#PACOTES
#install.packages("psych")
#install.packages("chisq.posthoc.test")
#install.packages("summarytools")
library(psych)
## Warning: package 'psych' was built under R version 4.0.5
library(chisq.posthoc.test)
#dados_videos <- read.csv("dados_aline.csv")
dados_videos <- read.csv("banco_aline_quanti_99.csv")
describe(dados_videos)
summary(dados_videos)
## Carimbo.de.data.hora ID q1 q2
## Length:99 Length:99 Min. :2.00 Min. :1.000
## Class :character Class :character 1st Qu.:3.00 1st Qu.:2.000
## Mode :character Mode :character Median :4.00 Median :2.000
## Mean :3.96 Mean :2.232
## 3rd Qu.:5.00 3rd Qu.:3.000
## Max. :6.00 Max. :4.000
## q3 q4 q5 q6
## Min. :1.000 Min. : 1456 Min. : 35.0 Min. : 0.0
## 1st Qu.:2.000 1st Qu.: 2164 1st Qu.: 285.0 1st Qu.: 54.5
## Median :2.000 Median : 5326 Median : 487.0 Median : 156.0
## Mean :2.242 Mean : 22432 Mean : 736.3 Mean : 1100.0
## 3rd Qu.:3.000 3rd Qu.: 13791 3rd Qu.: 797.0 3rd Qu.: 578.5
## Max. :3.000 Max. :613011 Max. :3717.0 Max. :22000.0
## q7 q9 q10 q11
## Min. : 0.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.: 1.00 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median : 4.00 Median :1.000 Median :2.000 Median :2.000
## Mean : 27.41 Mean :1.071 Mean :1.586 Mean :1.566
## 3rd Qu.: 11.00 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :1400.00 Max. :2.000 Max. :2.000 Max. :2.000
## q12 q13 q14 q15
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :1.000 Median :2.000 Median :1.000
## Mean :1.717 Mean :1.495 Mean :1.556 Mean :1.273
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q16 q17 q18 q19
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :2.000 Median :1.000
## Mean :1.444 Mean :1.101 Mean :1.667 Mean :1.424
## 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q20 q21 q22 q23
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :1.737 Mean :1.636 Mean :1.616 Mean :1.586
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q24 q25 q26 q27
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000
## Median :2.000 Median :1.000 Median :2.000 Median :2.000
## Mean :1.566 Mean :1.333 Mean :1.717 Mean :1.899
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q28 q29 q30 q31
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.500 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :1.687 Mean :1.747 Mean :1.838 Mean :1.859
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q32 q33 q34 q35
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :1.000 Median :2.000 Median :2.000
## Mean :1.667 Mean :1.434 Mean :1.545 Mean :1.657
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q36 q37 q38 q39
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000
## Median :2.000 Median :1.000 Median :2.000 Median :2.000
## Mean :1.808 Mean :1.384 Mean :1.646 Mean :1.919
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## q40 q41
## Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:1.000
## Median :2.000 Median :2.000
## Mean :1.939 Mean :1.626
## 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000
table<-with(dados_videos,table(q9,q3))
table
## q3
## q9 1 2 3
## 1 17 34 41
## 2 3 1 3
prop.table(table)
## q3
## q9 1 2 3
## 1 0.17171717 0.34343434 0.41414141
## 2 0.03030303 0.01010101 0.03030303
chisq.test(dados_videos$q9, dados_videos$q3)
