000    0.731    0.733
##     GenMec            0.296    0.074    3.974    0.000    0.625    0.627
##     PlaCon            0.204    0.058    3.529    0.000    0.430    0.431
##     NutBolt           0.208    0.058    3.563    0.000    0.440    0.441
##   g =~                                                                  
##     Num               1.878    0.451    4.166    0.000    0.883    0.883
##     Spa               1.859    0.533    3.486    0.000    0.881    0.881
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P2CC ~                                                                
##     g                 0.674    0.070    9.577    0.000    0.674    0.676
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.655    0.069    9.488    0.000    0.655    0.659
##    .DTR               0.330    0.040    8.214    0.000    0.330    0.331
##    .SpId              0.405    0.047    8.695    0.000    0.405    0.408
##    .PatCom            0.454    0.051    8.919    0.000    0.454    0.457
##    .VisPur            0.698    0.073    9.567    0.000    0.698    0.702
##    .Deco              0.446    0.050    8.886    0.000    0.446    0.449
##    .InsCom            0.618    0.066    9.412    0.000    0.618    0.622
##    .SpaOri            0.501    0.055    9.092    0.000    0.501    0.503
##    .SpeMar            0.597    0.064    9.362    0.000    0.597    0.600
##    .LogAcc            0.683    0.072    9.540    0.000    0.683    0.687
##    .RotPur            0.778    0.080    9.690    0.000    0.778    0.782
##    .DisReac           0.525    0.057    9.170    0.000    0.525    0.528
##    .MP                0.460    0.070    6.543    0.000    0.460    0.462
##    .GenMec            0.604    0.074    8.127    0.000    0.604    0.607
##    .PlaCon            0.810    0.087    9.312    0.000    0.810    0.814
##    .NutBolt           0.802    0.086    9.276    0.000    0.802    0.806
##    .P2CC              0.540    0.070    7.722    0.000    0.540    0.543
##    .Num               1.000                               0.221    0.221
##    .Spa               1.000                               0.224    0.224
##     g                 1.000                               1.000    1.000
#T3

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P3CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 43 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               289.017
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1530.080
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.877
##   Tucker-Lewis Index (TLI)                       0.857
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4122.972
##   Loglikelihood unrestricted model (H1)      -3978.463
##                                                       
##   Akaike (AIC)                                8317.944
##   Bayesian (BIC)                              8436.140
##   Sample-size adjusted Bayesian (BIC)         8322.093
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.086
##   90 Percent confidence interval - lower         0.074
##   90 Percent confidence interval - upper         0.099
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.226    0.067    3.368    0.001    0.579    0.581
##     DTR               0.316    0.089    3.530    0.000    0.811    0.813
##     SpId              0.298    0.085    3.509    0.000    0.766    0.768
##     PatCom            0.286    0.082    3.492    0.000    0.736    0.737
##     VisPur            0.212    0.064    3.327    0.001    0.544    0.546
##     Deco              0.287    0.082    3.494    0.000    0.738    0.740
##     InsCom            0.240    0.070    3.404    0.001    0.615    0.617
##     SpaOri            0.275    0.079    3.475    0.001    0.707    0.709
##     SpeMar            0.246    0.072    3.419    0.001    0.632    0.634
##     LogAcc            0.218    0.065    3.345    0.001    0.559    0.560
##     RotPur            0.185    0.057    3.226    0.001    0.475    0.476
##     DisReac           0.268    0.077    3.462    0.001    0.687    0.689
##   Spa =~                                                                
##     MP                0.397    0.078    5.098    0.000    0.736    0.738
##     GenMec            0.338    0.068    4.998    0.000    0.628    0.629
##     PlaCon            0.226    0.055    4.108    0.000    0.419    0.421
##     NutBolt           0.237    0.056    4.226    0.000    0.440    0.441
##   g =~                                                                  
##     Num               2.365    0.783    3.022    0.003    0.921    0.921
##     Spa               1.562    0.364    4.285    0.000    0.842    0.842
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P3CC ~                                                                
