library(plotly)
library(hms)
library(lubridate)
library(tibbletime)
library(kableExtra)
library(tidyverse)
3 subjects (CC, CG, NJ) wore the two ActiGraph wGT3X-BT devices concurrently on their non-dominant (left) wrist for several hours over 3-4 days. Idle Sleep Mode (ISM) was enabled in one device and disabled in the other. Here’s a quick look at the data:
| Day Worn | Hours worn | Time worn |
|---|---|---|
| Day 2 | 4 hours | 2pm-6pm |
| Day 3 | 7 hours | 10am-5pm |
| Day 8 | 9 hours | 9am-6pm |
| Day Worn | Hours worn | Time worn |
|---|---|---|
| Day 1 | 4 hours | 2pm-6pm |
| Day 2 | 4 hours | 2pm-6pm |
| Day 4 | 11 hours | 9am-8pm |
| Day 11 | 7 hours | 10am-5pm |
| Day Worn | Hours worn | Time worn |
|---|---|---|
| Day 1 | 4 hours | 2pm-6pm |
| Day 2 | 4 hours | 2pm-6pm |
| Day 3 | 4 hours | 1pm-5pm |
#minute level data
#1) import
data60 <- map(list.files('output_csv/meta/csv', full.names = T), read_csv)
#2) add ID column
IDs <- list.files('output_csv/meta/csv') %>% str_replace('.csv.RData.csv', '')
data60 <- map2(data60, IDs, ~ .x %>% mutate(ID = .y))
#3) rowbind, make timezone America/New_York, convert ENMO units from g to mg
data60 <- bind_rows(data60) %>%
mutate(timestamp = with_tz(timestamp, "America/New_York"),
ENMO = ENMO * 1000)
#3.5) create MVPA summaries for Mike plot
data60_milham <- data60 %>%
separate(ID, c('ID', 'ISM'), sep = '_') %>%
mutate(day = day(timestamp))
data60_milham <- data60_milham %>%
select(-anglez) %>%
spread(key = ISM, value = ENMO) %>%
rename(ENMO_ISM_On = yes,
ENMO_ISM_Off = no)
#write a function to calculate minutes of MVPA per day
calc_MVPA <- function(ENMO, threshold) {
return(length(ENMO[ENMO > threshold]))
}
data60_milham_plot <- map(c(100,120,125), ~ data60_milham %>%
group_by(ID, day) %>%
summarise(MVPA_duration_ISM_Off = calc_MVPA(ENMO_ISM_Off, .x),
MVPA_duration_ISM_On = calc_MVPA(ENMO_ISM_On, .x),
MVPA_threshold = .x)
)
data60_milham_plot <- bind_rows(data60_milham_plot)
#subset to valid days for each subject
CC = c(26, 27, 2)
CG = c(25, 26, 28, 5)
NJ = c(25, 26, 27)
data60_milham_plot <- data60_milham_plot %>% filter(ID == "CC" & day %in% CC |
ID == "CG" & day %in% CG |
ID == "NJ" & day %in% NJ)
data60_milham_plot_sub <- data60_milham_plot %>%
group_by(ID, MVPA_threshold) %>%
summarise(MVPA_duration_ISM_Off = mean(MVPA_duration_ISM_Off),
MVPA_duration_ISM_On = mean(MVPA_duration_ISM_On))
#4) spread data for plotly
data60 <- data60 %>% select(-anglez) %>% spread(key = ID, value = ENMO)
#day level summaries
day_summaries <- read_csv('output_csv/results/part2_daysummary.csv')
#make exploratory plots to compare ISM vs No ISM data
create_plot <- function(subID, date_start, date_end) {
ISM_on = paste0(subID, '_yes')
ISM_off = paste0(subID, '_no')
plotdata <- as_tbl_time(data60, index = timestamp) %>%
filter_time(date_start ~ date_end)
plot <- plot_ly(type = 'scatter', mode = 'lines') %>%
add_trace(x = ~plotdata[['timestamp']], y = ~plotdata[[ISM_on]], name = "ISM On", opacity = 0.7, line=list(color='#a32c3f', opacity = 0.7)) %>%
add_trace(x = ~plotdata[['timestamp']], y = ~plotdata[[ISM_off]], name = "ISM_Off", opacity = 0.7, line=list(color='#0067a0')) %>%
layout(
xaxis = list(title = ''),
yaxis = list(title = 'ENMO (mg)')
)
return(plot)
}
ISM-Off watches consistently produced higher ENMOs than ISM-On watches.