## Warning in chisq.test(dados_videos$q9, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q9 and dados_videos$q3
## X-squared = 2.8637, df = 2, p-value = 0.2389
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.008333333
qnorm(sigAdj/2)
## [1] -2.638257
table<-with(dados_videos,table(q10,q3))
table
## q3
## q10 1 2 3
## 1 18 5 18
## 2 2 30 26
prop.table(table)
## q3
## q10 1 2 3
## 1 0.18181818 0.05050505 0.18181818
## 2 0.02020202 0.30303030 0.26262626
chisq.test(dados_videos$q10, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q10 and dados_videos$q3
## X-squared = 30.079, df = 2, p-value = 2.94e-07
chisq.posthoc.test(table)
table<-with(dados_videos,table(q11,q3))
table
## q3
## q11 1 2 3
## 1 3 11 29
## 2 17 24 15
prop.table(table)
## q3
## q11 1 2 3
## 1 0.03030303 0.11111111 0.29292929
## 2 0.17171717 0.24242424 0.15151515
chisq.test(dados_videos$q11, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q11 and dados_videos$q3
## X-squared = 17.681, df = 2, p-value = 0.0001448
chisq.posthoc.test(table)
table<-with(dados_videos,table(q12,q3))
table
## q3
## q12 1 2 3
## 1 3 10 15
## 2 17 25 29
prop.table(table)
## q3
## q12 1 2 3
## 1 0.03030303 0.10101010 0.15151515
## 2 0.17171717 0.25252525 0.29292929
chisq.test(dados_videos$q12, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q12 and dados_videos$q3
## X-squared = 2.4729, df = 2, p-value = 0.2904
chisq.posthoc.test(table)
table<-with(dados_videos,table(q13,q3))
table
## q3
## q13 1 2 3
## 1 10 16 24
## 2 10 19 20
prop.table(table)
## q3
## q13 1 2 3
## 1 0.1010101 0.1616162 0.2424242
## 2 0.1010101 0.1919192 0.2020202
chisq.test(dados_videos$q13, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q13 and dados_videos$q3
## X-squared = 0.61074, df = 2, p-value = 0.7369
chisq.posthoc.test(table)
table<-with(dados_videos,table(q14,q3))
table
## q3
## q14 1 2 3
## 1 8 11 25
## 2 12 24 19
prop.table(table)
## q3
## q14 1 2 3
## 1 0.08080808 0.11111111 0.25252525
## 2 0.12121212 0.24242424 0.19191919
chisq.test(dados_videos$q14, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q14 and dados_videos$q3
## X-squared = 5.2898, df = 2, p-value = 0.07101
chisq.posthoc.test(table)
table<-with(dados_videos,table(q15,q3))
table
## q3
## q15 1 2 3
## 1 13 24 35
## 2 7 11 9
prop.table(table)
## q3
## q15 1 2 3
## 1 0.13131313 0.24242424 0.35353535
## 2 0.07070707 0.11111111 0.09090909
chisq.test(dados_videos$q15, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q15 and dados_videos$q3
## X-squared = 1.9381, df = 2, p-value = 0.3794
chisq.posthoc.test(table)
table<-with(dados_videos,table(q16,q3))
table
## q3
## q16 1 2 3
## 1 5 21 29
## 2 15 14 15
prop.table(table)
## q3
## q16 1 2 3
## 1 0.05050505 0.21212121 0.29292929
## 2 0.15151515 0.14141414 0.15151515
chisq.test(dados_videos$q16, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q16 and dados_videos$q3
## X-squared = 9.7527, df = 2, p-value = 0.007625
chisq.posthoc.test(table)
#Menciona o glúten como a causa primária de DC
table<-with(dados_videos,table(q17,q3))
table
## q3
## q17 1 2 3
## 1 17 30 42
## 2 3 5 2
prop.table(table)
## q3
## q17 1 2 3
## 1 0.17171717 0.30303030 0.42424242
## 2 0.03030303 0.05050505 0.02020202
chisq.test(dados_videos$q17, dados_videos$q3)