##     g                 0.682    0.070    9.714    0.000    0.682    0.684
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.659    0.069    9.500    0.000    0.659    0.663
##    .DTR               0.337    0.041    8.286    0.000    0.337    0.339
##    .SpId              0.408    0.047    8.716    0.000    0.408    0.410
##    .PatCom            0.454    0.051    8.926    0.000    0.454    0.456
##    .VisPur            0.699    0.073    9.571    0.000    0.699    0.702
##    .Deco              0.450    0.050    8.910    0.000    0.450    0.452
##    .InsCom            0.616    0.065    9.411    0.000    0.616    0.619
##    .SpaOri            0.495    0.054    9.078    0.000    0.495    0.497
##    .SpeMar            0.595    0.064    9.363    0.000    0.595    0.598
##    .LogAcc            0.683    0.072    9.543    0.000    0.683    0.686
##    .RotPur            0.769    0.079    9.680    0.000    0.769    0.773
##    .DisReac           0.522    0.057    9.168    0.000    0.522    0.525
##    .MP                0.453    0.071    6.386    0.000    0.453    0.455
##    .GenMec            0.601    0.075    8.063    0.000    0.601    0.604
##    .PlaCon            0.819    0.088    9.335    0.000    0.819    0.823
##    .NutBolt           0.802    0.087    9.261    0.000    0.802    0.806
##    .P3CC              0.530    0.069    7.640    0.000    0.530    0.533
##    .Num               1.000                               0.152    0.152
##    .Spa               1.000                               0.291    0.291
##     g                 1.000                               1.000    1.000
#T4

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P4CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               274.396
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1493.905
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.865
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4133.749
##   Loglikelihood unrestricted model (H1)      -3996.551
##                                                       
##   Akaike (AIC)                                8339.497
##   Bayesian (BIC)                              8457.693
##   Sample-size adjusted Bayesian (BIC)         8343.646
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.083
##   90 Percent confidence interval - lower         0.070
##   90 Percent confidence interval - upper         0.095
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.272    0.062    4.353    0.000    0.582    0.583
##     DTR               0.380    0.081    4.719    0.000    0.814    0.816
##     SpId              0.358    0.077    4.667    0.000    0.767    0.769
##     PatCom            0.344    0.074    4.627    0.000    0.736    0.738
##     VisPur            0.253    0.059    4.255    0.000    0.542    0.543
##     Deco              0.346    0.075    4.633    0.000    0.741    0.743
##     InsCom            0.286    0.065    4.422    0.000    0.613    0.615
##     SpaOri            0.330    0.072    4.585    0.000    0.706    0.708
##     SpeMar            0.295    0.066    4.459    0.000    0.632    0.633
##     LogAcc            0.262    0.061    4.304    0.000    0.561    0.562
##     RotPur            0.217    0.054    4.021    0.000    0.465    0.467
##     DisReac           0.320    0.070    4.553    0.000    0.685    0.687
##   Spa =~                                                                
##     MP                0.349    0.091    3.842    0.000    0.731    0.733
##     GenMec            0.297    0.078    3.818    0.000    0.624    0.625
##     PlaCon            0.203    0.060    3.404    0.001    0.425    0.426
##     NutBolt           0.212    0.061    3.466    0.001    0.445    0.446
##   g =~                                                                  
##     Num               1.894    0.504    3.759    0.000    0.884    0.884
##     Spa               1.845    0.559    3.303    0.001    0.879    0.879
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P4CC ~                                                                
##     g                 0.626    0.072    8.688    0.000    0.626    0.628
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.657    0.069    9.488    0.000    0.657    0.660