CC’s watches looked perfectly in sync from day 1 to day 8.
create_plot('CC', '2022-04-26 13:00', '2022-04-26 19:00')
create_plot('CC', '2022-04-27 10:00', '2022-04-27 18:00')
create_plot('CC', '2022-05-02 8:40', '2022-05-02 19:00')
CG’s watches looked off by 10 seconds on setup (ISM On was 10 seconds ahead), and off by 25 seconds by day 11.
create_plot('CG', '2022-04-25 13:00', '2022-04-25 19:00')
create_plot('CG', '2022-04-26 13:40', '2022-04-26 19:30')
create_plot('CG', '2022-04-28 8:40', '2022-04-28 21:00')
create_plot('CG', '2022-05-05 9:50', '2022-05-05 17:30')
NJ’s watches looked off by 5 seconds on setup (ISM On was 5 seconds ahead), and off by 10 seconds around the end of day 3.
create_plot('NJ', '2022-04-25 13:30', '2022-04-25 18:30')
create_plot('NJ', '2022-04-26 13:30', '2022-04-26 19:10')
create_plot('NJ', '2022-04-27 13:00', '2022-04-27 18:00')
There were differences in summary values across the board.
| subID | ISM | calendar_date | bodylocation | N valid hours | N hours | weekday | measurementday | L5hr_ENMO_mg_0-24hr | L5_ENMO_mg_0-24hr | M5hr_ENMO_mg_0-24hr | M5_ENMO_mg_0-24hr | L10hr_ENMO_mg_0-24hr | L10_ENMO_mg_0-24hr | M10hr_ENMO_mg_0-24hr | M10_ENMO_mg_0-24hr | mean_ENMO_mg_1-6am | mean_ENMO_mg_0-24hr | p95.83333_ENMO_mg_0-24hr | p97.91667_ENMO_mg_0-24hr | [0,50)_ENMO_mg_0-24hr | [50,100)_ENMO_mg_0-24hr | [100,150)_ENMO_mg_0-24hr | [150,200)_ENMO_mg_0-24hr | [200,250)_ENMO_mg_0-24hr | [250,300)_ENMO_mg_0-24hr | [300,350)_ENMO_mg_0-24hr | [350,400)_ENMO_mg_0-24hr | [400,8e+03)_ENMO_mg_0-24hr | MVPA_E5S_T125_ENMO_0-24hr | MVPA_E1M_T125_ENMO_0-24hr | MVPA_E5M_T125_ENMO_0-24hr | MVPA_E5S_B1M80%_T125_ENMO_0-24hr | MVPA_E5S_B5M80%_T125_ENMO_0-24hr | MVPA_E5S_B10M80%_T125_ENMO_0-24hr |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CC | no | 2022-04-27 04:00:00 | not extracted | 9.75 | 24 | Wednesday | 3 | 18.333333 | 0.5005000 | 11.166667 | 41.72319 | 18.333333 | 0.8449028 | 8.333333 | 30.495639 | 1.1275000 | 13.216724 | 68.20417 | 91.40208 | 1329.750 | 85.916667 | 18.583333 | 4.583333 | 0.6666667 | 0.2500000 | 0.0000000 | 0.0000000 | 0.2500000 | 11.833333 | 1 | 0 | 0.000000 | 0.000000 | 0 |