## Warning in chisq.test(dados_videos$q17, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q17 and dados_videos$q3
## X-squared = 2.6991, df = 2, p-value = 0.2594
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q18,q3))
table
## q3
## q18 1 2 3
## 1 3 7 23
## 2 17 28 21
prop.table(table)
## q3
## q18 1 2 3
## 1 0.03030303 0.07070707 0.23232323
## 2 0.17171717 0.28282828 0.21212121
chisq.test(dados_videos$q18, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q18 and dados_videos$q3
## X-squared = 12.927, df = 2, p-value = 0.001559
chisq.posthoc.test(table)
#Menciona o risco para o desenvolvimento de outras condições crônicas de saúde
table<-with(dados_videos,table(q19,q3))
table
## q3
## q19 1 2 3
## 1 11 17 29
## 2 9 18 15
prop.table(table)
## q3
## q19 1 2 3
## 1 0.11111111 0.17171717 0.29292929
## 2 0.09090909 0.18181818 0.15151515
chisq.test(dados_videos$q19, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q19 and dados_videos$q3
## X-squared = 2.467, df = 2, p-value = 0.2913
chisq.posthoc.test(table)
table<-with(dados_videos,table(q20,q3))
table
## q3
## q20 1 2 3
## 1 5 9 12
## 2 15 26 32
prop.table(table)
## q3
## q20 1 2 3
## 1 0.05050505 0.09090909 0.12121212
## 2 0.15151515 0.26262626 0.32323232
chisq.test(dados_videos$q20, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q20 and dados_videos$q3
## X-squared = 0.045081, df = 2, p-value = 0.9777
chisq.posthoc.test(table)
table<-with(dados_videos,table(q21,q3))
table
## q3
## q21 1 2 3
## 1 11 8 17
## 2 9 27 27
prop.table(table)
## q3
## q21 1 2 3
## 1 0.11111111 0.08080808 0.17171717
## 2 0.09090909 0.27272727 0.27272727
chisq.test(dados_videos$q21, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q21 and dados_videos$q3
## X-squared = 5.8592, df = 2, p-value = 0.05342
chisq.posthoc.test(table)
#Menciona alterações na qualidade de vida
table<-with(dados_videos,table(q22,q3))
table
## q3
## q22 1 2 3
## 1 11 9 18
## 2 9 26 26
prop.table(table)
## q3
## q22 1 2 3
## 1 0.11111111 0.09090909 0.18181818
## 2 0.09090909 0.26262626 0.26262626
chisq.test(dados_videos$q22, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q22 and dados_videos$q3
## X-squared = 4.8289, df = 2, p-value = 0.08942
chisq.posthoc.test(table)
table<-with(dados_videos,table(q23,q3))
table
## q3
## q23 1 2 3
## 1 4 15 22
## 2 16 20 22
prop.table(table)
## q3
## q23 1 2 3
## 1 0.04040404 0.15151515 0.22222222
## 2 0.16161616 0.20202020 0.22222222
chisq.test(dados_videos$q23, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q23 and dados_videos$q3
## X-squared = 5.1469, df = 2, p-value = 0.07627
chisq.posthoc.test(table)
table<-with(dados_videos,table(q24,q3))
table
## q3
## q24 1 2 3
## 1 7 14 22
## 2 13 21 22
prop.table(table)
## q3
## q24 1 2 3
## 1 0.07070707 0.14141414 0.22222222
## 2 0.13131313 0.21212121 0.22222222
chisq.test(dados_videos$q24, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q24 and dados_videos$q3
## X-squared = 1.5191, df = 2, p-value = 0.4679
chisq.posthoc.test(table)
table<-with(dados_videos,table(q25,q3))
table
## q3
## q25 1 2 3
## 1 11 20 35
## 2 9 15 9
prop.table(table)