##    .DTR               0.332    0.040    8.225    0.000    0.332    0.334
##    .SpId              0.406    0.047    8.689    0.000    0.406    0.408
##    .PatCom            0.454    0.051    8.909    0.000    0.454    0.456
##    .VisPur            0.701    0.073    9.570    0.000    0.701    0.705
##    .Deco              0.446    0.050    8.879    0.000    0.446    0.449
##    .InsCom            0.619    0.066    9.409    0.000    0.619    0.622
##    .SpaOri            0.497    0.055    9.071    0.000    0.497    0.499
##    .SpeMar            0.596    0.064    9.356    0.000    0.596    0.599
##    .LogAcc            0.680    0.071    9.533    0.000    0.680    0.684
##    .RotPur            0.778    0.080    9.689    0.000    0.778    0.782
##    .DisReac           0.525    0.057    9.165    0.000    0.525    0.528
##    .MP                0.460    0.071    6.504    0.000    0.460    0.462
##    .GenMec            0.606    0.075    8.114    0.000    0.606    0.609
##    .PlaCon            0.814    0.087    9.319    0.000    0.814    0.818
##    .NutBolt           0.797    0.086    9.245    0.000    0.797    0.801
##    .P4CC              0.603    0.074    8.153    0.000    0.603    0.606
##    .Num               1.000                               0.218    0.218
##    .Spa               1.000                               0.227    0.227
##     g                 1.000                               1.000    1.000
#T5

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P5CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               268.992
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1478.103
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.887
##   Tucker-Lewis Index (TLI)                       0.868
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4138.948
##   Loglikelihood unrestricted model (H1)      -4004.452
##                                                       
##   Akaike (AIC)                                8349.896
##   Bayesian (BIC)                              8468.092
##   Sample-size adjusted Bayesian (BIC)         8354.045
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.094
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.285    0.063    4.507    0.000    0.582    0.583
##     DTR               0.400    0.081    4.918    0.000    0.815    0.817
##     SpId              0.376    0.077    4.857    0.000    0.767    0.769
##     PatCom            0.362    0.075    4.815    0.000    0.737    0.739
##     VisPur            0.265    0.060    4.393    0.000    0.540    0.541
##     Deco              0.364    0.075    4.822    0.000    0.742    0.744
##     InsCom            0.300    0.066    4.580    0.000    0.612    0.614
##     SpaOri            0.346    0.073    4.765    0.000    0.706    0.708
##     SpeMar            0.309    0.067    4.621    0.000    0.630    0.632
##     LogAcc            0.275    0.062    4.452    0.000    0.561    0.562
##     RotPur            0.227    0.055    4.132    0.000    0.463    0.464
##     DisReac           0.335    0.071    4.727    0.000    0.684    0.686
##   Spa =~                                                                
##     MP                0.336    0.100    3.367    0.001    0.739    0.741
##     GenMec            0.284    0.084    3.361    0.001    0.624    0.625
##     PlaCon            0.191    0.063    3.058    0.002    0.420    0.422
##     NutBolt           0.200    0.064    3.101    0.002    0.439    0.440
##   g =~                                                                  
##     Num               1.778    0.466    3.815    0.000    0.872    0.872
##     Spa               1.956    0.674    2.904    0.004    0.890    0.890
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P5CC ~                                                                
##     g                 0.588    0.073    8.044    0.000    0.588    0.590
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.657    0.069    9.486    0.000    0.657    0.660