| CC | yes | 2022-04-27 04:00:00 | not extracted | 9.75 | 24 | Wednesday | 3 | 3.666667 | 0.0000000 | 11.166667 | 22.02367 | 22.000000 | 0.0000000 | 9.166667 | 15.342958 | 0.0000000 | 6.393067 | 47.00000 | 68.20000 | 1385.583 | 43.083333 | 9.416667 | 1.166667 | 0.4166667 | 0.2500000 | 0.0000000 | 0.0000000 | 0.0833333 | 4.166667 | 0 | 0 | 0.000000 | 0.000000 | 0 |
| CC | no | 2022-05-02 04:00:00 | not extracted | 10.50 | 24 | Monday | 8 | 1.000000 | 0.6081944 | 13.500000 | 41.58981 | 22.833333 | 1.1102361 | 9.333333 | 39.198625 | 0.6081944 | 19.600799 | 79.10000 | 108.20417 | 1311.083 | 91.250000 | 26.166667 | 7.833333 | 2.2500000 | 0.7500000 | 0.1666667 | 0.1666667 | 0.3333333 | 19.833333 | 10 | 5 | 3.333333 | 0.000000 | 0 |
| CC | yes | 2022-05-02 04:00:00 | not extracted | 10.50 | 24 | Monday | 8 | 2.333333 | 0.0000000 | 10.500000 | 19.23258 | 22.666667 | 0.0001111 | 8.833333 | 17.543236 | 0.0000000 | 7.902888 | 58.10417 | 86.30208 | 1368.833 | 50.666667 | 16.000000 | 3.250000 | 0.6666667 | 0.2500000 | 0.0833333 | 0.1666667 | 0.0833333 | 9.000000 | 1 | 0 | 0.000000 | 0.000000 | 0 |
| CC | no | 2022-05-03 04:00:00 | not extracted | 6.75 | 24 | Tuesday | 9 | 18.833333 | 1.5965000 | 13.500000 | 41.47628 | 18.666667 | 2.5627361 | 8.666667 | 23.349319 | 3.8206944 | 11.548542 | 109.40000 | 125.40000 | 1344.750 | 22.750000 | 63.666667 | 7.666667 | 0.7500000 | 0.1666667 | 0.0833333 | 0.0000000 | 0.1666667 | 30.916667 | 21 | 5 | 12.083333 | 0.000000 | 0 |
| CC | yes | 2022-05-03 04:00:00 | not extracted | 6.75 | 24 | Tuesday | 9 | 19.666667 | 0.0000000 | 13.500000 | 38.16503 | 20.833333 | 0.0000000 | 10.500000 | 19.222056 | 0.0000000 | 8.010758 | 106.30000 | 124.10000 | 1343.833 | 27.666667 | 60.916667 | 6.583333 | 0.7500000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.2500000 | 28.416667 | 18 | 5 | 12.583333 | 0.000000 | 0 |
| CG | no | 2022-04-26 04:00:00 | not extracted | 6.25 | 24 | Tuesday | 2 | 4.500000 | 1.7376111 | 14.500000 | 19.05992 | 1.000000 | 1.8267361 | 13.833333 | 12.425681 | 1.8695278 | 6.320897 | 27.60000 | 59.20208 | 1404.917 | 16.833333 | 10.583333 | 5.916667 | 1.5833333 | 0.0833333 | 0.0000000 | 0.0000000 | 0.0833333 | 13.500000 | 8 | 5 | 8.083333 | 7.916667 | 0 |
| CG | yes | 2022-04-26 04:00:00 | not extracted | 7.25 | 24 | Tuesday | 2 | 2.666667 | 0.0000000 | 14.500000 | 27.24414 | 22.666667 | 0.0024028 | 13.500000 | 14.807472 | 0.0000000 | 6.171979 | 39.80000 | 71.00417 | 1395.250 | 23.833333 | 9.416667 | 9.416667 | 1.4166667 | 0.5000000 | 0.0000000 | 0.0833333 | 0.0833333 | 16.250000 | 13 | 10 | 9.166667 | 8.916667 | 0 |