## q3
## q25 1 2 3
## 1 0.11111111 0.20202020 0.35353535
## 2 0.09090909 0.15151515 0.09090909
chisq.test(dados_videos$q25, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q25 and dados_videos$q3
## X-squared = 5.9377, df = 2, p-value = 0.05136
chisq.posthoc.test(table)
table<-with(dados_videos,table(q26,q3))
table
## q3
## q26 1 2 3
## 1 5 8 15
## 2 15 27 29
prop.table(table)
## q3
## q26 1 2 3
## 1 0.05050505 0.08080808 0.15151515
## 2 0.15151515 0.27272727 0.29292929
chisq.test(dados_videos$q26, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q26 and dados_videos$q3
## X-squared = 1.346, df = 2, p-value = 0.5102
chisq.posthoc.test(table)
table<-with(dados_videos,table(q27,q3))
table
## q3
## q27 1 2 3
## 1 1 1 8
## 2 19 34 36
prop.table(table)
## q3
## q27 1 2 3
## 1 0.01010101 0.01010101 0.08080808
## 2 0.19191919 0.34343434 0.36363636
chisq.test(dados_videos$q27, dados_videos$q3)
## Warning in chisq.test(dados_videos$q27, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q27 and dados_videos$q3
## X-squared = 5.7596, df = 2, p-value = 0.05614
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q28,q3))
table
## q3
## q28 1 2 3
## 1 8 5 18
## 2 12 30 26
prop.table(table)
## q3
## q28 1 2 3
## 1 0.08080808 0.05050505 0.18181818
## 2 0.12121212 0.30303030 0.26262626
chisq.test(dados_videos$q28, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q28 and dados_videos$q3
## X-squared = 7.3036, df = 2, p-value = 0.02594
chisq.posthoc.test(table)
table<-with(dados_videos,table(q29,q3))
table
## q3
## q29 1 2 3
## 1 5 6 14
## 2 15 29 30
prop.table(table)
## q3
## q29 1 2 3
## 1 0.05050505 0.06060606 0.14141414
## 2 0.15151515 0.29292929 0.30303030
chisq.test(dados_videos$q29, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q29 and dados_videos$q3
## X-squared = 2.225, df = 2, p-value = 0.3287
chisq.posthoc.test(table)
table<-with(dados_videos,table(q30,q3))
table
## q3
## q30 1 2 3
## 1 3 7 6
## 2 17 28 38
prop.table(table)
## q3
## q30 1 2 3
## 1 0.03030303 0.07070707 0.06060606
## 2 0.17171717 0.28282828 0.38383838
chisq.test(dados_videos$q30, dados_videos$q3)
## Warning in chisq.test(dados_videos$q30, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q30 and dados_videos$q3
## X-squared = 0.60757, df = 2, p-value = 0.738
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q31,q3))
table
## q3
## q31 1 2 3
## 1 2 3 9
## 2 18 32 35
prop.table(table)
## q3
## q31 1 2 3
## 1 0.02020202 0.03030303 0.09090909
## 2 0.18181818 0.32323232 0.35353535
chisq.test(dados_videos$q31, dados_videos$q3)
## Warning in chisq.test(dados_videos$q31, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q31 and dados_videos$q3
## X-squared = 2.6212, df = 2, p-value = 0.2697
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q32,q3))
table
## q3
## q32 1 2 3
## 1 6 11 16
## 2 14 24 28
prop.table(table)
## q3
## q32 1 2 3
## 1 0.06060606 0.11111111 0.16161616
## 2 0.14141414 0.24242424 0.28282828
chisq.test(dados_videos$q32, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q32 and dados_videos$q3
## X-squared = 0.33896, df = 2, p-value = 0.8441
chisq.posthoc.test(table)
table<-with(dados_videos,table(q33,q3))
table
## q3
## q33 1 2 3
## 1 10 17 29
## 2 10 18 15
prop.table(table)