##    .DTR               0.331    0.040    8.203    0.000    0.331    0.332
##    .SpId              0.407    0.047    8.686    0.000    0.407    0.409
##    .PatCom            0.451    0.051    8.894    0.000    0.451    0.453
##    .VisPur            0.703    0.073    9.571    0.000    0.703    0.707
##    .Deco              0.444    0.050    8.864    0.000    0.444    0.446
##    .InsCom            0.620    0.066    9.410    0.000    0.620    0.623
##    .SpaOri            0.496    0.055    9.066    0.000    0.496    0.499
##    .SpeMar            0.598    0.064    9.358    0.000    0.598    0.601
##    .LogAcc            0.680    0.071    9.531    0.000    0.680    0.684
##    .RotPur            0.780    0.081    9.691    0.000    0.780    0.784
##    .DisReac           0.527    0.057    9.166    0.000    0.527    0.529
##    .MP                0.449    0.071    6.366    0.000    0.449    0.451
##    .GenMec            0.606    0.075    8.129    0.000    0.606    0.609
##    .PlaCon            0.818    0.088    9.340    0.000    0.818    0.822
##    .NutBolt           0.802    0.087    9.274    0.000    0.802    0.807
##    .P5CC              0.649    0.077    8.439    0.000    0.649    0.652
##    .Num               1.000                               0.240    0.240
##    .Spa               1.000                               0.207    0.207
##     g                 1.000                               1.000    1.000
#T6

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P6CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               268.029
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1457.649
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.886
##   Tucker-Lewis Index (TLI)                       0.867
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4148.693
##   Loglikelihood unrestricted model (H1)      -4014.679
##                                                       
##   Akaike (AIC)                                8369.387
##   Bayesian (BIC)                              8487.582
##   Sample-size adjusted Bayesian (BIC)         8373.536
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.094
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.275    0.078    3.509    0.000    0.585    0.587
##     DTR               0.385    0.104    3.689    0.000    0.818    0.820
##     SpId              0.360    0.098    3.662    0.000    0.767    0.769
##     PatCom            0.346    0.095    3.643    0.000    0.735    0.737
##     VisPur            0.253    0.073    3.447    0.001    0.538    0.539
##     Deco              0.349    0.096    3.647    0.000    0.742    0.744
##     InsCom            0.288    0.081    3.539    0.000    0.612    0.614
##     SpaOri            0.331    0.092    3.621    0.000    0.705    0.707
##     SpeMar            0.296    0.083    3.558    0.000    0.630    0.632
##     LogAcc            0.263    0.076    3.478    0.001    0.560    0.562
##     RotPur            0.217    0.065    3.314    0.001    0.461    0.462
##     DisReac           0.321    0.089    3.605    0.000    0.684    0.685
##   Spa =~                                                                
##     MP                0.358    0.108    3.318    0.001    0.743    0.745
##     GenMec            0.303    0.092    3.310    0.001    0.629    0.631
##     PlaCon            0.198    0.066    2.988    0.003    0.410    0.411
##     NutBolt           0.210    0.069    3.049    0.002    0.436    0.438
##   g =~                                                                  
##     Num               1.878    0.646    2.905    0.004    0.883    0.883
##     Spa               1.819    0.663    2.746    0.006    0.876    0.876
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P6CC ~                                                                
##     g                 0.496    0.076    6.551    0.000    0.496    0.497
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.652    0.069    9.475    0.000    0.652    0.655
##    .DTR               0.325    0.040    8.154    0.000    0.325    0.327
##    .SpId              0.407    0.047    8.682    0.000    0.407    0.409
##    .PatCom            0.454    0.051    8.903    0.000    0.454    0.457
##    .VisPur            0.705    0.074    9.574    0.000    0.705    0.709
##    .Deco              0.445    0.050    8.863    0.000    0.445    0.447
##    .InsCom            0.620    0.066    9.407    0.000    0.620    0.623
##    .SpaOri            0.498    0.055    9.068    0.000    0.498    0.500
##    .SpeMar            0.598    0.064    9.356    0.000    0.598    0.601
##    .LogAcc            0.681    0.071    9.530    0.000    0.681    0.685
##    .RotPur            0.783    0.081    9.693    0.000    0.783    0.787
##    .DisReac           0.528    0.058    9.165    0.000    0.528    0.530
##    .MP                0.443    0.071    6.235    0.000    0.443    0.445
##    .GenMec            0.599    0.074    8.040    0.000    0.599    0.602
##    .PlaCon            0.827    0.088    9.364    0.000    0.827    0.831
##    .NutBolt           0.804    0.087    9.271    0.000    0.804    0.809
##    .P6CC              0.749    0.084    8.966    0.000    0.749    0.753
##    .Num               1.000                               0.221    0.221
##    .Spa               1.000                               0.232    0.232
##     g                 1.000                               1.000    1.000
#T7