| CG | no | 2022-04-28 04:00:00 | not extracted | 12.50 | 24 | Thursday | 4 | 20.500000 | 0.4915833 | 12.833333 | 13.97725 | 20.500000 | 0.7037917 | 10.333333 | 11.839528 | 0.9155278 | 5.874543 | 31.90000 | 50.70000 | 1409.333 | 17.916667 | 7.250000 | 3.250000 | 1.2500000 | 0.2500000 | 0.0833333 | 0.1666667 | 0.5000000 | 8.333333 | 3 | 0 | 1.000000 | 0.000000 | 0 |
| CG | yes | 2022-04-28 04:00:00 | not extracted | 12.50 | 24 | Thursday | 4 | 2.500000 | 0.0000000 | 12.833333 | 20.61422 | 22.166667 | 0.0024722 | 10.333333 | 17.405667 | 0.0000000 | 8.121470 | 41.40000 | 62.30000 | 1396.167 | 29.333333 | 8.416667 | 3.500000 | 1.7500000 | 0.4166667 | 0.0833333 | 0.0000000 | 0.3333333 | 9.416667 | 4 | 0 | 1.166667 | 0.000000 | 0 |
| CG | no | 2022-04-29 04:00:00 | not extracted | 4.00 | 24 | Friday | 5 | 2.000000 | 0.0000000 | 14.833333 | 10.62483 | 21.666667 | 0.0394028 | 9.833333 | 5.592542 | 0.0000000 | 3.123299 | 17.60417 | 34.70625 | 1417.250 | 8.583333 | 11.166667 | 2.500000 | 0.5000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 8.583333 | 6 | 0 | 3.666667 | 0.000000 | 0 |
| CG | yes | 2022-05-04 04:00:00 | not extracted | 4.50 | 24 | Wednesday | 10 | 2.666667 | 0.0000000 | 17.166667 | 10.09692 | 22.500000 | 0.0151250 | 13.833333 | 5.086514 | 0.0000000 | 2.564861 | 15.20000 | 30.80208 | 1420.667 | 6.083333 | 10.250000 | 1.500000 | 1.2500000 | 0.1666667 | 0.0833333 | 0.0000000 | 0.0000000 | 7.416667 | 6 | 0 | 3.500000 | 0.000000 | 0 |
| CG | no | 2022-05-05 04:00:00 | not extracted | 8.25 | 24 | Thursday | 11 | 2.833333 | 0.0000000 | 11.500000 | 17.35628 | 22.833333 | 0.0044028 | 9.833333 | 11.599958 | 0.0000000 | 4.838715 | 32.40417 | 56.10208 | 1404.167 | 27.416667 | 5.333333 | 1.666667 | 0.6666667 | 0.4166667 | 0.1666667 | 0.0000000 | 0.1666667 | 4.666667 | 3 | 0 | 0.000000 | 0.000000 | 0 |
| CG | yes | 2022-05-05 04:00:00 | not extracted | 8.25 | 24 | Thursday | 11 | 4.000000 | 0.0000000 | 11.000000 | 25.99731 | 20.000000 | 0.0089167 | 8.500000 | 17.343583 | 0.0000000 | 7.230208 | 47.30000 | 74.50208 | 1384.583 | 37.250000 | 11.916667 | 3.083333 | 1.6666667 | 0.5833333 | 0.3333333 | 0.1666667 | 0.4166667 | 10.333333 | 4 | 0 | 1.000000 | 0.000000 | 0 |