## q3
## q33 1 2 3
## 1 0.1010101 0.1717172 0.2929293
## 2 0.1010101 0.1818182 0.1515152
chisq.test(dados_videos$q33, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q33 and dados_videos$q3
## X-squared = 2.8248, df = 2, p-value = 0.2436
chisq.posthoc.test(table)
table<-with(dados_videos,table(q34,q3))
table
## q3
## q34 1 2 3
## 1 6 14 25
## 2 14 21 19
prop.table(table)
## q3
## q34 1 2 3
## 1 0.06060606 0.14141414 0.25252525
## 2 0.14141414 0.21212121 0.19191919
chisq.test(dados_videos$q34, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q34 and dados_videos$q3
## X-squared = 4.6383, df = 2, p-value = 0.09836
chisq.posthoc.test(table)
table<-with(dados_videos,table(q35,q3))
table
## q3
## q35 1 2 3
## 1 6 12 16
## 2 14 23 28
prop.table(table)
## q3
## q35 1 2 3
## 1 0.06060606 0.12121212 0.16161616
## 2 0.14141414 0.23232323 0.28282828
chisq.test(dados_videos$q35, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q35 and dados_videos$q3
## X-squared = 0.24702, df = 2, p-value = 0.8838
chisq.posthoc.test(table)
table<-with(dados_videos,table(q36,q3))
table
## q3
## q36 1 2 3
## 1 4 3 12
## 2 16 32 32
prop.table(table)
## q3
## q36 1 2 3
## 1 0.04040404 0.03030303 0.12121212
## 2 0.16161616 0.32323232 0.32323232
chisq.test(dados_videos$q36, dados_videos$q3)
## Warning in chisq.test(dados_videos$q36, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q36 and dados_videos$q3
## X-squared = 4.4066, df = 2, p-value = 0.1104
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q37,q3))
table
## q3
## q37 1 2 3
## 1 8 22 31
## 2 12 13 13
prop.table(table)
## q3
## q37 1 2 3
## 1 0.08080808 0.22222222 0.31313131
## 2 0.12121212 0.13131313 0.13131313
chisq.test(dados_videos$q37, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q37 and dados_videos$q3
## X-squared = 5.4274, df = 2, p-value = 0.06629
chisq.posthoc.test(table)
table<-with(dados_videos,table(q38,q3))
table
## q3
## q38 1 2 3
## 1 4 11 20
## 2 16 24 24
prop.table(table)
## q3
## q38 1 2 3
## 1 0.04040404 0.11111111 0.20202020
## 2 0.16161616 0.24242424 0.24242424
chisq.test(dados_videos$q38, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q38 and dados_videos$q3
## X-squared = 4.2631, df = 2, p-value = 0.1187
chisq.posthoc.test(table)
table<-with(dados_videos,table(q39,q3))
table
## q3
## q39 1 2 3
## 1 0 4 4
## 2 20 31 40
prop.table(table)
## q3
## q39 1 2 3
## 1 0.00000000 0.04040404 0.04040404
## 2 0.20202020 0.31313131 0.40404040
chisq.test(dados_videos$q39, dados_videos$q3)
## Warning in chisq.test(dados_videos$q39, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q39 and dados_videos$q3
## X-squared = 2.3468, df = 2, p-value = 0.3093
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q40,q3))
table
## q3
## q40 1 2 3
## 1 0 0 6
## 2 20 35 38
prop.table(table)
## q3
## q40 1 2 3
## 1 0.00000000 0.00000000 0.06060606
## 2 0.20202020 0.35353535 0.38383838
chisq.test(dados_videos$q40, dados_videos$q3)
## Warning in chisq.test(dados_videos$q40, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q40 and dados_videos$q3
## X-squared = 7.9839, df = 2, p-value = 0.01846
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
table<-with(dados_videos,table(q41,q3))
table
## q3
## q41 1 2 3
## 1 7 8 22
## 2 13 27 22
prop.table(table)