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P7CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 43 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               270.662
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1471.671
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.885
##   Tucker-Lewis Index (TLI)                       0.866
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4142.999
##   Loglikelihood unrestricted model (H1)      -4007.668
##                                                       
##   Akaike (AIC)                                8357.998
##   Bayesian (BIC)                              8476.193
##   Sample-size adjusted Bayesian (BIC)         8362.147
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.082
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.094
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.275    0.070    3.903    0.000    0.583    0.585
##     DTR               0.384    0.092    4.158    0.000    0.816    0.819
##     SpId              0.360    0.087    4.119    0.000    0.765    0.767
##     PatCom            0.347    0.085    4.093    0.000    0.736    0.738
##     VisPur            0.254    0.066    3.823    0.000    0.539    0.540
##     Deco              0.349    0.085    4.098    0.000    0.742    0.744
##     InsCom            0.288    0.073    3.946    0.000    0.612    0.613
##     SpaOri            0.333    0.082    4.065    0.000    0.708    0.709
##     SpeMar            0.298    0.075    3.976    0.000    0.632    0.634
##     LogAcc            0.264    0.068    3.864    0.000    0.561    0.562
##     RotPur            0.218    0.060    3.649    0.000    0.463    0.464
##     DisReac           0.322    0.080    4.039    0.000    0.683    0.685
##   Spa =~                                                                
##     MP                0.358    0.099    3.598    0.000    0.743    0.744
##     GenMec            0.304    0.085    3.587    0.000    0.631    0.633
##     PlaCon            0.199    0.062    3.192    0.001    0.412    0.413
##     NutBolt           0.209    0.064    3.253    0.001    0.434    0.435
##   g =~                                                                  
##     Num               1.874    0.571    3.282    0.001    0.882    0.882
##     Spa               1.819    0.603    3.018    0.003    0.876    0.876
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P7CC ~                                                                
##     g                 0.551    0.074    7.420    0.000    0.551    0.553
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.655    0.069    9.481    0.000    0.655    0.658
##    .DTR               0.328    0.040    8.182    0.000    0.328    0.330
##    .SpId              0.409    0.047    8.697    0.000    0.409    0.411
##    .PatCom            0.453    0.051    8.900    0.000    0.453    0.455
##    .VisPur            0.705    0.074    9.573    0.000    0.705    0.708
##    .Deco              0.445    0.050    8.865    0.000    0.445    0.447
##    .InsCom            0.621    0.066    9.411    0.000    0.621    0.624
##    .SpaOri            0.494    0.055    9.057    0.000    0.494    0.497
##    .SpeMar            0.595    0.064    9.351    0.000    0.595    0.598
##    .LogAcc            0.681    0.071    9.531    0.000    0.681    0.684
##    .RotPur            0.781    0.081    9.691    0.000    0.781    0.785
##    .DisReac           0.528    0.058    9.169    0.000    0.528    0.531
##    .MP                0.444    0.071    6.272    0.000    0.444    0.446
##    .GenMec            0.597    0.074    8.035    0.000    0.597    0.600
##    .PlaCon            0.825    0.088    9.363    0.000    0.825    0.829
##    .NutBolt           0.807    0.087    9.287    0.000    0.807    0.811
##    .P7CC              0.691    0.080    8.670    0.000    0.691    0.695
##    .Num               1.000                               0.222    0.222
##    .Spa               1.000                               0.232    0.232
##     g                 1.000                               1.000    1.000
#T8