| NJ | no | 2022-04-25 14:00:00 | not extracted | 8.75 | 14 | Monday | 1 | 18.166667 | 1.1255000 | 3.333333 | 21.40821 | 18.000000 | 2.6478472 | 22.833333 | 11.831157 | 11.7592500 | 9.685177 | 44.20139 | 64.83542 | 1392.333 | 36.416667 | 6.083333 | 2.666667 | 1.4166667 | 0.5000000 | 0.1666667 | 0.0833333 | 0.3333333 | 6.833333 | 3 | 0 | 0.000000 | 0.000000 | 0 |
| NJ | yes | 2022-04-25 14:00:00 | not extracted | 8.75 | 14 | Monday | 1 | 19.000000 | 0.0000000 | 14.000000 | 19.28403 | 18.000000 | 1.0014491 | 8.000000 | 9.805079 | 10.2594444 | 8.037513 | 46.56944 | 69.50417 | 1385.583 | 40.250000 | 8.500000 | 2.666667 | 1.0000000 | 1.0000000 | 0.5833333 | 0.0000000 | 0.4166667 | 8.750000 | 4 | 0 | 0.000000 | 0.000000 | 0 |
| NJ | no | 2022-04-26 04:00:00 | not extracted | 6.00 | 24 | Tuesday | 2 | 18.666667 | 0.3934444 | 13.666667 | 14.43725 | 18.666667 | 0.8499583 | 8.666667 | 8.078431 | 1.3796111 | 3.949010 | 23.50000 | 40.60000 | 1418.667 | 15.250000 | 3.500000 | 1.833333 | 0.1666667 | 0.0000000 | 0.0833333 | 0.1666667 | 0.3333333 | 4.083333 | 0 | 0 | 0.000000 | 0.000000 | 0 |
| NJ | yes | 2022-04-26 04:00:00 | not extracted | 6.00 | 24 | Tuesday | 2 | 6.833333 | 0.0000000 | 13.666667 | 17.71956 | 19.500000 | 0.0000000 | 11.500000 | 8.861500 | 0.0000000 | 3.692292 | 27.00417 | 51.80000 | 1408.667 | 22.083333 | 5.666667 | 2.083333 | 0.8333333 | 0.1666667 | 0.0833333 | 0.0000000 | 0.4166667 | 6.083333 | 1 | 0 | 0.000000 | 0.000000 | 0 |
| NJ | no | 2022-04-27 04:00:00 | not extracted | 6.00 | 24 | Wednesday | 3 | 5.000000 | 0.3392778 | 13.333333 | 28.88986 | 2.166667 | 0.3799722 | 13.333333 | 16.047000 | 0.4117778 | 6.998310 | 40.40417 | 68.30000 | 1393.083 | 34.916667 | 7.083333 | 2.666667 | 1.4166667 | 0.4166667 | 0.0833333 | 0.0833333 | 0.2500000 | 6.500000 | 2 | 0 | 1.500000 | 0.000000 | 0 |
| NJ | yes | 2022-04-27 04:00:00 | not extracted | 6.00 | 24 | Wednesday | 3 | 6.833333 | 0.0000000 | 13.000000 | 19.27428 | 19.500000 | 0.0000000 | 11.000000 | 9.642153 | 0.0000000 | 4.017564 | 33.00000 | 55.50208 | 1403.167 | 28.416667 | 5.750000 | 1.916667 | 0.3333333 | 0.0000000 | 0.0833333 | 0.0833333 | 0.2500000 | 4.666667 | 2 | 0 | 1.083333 | 0.000000 | 0 |
We didn’t have enough data to produce part 5 summaries for most days.