## q3
## q41 1 2 3
## 1 0.07070707 0.08080808 0.22222222
## 2 0.13131313 0.27272727 0.22222222
chisq.test(dados_videos$q41, dados_videos$q3)
##
## Pearson's Chi-squared test
##
## data: dados_videos$q41 and dados_videos$q3
## X-squared = 6.1963, df = 2, p-value = 0.04513
chisq.posthoc.test(table)
#ano de publicação
table<-with(dados_videos,table(q1,q3))
table
## q3
## q1 1 2 3
## 2 2 4 7
## 3 5 8 13
## 4 6 8 6
## 5 4 14 14
## 6 3 1 4
prop.table(table)
## q3
## q1 1 2 3
## 2 0.02020202 0.04040404 0.07070707
## 3 0.05050505 0.08080808 0.13131313
## 4 0.06060606 0.08080808 0.06060606
## 5 0.04040404 0.14141414 0.14141414
## 6 0.03030303 0.01010101 0.04040404
chisq.test(dados_videos$q1, dados_videos$q3)
## Warning in chisq.test(dados_videos$q1, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q1 and dados_videos$q3
## X-squared = 6.8474, df = 8, p-value = 0.5532
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.003333333
qnorm(sigAdj/2)
## [1] -2.935199
#sexo
table<-with(dados_videos,table(q2,q3))
table
## q3
## q2 1 2 3
## 1 1 16 5
## 2 17 11 15
## 3 0 2 21
## 4 2 6 3
prop.table(table)
## q3
## q2 1 2 3
## 1 0.01010101 0.16161616 0.05050505
## 2 0.17171717 0.11111111 0.15151515
## 3 0.00000000 0.02020202 0.21212121
## 4 0.02020202 0.06060606 0.03030303
chisq.test(dados_videos$q2, dados_videos$q3)
## Warning in chisq.test(dados_videos$q2, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q2 and dados_videos$q3
## X-squared = 46.229, df = 6, p-value = 2.666e-08
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.004166667
qnorm(sigAdj/2)
## [1] -2.86526
#número de visualizações
table<-with(dados_videos,table(q4,q3))
table
## q3
## q4 1 2 3
## 1456 1 0 0
## 1570 0 0 1
## 1635 0 0 1
## 1725 0 0 1
## 1729 0 1 1
## 1753 0 0 1
## 1763 0 0 1
## 1769 0 0 1
## 1774 0 1 0
## 1786 0 0 1
## 1791 1 0 0
## 1797 0 0 1
## 1808 0 1 0
## 1828 1 0 0
## 1829 1 0 0
## 1852 0 0 1
## 1890 0 0 1
## 1953 0 0 1
## 1984 1 0 0
## 1994 0 1 0
## 2007 1 0 0
## 2018 0 1 0
## 2034 0 0 1
## 2041 0 1 0
## 2287 0 1 0
## 2292 0 1 0
## 2331 0 1 0
## 2340 1 0 0
## 2367 0 0 1
## 2396 0 1 0
## 2567 0 0 1
## 2611 1 0 0
## 2674 0 0 1
## 3046 1 0 0
## 3155 0 0 1
## 3189 0 0 1
## 3229 0 0 1
## 3270 0 1 0
## 3341 0 1 0
## 3488 0 1 0
## 3577 0 0 1
## 3626 0 0 1
## 3703 0 1 0
## 3714 0 0 1
## 3728 0 1 0
## 3860 0 0 1
## 4673 1 0 0
## 5219 1 0 0
## 5326 1 0 0
## 5351 0 0 1
## 5492 0 0 1
## 5781 0 0 1
## 6273 0 0 1
## 6285 0 0 1
## 6725 0 1 0
## 6934 0 0 1
## 7119 0 1 0
## 7184 0 0 1
## 7626 0 0 1
## 7885 0 0 1
## 7970 0 0 1
## 8819 1 0 0
## 9176 0 1 0
## 9299 0 0 1
## 9782 0 1 0
## 9797 0 1 0
## 9836 0 1 0
## 10205 1 0 0
## 10924 0 0 1
## 11144 0 0 1
## 11516 0 1 0
## 12128 0 1 0
## 13498 0 0 1
## 14084 0 0 1
## 15360 0 0 1
## 16716 0 1 0
## 17032 1 0 0
## 17185 0 0 1
## 17750 0 0 1
## 20554 0 0 1
## 21750 1 0 0
## 22101 0 1 0
## 25522 0 0 1
## 25529 1 0 0
## 28737 1 0 0
## 28771 0 0 1
## 32618 0 1 0
## 34722 0 1 0
## 46725 1 0 0
## 61239 0 1 0
## 63895 0 1 0
## 74243 0 1 0
## 78564 0 1 0
## 79413 1 0 0
## 93865 0 1 0
## 138438 0 1 0
## 298713 0 1 0
## 613011 0 1 0
prop.table(table)