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P8CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               266.775
##   Degrees of freedom                               117
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1462.830
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.887
##   Tucker-Lewis Index (TLI)                       0.869
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4145.476
##   Loglikelihood unrestricted model (H1)      -4012.089
##                                                       
##   Akaike (AIC)                                8362.952
##   Bayesian (BIC)                              8481.148
##   Sample-size adjusted Bayesian (BIC)         8367.101
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.093
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.263    0.078    3.380    0.001    0.584    0.586
##     DTR               0.367    0.104    3.540    0.000    0.816    0.818
##     SpId              0.345    0.098    3.517    0.000    0.768    0.770
##     PatCom            0.331    0.094    3.499    0.000    0.735    0.737
##     VisPur            0.243    0.073    3.328    0.001    0.540    0.541
##     Deco              0.334    0.095    3.504    0.000    0.743    0.745
##     InsCom            0.276    0.081    3.408    0.001    0.613    0.615
##     SpaOri            0.318    0.091    3.481    0.000    0.706    0.708
##     SpeMar            0.284    0.083    3.424    0.001    0.630    0.632
##     LogAcc            0.252    0.075    3.352    0.001    0.560    0.561
##     RotPur            0.208    0.065    3.209    0.001    0.462    0.464
##     DisReac           0.307    0.089    3.465    0.001    0.683    0.684
##   Spa =~                                                                
##     MP                0.373    0.099    3.775    0.000    0.742    0.744
##     GenMec            0.318    0.085    3.756    0.000    0.634    0.635
##     PlaCon            0.204    0.062    3.287    0.001    0.407    0.408
##     NutBolt           0.219    0.065    3.382    0.001    0.437    0.438
##   g =~                                                                  
##     Num               1.985    0.696    2.851    0.004    0.893    0.893
##     Spa               1.723    0.556    3.099    0.002    0.865    0.865
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P8CC ~                                                                
##     g                 0.526    0.075    7.005    0.000    0.526    0.527
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.653    0.069    9.478    0.000    0.653    0.657
##    .DTR               0.329    0.040    8.183    0.000    0.329    0.330
##    .SpId              0.405    0.047    8.678    0.000    0.405    0.407
##    .PatCom            0.455    0.051    8.908    0.000    0.455    0.457
##    .VisPur            0.703    0.073    9.571    0.000    0.703    0.707
##    .Deco              0.443    0.050    8.859    0.000    0.443    0.446
##    .InsCom            0.619    0.066    9.406    0.000    0.619    0.622
##    .SpaOri            0.496    0.055    9.064    0.000    0.496    0.499
##    .SpeMar            0.598    0.064    9.357    0.000    0.598    0.601
##    .LogAcc            0.682    0.072    9.533    0.000    0.682    0.685
##    .RotPur            0.781    0.081    9.691    0.000    0.781    0.785
##    .DisReac           0.529    0.058    9.171    0.000    0.529    0.531
##    .MP                0.444    0.071    6.257    0.000    0.444    0.446
##    .GenMec            0.594    0.074    7.993    0.000    0.594    0.597
##    .PlaCon            0.830    0.088    9.376    0.000    0.830    0.834
##    .NutBolt           0.804    0.087    9.269    0.000    0.804    0.808
##    .P8CC              0.719    0.082    8.807    0.000    0.719    0.722
##    .Num               1.000                               0.202    0.202
##    .Spa               1.000                               0.252    0.252
##     g                 1.000                               1.000    1.000

Cumulative Model

RegBFModel <- '
Num =~ NumOpII + DTR + SpId + PatCom + VisPur + Deco + InsCom + SpaOri + SpeMar + LogAcc + RotPur + DisReac
Spa =~ MP + GenMec + PlaCon + NutBolt

g =~ Num + Spa

P1CC + P2CC + P3CC + P4CC + P5CC + P6CC + P7CC + P8CC ~ g'