| ID | filename | window_number | weekday | calendar_date | sleeponset | sleeponset_ts | wakeup | wakeup_ts | night_number | daysleeper | cleaningcode | guider | sleeplog_used | acc_available | nonwear_perc_day | nonwear_perc_spt | nonwear_perc_day_spt | dur_spt_sleep_min | dur_spt_wake_IN_min | dur_spt_wake_LIG_min | dur_spt_wake_MOD_min | dur_spt_wake_VIG_min | dur_day_IN_unbt_min | dur_day_LIG_unbt_min | dur_day_MOD_unbt_min | dur_day_VIG_unbt_min | dur_day_MVPA_bts_10_min | dur_day_MVPA_bts_5_10_min | dur_day_MVPA_bts_1_5_min | dur_day_IN_bts_30_min | dur_day_IN_bts_20_30_min | dur_day_IN_bts_10_20_min | dur_day_LIG_bts_10_min | dur_day_LIG_bts_5_10_min | dur_day_LIG_bts_1_5_min | dur_day_total_IN_min | dur_day_total_LIG_min | dur_day_total_MOD_min | dur_day_total_VIG_min | dur_day_min | dur_spt_min | dur_day_spt_min | N_atleast5minwakenight | sleep_efficiency | ACC_spt_sleep_mg | ACC_spt_wake_IN_mg | ACC_spt_wake_LIG_mg | ACC_spt_wake_MOD_mg | ACC_spt_wake_VIG_mg | ACC_day_IN_unbt_mg | ACC_day_LIG_unbt_mg | ACC_day_MOD_unbt_mg | ACC_day_VIG_unbt_mg | ACC_day_MVPA_bts_10_mg | ACC_day_MVPA_bts_5_10_mg | ACC_day_MVPA_bts_1_5_mg | ACC_day_IN_bts_30_mg | ACC_day_IN_bts_20_30_mg | ACC_day_IN_bts_10_20_mg | ACC_day_LIG_bts_10_mg | ACC_day_LIG_bts_5_10_mg | ACC_day_LIG_bts_1_5_mg | ACC_day_total_IN_mg | ACC_day_total_LIG_mg | ACC_day_total_MOD_mg | ACC_day_total_VIG_mg | ACC_day_mg | ACC_spt_mg | ACC_day_spt_mg | quantile_mostactive60min_mg | quantile_mostactive30min_mg | L5TIME | L5VALUE | M5TIME | M5VALUE | L5TIME_num | M5TIME_num | L10TIME | L10VALUE | M10TIME | M10VALUE | L10TIME_num | M10TIME_num | Nbouts_day_MVPA_bts_10 | Nbouts_day_MVPA_bts_5_10 | Nbouts_day_MVPA_bts_1_5 | Nbouts_day_IN_bts_30 | Nbouts_day_IN_bts_20_30 | Nbouts_day_IN_bts_10_20 | Nbouts_day_LIG_bts_10 | Nbouts_day_LIG_bts_5_10 | Nbouts_day_LIG_bts_1_5 | Nblocks_spt_sleep | Nblocks_spt_wake_IN | Nblocks_spt_wake_LIG | Nblocks_spt_wake_MOD | Nblocks_spt_wake_VIG | Nblocks_day_IN_unbt | Nblocks_day_LIG_unbt | Nblocks_day_MOD_unbt | Nblocks_day_VIG_unbt | Nblocks_day_MVPA_bts_10 | Nblocks_day_MVPA_bts_5_10 | Nblocks_day_MVPA_bts_1_5 | Nblocks_day_IN_bts_30 | Nblocks_day_IN_bts_20_30 | Nblocks_day_IN_bts_10_20 | Nblocks_day_LIG_bts_10 | Nblocks_day_LIG_bts_5_10 | Nblocks_day_LIG_bts_1_5 | Nblocks_day_total_IN | Nblocks_day_total_LIG | Nblocks_day_total_MOD | Nblocks_day_total_VIG | boutcriter.in | boutcriter.lig | boutcriter.mvpa | boutdur.in | boutdur.lig | boutdur.mvpa | bout.metric | daytype |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| not extracted | CG_no.csv.RData | 11 | Thursday | 2022-05-05 | 20.34444 | 20:20:40 | 32.68611 | 08:41:10 | 11 | 0 | 2 | sleeplog | 0 | 1 | 29.23517 | 100.00000 | 65.62500 | 0.00000 | 739.9167 | 0.5833333 | 0.0000000 | 0 | 91.33333 | 28.25000 | 5.583333 | 0.1666667 | 0 | 0 | 3.500000 | 493.8333 | 26.33333 | 26.91667 | 10.83333 | 0 | 12.75 | 600.0833 | 86.66667 | 12.416667 | 0.3333333 | 699.5000 | 740.5000 | 1440 | 0 | 0.0000000 | NA | 0.0361978 | 44.21429 | NA | NA | 8.537044 | 55.56372 | 142.0507 | 454.850 | NA | NA | 168.2619 | 9.703274 | 10.37278 | 7.968112 | 64.77462 | NA | 57.45425 | 6.264102 | 54.90760 | 148.3376 | 484.2750 | 15.040636 | 0.0709993 | 7.342708 | 48.80000 | 72.80208 | 2022-05-05 04:00:05 | 0 | 2022-05-05 15:30:05 | 17.35628 | 0.0013889 | 11.50139 | 2022-05-05 04:00:05 | 1.3346111 | 2022-05-05 14:20:05 | 15.957556 | 0.0013889 | 10.334722 | 0 | 0 | 3 | 6 | 1 | 2 | 1 | 0 | 11 | 0 | 6 | 4 | 0 | 0 | 163 | 180 | 50 | 2 | 0 | 0 | 3 | 6 | 1 | 2 | 1 | 0 | 11 | 456 | 504 | 94 | 4 | 0.9 | 0.8 | 0.8 | 30_20_10 | 10_5_1 | 10_5_1 | 6 | WD |
| not extracted | CG_no.csv.RData | 4 | Thursday | 2022-04-28 | 20.38472 | 20:23:05 | 31.00000 | 07:00:00 | 4 | 0 | 2 | sleeplog | 0 | 1 | 11.20681 | 94.20385 | 47.91667 | 36.91667 | 600.0000 | 0.0000000 | 0.0000000 | 0 | 31.91667 | 10.58333 | 4.916667 | 0.1666667 | 0 | 0 | 2.333333 | 712.7500 | 28.83333 | 11.58333 | 0.00000 | 0 | 0.00 | 738.2500 | 52.08333 | 12.250000 | 0.5000000 | 803.0833 | 636.9167 | 1440 | 0 | 0.0579615 | 0.4699774 | 0.0000000 | NA | NA | NA | 5.369452 | 57.78898 | 150.8119 | 592.900 | NA | NA | 177.5429 | 7.491500 | 14.16879 | 10.875540 | NA | NA | NA | 4.278892 | 48.97520 | 153.1619 | 651.4167 | 9.851562 | 0.0272406 | 5.506233 | 31.90000 | 50.70000 | 2022-04-28 04:00:05 | 0 | 2022-04-28 16:50:05 | 13.97761 | 0.0013889 | 12.83472 | 2022-04-28 04:00:05 | 1.1067639 | 2022-04-28 14:20:05 | 11.839639 | 0.0013889 | 10.334722 | 0 | 0 | 2 | 4 | 1 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 54 | 76 | 37 | 1 | 0 | 0 | 2 | 4 | 1 | 1 | 0 | 0 | 0 | 403 | 425 | 85 | 4 | 0.9 | 0.8 | 0.8 | 30_20_10 | 10_5_1 | 10_5_1 | 6 | WD |
| not extracted | CG_yes.csv.RData | 3 | Thursday | 2022-04-28 | 22.00000 | 22:00:00 | 31.00000 | 07:00:00 | 4 | 0 | 5 | nosleeplog_accnotworn | 0 | 0 | 16.66667 | 100.00000 | 47.91667 | 0.00000 | 539.9167 | 0.0833333 | 0.0000000 | 0 | 113.08333 | 41.83333 | 6.666667 | 0.0833333 | 0 | 0 | 6.833333 | 659.7500 | 0.00000 | 69.25000 | 0.00000 | 0 | 2.50 | 793.3333 | 89.41667 | 16.916667 | 0.3333333 | 900.0000 | 540.0000 | 1440 | 0 | 0.0000000 | NA | 0.0025158 | 39.20000 | NA | NA | 11.784451 | 49.03765 | 142.5613 | 491.000 | NA | NA | 156.6000 | 8.620601 | NA | 13.097232 | NA | NA | 65.96000 | 6.470252 | 48.05778 | 148.7261 | 775.8000 | 13.560870 | 0.0085648 | 8.478756 | 43.70417 | 67.90208 | 2022-04-28 04:00:05 | 0 | 2022-04-28 16:50:05 | 20.61464 | 0.0013889 | 12.83472 | 2022-04-28 04:00:05 | 1.6481806 | 2022-04-28 14:20:05 | 17.413042 | 0.0013889 | 10.334722 | 0 | 0 | 5 | 10 | 0 | 6 | 0 | 0 | 2 | 0 | 3 | 1 | 0 | 0 | 237 | 284 | 52 | 1 | 0 | 0 | 5 | 10 | 0 | 6 | 0 | 0 | 2 | 608 | 656 | 97 | 4 | 0.9 | 0.8 | 0.8 | 30_20_10 | 10_5_1 | 10_5_1 | 6 | WD |
| not extracted | NJ_no.csv.RData | 2 | Tuesday | 2022-04-26 | 18.14306 | 18:08:35 | 37.96111 | 13:57:40 | 2 | 1 | 2 | sleeplog | 0 | 1 | 0.00000 | 90.82627 | 75.00000 | 234.33333 | 952.0000 | 2.3333333 | 0.4166667 | 0 | 56.16667 | 19.66667 | 4.750000 | 0.3333333 | 0 | 0 | 0.000000 | 128.7500 | 21.00000 | 16.25000 | 0.00000 | 0 | 4.00 | 207.3333 | 37.58333 | 5.666667 | 0.3333333 | 250.9167 | 1189.0833 | 1440 | 0 | 0.1970706 | 2.4424609 | 0.0873512 | 56.23214 | 150.4000 | NA | 8.034866 | 51.05805 | 153.3509 | 640.275 | NA | NA | NA | 9.417023 | 10.79762 | 11.128205 | NA | NA | 48.10417 | 6.022548 | 50.39268 | 150.6515 | 640.2750 | 16.777350 | 0.7143178 | 3.513264 | 24.50000 | 42.10000 | 2022-04-26 04:00:05 | 0 | 2022-04-26 17:10:05 | 14.80278 | 0.0013889 | 13.16806 | 2022-04-26 04:00:05 | 0.0018333 | 2022-04-26 13:30:05 | 8.431833 | 0.0013889 | 9.501389 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 3 | 2 | 13 | 13 | 3 | 0 | 116 | 136 | 31 | 3 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 3 | 234 | 258 | 37 | 3 | 0.9 | 0.8 | 0.8 | 30_20_10 | 10_5_1 | 10_5_1 | 6 | WD |
| not extracted | NJ_yes.csv.RData | 2 | Tuesday | 2022-04-26 | 18.17778 | 18:10:40 | 37.96250 | 13:57:45 | 2 | 1 | 2 | sleeplog | 0 | 1 | 0.00000 | 90.97929 | 75.00000 | 224.16667 | 959.9167 | 2.5000000 | 0.5000000 | 0 | 75.50000 | 28.83333 | 7.833333 | 0.4166667 | 0 | 0 | 0.000000 | 125.0000 | 0.00000 | 10.58333 | 0.00000 | 0 | 4.75 | 198.2500 | 45.50000 | 8.750000 | 0.4166667 | 252.9167 | 1187.0833 | 1440 | 0 | 0.1888382 | 0.0124535 | 0.0713690 | 54.41000 | 125.3167 | NA | 8.201545 | 51.91676 | 148.9457 | 634.660 | NA | NA | NA | 10.308600 | NA | 9.396850 | NA | NA | 60.59649 | 6.546238 | 52.14597 | 147.2362 | 634.6600 | 20.651829 | 0.2274342 | 3.814705 | 28.70417 | 52.80417 | 2022-04-26 04:00:05 | 0 | 2022-04-26 17:20:05 | 17.89331 | 0.0013889 | 13.33472 | 2022-04-26 04:00:05 | 0.0000000 | 2022-04-26 13:10:05 | 9.155292 | 0.0013889 | 9.168056 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 7 | 21 | 16 | 4 | 0 | 150 | 173 | 47 | 5 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 3 | 248 | 278 | 54 | 5 | 0.9 | 0.8 | 0.8 | 30_20_10 | 10_5_1 | 10_5_1 | 6 | WD |