RegBFFit <- cfa(RegBFModel, sample.cov = FH54.cor, sample.nobs = nFH54, std.lv = T, orthogonal = T)

summary(RegBFFit, stand = T, fit = T)
## lavaan 0.6-9 ended normally after 128 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##                                                       
##   Number of observations                           197
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               374.901
##   Degrees of freedom                               222
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3812.986
##   Degrees of freedom                               276
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.957
##   Tucker-Lewis Index (TLI)                       0.946
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4977.668
##   Loglikelihood unrestricted model (H1)      -4790.218
##                                                       
##   Akaike (AIC)                               10111.337
##   Bayesian (BIC)                             10367.427
##   Sample-size adjusted Bayesian (BIC)        10120.326
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent confidence interval - lower         0.049
##   90 Percent confidence interval - upper         0.069
##   P-value RMSEA <= 0.05                          0.075
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Num =~                                                                
##     NumOpII           0.263    0.048    5.457    0.000    0.571    0.572
##     DTR               0.371    0.059    6.289    0.000    0.807    0.809
##     SpId              0.353    0.057    6.183    0.000    0.767    0.769
##     PatCom            0.342    0.056    6.111    0.000    0.742    0.744
##     VisPur            0.251    0.047    5.331    0.000    0.545    0.547
##     Deco              0.342    0.056    6.114    0.000    0.743    0.745
##     InsCom            0.284    0.050    5.661    0.000    0.616    0.618
##     SpaOri            0.325    0.054    5.995    0.000    0.705    0.707
##     SpeMar            0.291    0.051    5.728    0.000    0.633    0.634
##     LogAcc            0.255    0.047    5.376    0.000    0.554    0.556
##     RotPur            0.219    0.044    4.936    0.000    0.475    0.476
##     DisReac           0.317    0.053    5.940    0.000    0.689    0.691
##   Spa =~                                                                
##     MP                0.343    0.076    4.489    0.000    0.723    0.725
##     GenMec            0.293    0.066    4.422    0.000    0.617    0.618
##     PlaCon            0.208    0.054    3.881    0.000    0.437    0.439
##     NutBolt           0.215    0.054    3.943    0.000    0.452    0.453
##   g =~                                                                  
##     Num               1.928    0.375    5.135    0.000    0.888    0.888
##     Spa               1.854    0.459    4.043    0.000    0.880    0.880
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   P1CC ~                                                                
##     g                 0.775    0.066   11.681    0.000    0.775    0.777
##   P2CC ~                                                                
##     g                 0.675    0.070    9.655    0.000    0.675    0.676
##   P3CC ~                                                                
##     g                 0.694    0.069   10.027    0.000    0.694    0.696
##   P4CC ~                                                                
##     g                 0.627    0.071    8.797    0.000    0.627    0.629
##   P5CC ~                                                                
##     g                 0.588    0.072    8.111    0.000    0.588    0.589
##   P6CC ~                                                                
##     g                 0.499    0.075    6.682    0.000    0.499    0.500
##   P7CC ~                                                                
##     g                 0.553    0.073    7.543    0.000    0.553    0.555
##   P8CC ~                                                                
##     g                 0.531    0.074    7.181    0.000    0.531    0.532
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .P1CC ~~                                                               
##    .P2CC              0.224    0.054    4.122    0.000    0.224    0.484
##    .P3CC              0.189    0.053    3.562    0.000    0.189    0.419
##    .P4CC              0.171    0.053    3.222    0.001    0.171    0.350
##    .P5CC              0.182    0.054    3.389    0.001    0.182    0.358
##    .P6CC              0.181    0.054    3.341    0.001    0.181    0.333
##    .P7CC              0.198    0.054    3.652    0.000    0.198    0.380
##    .P8CC              0.176    0.054    3.271    0.001    0.176    0.331
##  .P2CC ~~                                                               
##    .P3CC              0.377    0.061    6.148    0.000    0.377    0.717
##    .P4CC              0.422    0.064    6.597    0.000    0.422    0.741
##    .P5CC              0.439    0.065    6.748    0.000    0.439    0.742
##    .P6CC              0.449    0.066    6.793    0.000    0.449    0.708
##    .P7CC              0.393    0.063    6.187    0.000    0.393    0.644
##    .P8CC              0.428    0.065    6.576    0.000    0.428    0.690
##  .P3CC ~~                                                               
##    .P4CC              0.410    0.063    6.488    0.000    0.410    0.738
##    .P5CC              0.418    0.064    6.543    0.000    0.418    0.724
##    .P6CC              0.440    0.065    6.730    0.000    0.440    0.711
##    .P7CC              0.422    0.064    6.563    0.000    0.422    0.710
##    .P8CC              0.418    0.064    6.500    0.000    0.418    0.690
##  .P4CC ~~                                                               
##    .P5CC              0.527    0.070    7.561    0.000    0.527    0.843
##    .P6CC              0.563    0.072    7.813    0.000    0.563    0.840
##    .P7CC              0.508    0.069    7.352    0.000    0.508    0.790
##    .P8CC              0.513    0.070    7.373    0.000    0.513    0.783
##  .P5CC ~~                                                               
##    .P6CC              0.602    0.074    8.089    0.000    0.602    0.865
##    .P7CC              0.540    0.071    7.596    0.000    0.540    0.808
##    .P8CC              0.544    0.072    7.603    0.000    0.544    0.799
##  .P6CC ~~                                                               
##    .P7CC              0.570    0.073    7.754    0.000    0.570    0.795
##    .P8CC              0.591    0.075    7.908    0.000    0.591    0.810
##  .P7CC ~~                                                               
##    .P8CC              0.602    0.075    8.066    0.000    0.602    0.859
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NumOpII           0.669    0.070    9.525    0.000    0.669    0.672
##    .DTR               0.344    0.041    8.369    0.000    0.344    0.346
##    .SpId              0.407    0.047    8.737    0.000    0.407    0.409
##    .PatCom            0.444    0.050    8.907    0.000    0.444    0.447
##    .VisPur            0.697    0.073    9.575    0.000    0.697    0.701
##    .Deco              0.443    0.050    8.901    0.000    0.443    0.445
##    .InsCom            0.615    0.065    9.418    0.000    0.615    0.618
##    .SpaOri            0.497    0.055    9.103    0.000    0.497    0.500
##    .SpeMar            0.595    0.063    9.373    0.000    0.595    0.598
##    .LogAcc            0.688    0.072    9.558    0.000    0.688    0.691
##    .RotPur            0.769    0.079    9.685    0.000    0.769    0.773
##    .DisReac           0.520    0.057    9.175    0.000    0.520    0.523
##    .MP                0.473    0.069    6.810    0.000    0.473    0.475
##    .GenMec            0.614    0.074    8.277    0.000    0.614    0.618
##    .PlaCon            0.804    0.086    9.315    0.000    0.804    0.808
##    .NutBolt           0.791    0.085    9.261    0.000    0.791    0.795
##    .P1CC              0.395    0.061    6.519    0.000    0.395    0.397
##    .P2CC              0.540    0.069    7.828    0.000    0.540    0.543
##    .P3CC              0.513    0.067    7.621    0.000    0.513    0.516
##    .P4CC              0.601    0.073    8.256    0.000    0.601    0.604
##    .P5CC              0.650    0.076    8.551    0.000    0.650    0.653
##    .P6CC              0.746    0.082    9.048    0.000    0.746    0.750
##    .P7CC              0.689    0.079    8.767    0.000    0.689    0.692
##    .P8CC              0.713    0.080    8.891    0.000    0.713    0.717
##    .Num               1.000                               0.212    0.212
##    .Spa               1.000                               0.225    0.225
##     g                 1.000                               1.000    1.000