## q3
## q4 1 2 3
## 1456 0.01010101 0.00000000 0.00000000
## 1570 0.00000000 0.00000000 0.01010101
## 1635 0.00000000 0.00000000 0.01010101
## 1725 0.00000000 0.00000000 0.01010101
## 1729 0.00000000 0.01010101 0.01010101
## 1753 0.00000000 0.00000000 0.01010101
## 1763 0.00000000 0.00000000 0.01010101
## 1769 0.00000000 0.00000000 0.01010101
## 1774 0.00000000 0.01010101 0.00000000
## 1786 0.00000000 0.00000000 0.01010101
## 1791 0.01010101 0.00000000 0.00000000
## 1797 0.00000000 0.00000000 0.01010101
## 1808 0.00000000 0.01010101 0.00000000
## 1828 0.01010101 0.00000000 0.00000000
## 1829 0.01010101 0.00000000 0.00000000
## 1852 0.00000000 0.00000000 0.01010101
## 1890 0.00000000 0.00000000 0.01010101
## 1953 0.00000000 0.00000000 0.01010101
## 1984 0.01010101 0.00000000 0.00000000
## 1994 0.00000000 0.01010101 0.00000000
## 2007 0.01010101 0.00000000 0.00000000
## 2018 0.00000000 0.01010101 0.00000000
## 2034 0.00000000 0.00000000 0.01010101
## 2041 0.00000000 0.01010101 0.00000000
## 2287 0.00000000 0.01010101 0.00000000
## 2292 0.00000000 0.01010101 0.00000000
## 2331 0.00000000 0.01010101 0.00000000
## 2340 0.01010101 0.00000000 0.00000000
## 2367 0.00000000 0.00000000 0.01010101
## 2396 0.00000000 0.01010101 0.00000000
## 2567 0.00000000 0.00000000 0.01010101
## 2611 0.01010101 0.00000000 0.00000000
## 2674 0.00000000 0.00000000 0.01010101
## 3046 0.01010101 0.00000000 0.00000000
## 3155 0.00000000 0.00000000 0.01010101
## 3189 0.00000000 0.00000000 0.01010101
## 3229 0.00000000 0.00000000 0.01010101
## 3270 0.00000000 0.01010101 0.00000000
## 3341 0.00000000 0.01010101 0.00000000
## 3488 0.00000000 0.01010101 0.00000000
## 3577 0.00000000 0.00000000 0.01010101
## 3626 0.00000000 0.00000000 0.01010101
## 3703 0.00000000 0.01010101 0.00000000
## 3714 0.00000000 0.00000000 0.01010101
## 3728 0.00000000 0.01010101 0.00000000
## 3860 0.00000000 0.00000000 0.01010101
## 4673 0.01010101 0.00000000 0.00000000
## 5219 0.01010101 0.00000000 0.00000000
## 5326 0.01010101 0.00000000 0.00000000
## 5351 0.00000000 0.00000000 0.01010101
## 5492 0.00000000 0.00000000 0.01010101
## 5781 0.00000000 0.00000000 0.01010101
## 6273 0.00000000 0.00000000 0.01010101
## 6285 0.00000000 0.00000000 0.01010101
## 6725 0.00000000 0.01010101 0.00000000
## 6934 0.00000000 0.00000000 0.01010101
## 7119 0.00000000 0.01010101 0.00000000
## 7184 0.00000000 0.00000000 0.01010101
## 7626 0.00000000 0.00000000 0.01010101
## 7885 0.00000000 0.00000000 0.01010101
## 7970 0.00000000 0.00000000 0.01010101
## 8819 0.01010101 0.00000000 0.00000000
## 9176 0.00000000 0.01010101 0.00000000
## 9299 0.00000000 0.00000000 0.01010101
## 9782 0.00000000 0.01010101 0.00000000
## 9797 0.00000000 0.01010101 0.00000000
## 9836 0.00000000 0.01010101 0.00000000
## 10205 0.01010101 0.00000000 0.00000000
## 10924 0.00000000 0.00000000 0.01010101
## 11144 0.00000000 0.00000000 0.01010101
## 11516 0.00000000 0.01010101 0.00000000
## 12128 0.00000000 0.01010101 0.00000000
## 13498 0.00000000 0.00000000 0.01010101
## 14084 0.00000000 0.00000000 0.01010101
## 15360 0.00000000 0.00000000 0.01010101
## 16716 0.00000000 0.01010101 0.00000000
## 17032 0.01010101 0.00000000 0.00000000
## 17185 0.00000000 0.00000000 0.01010101
## 17750 0.00000000 0.00000000 0.01010101
## 20554 0.00000000 0.00000000 0.01010101
## 21750 0.01010101 0.00000000 0.00000000
## 22101 0.00000000 0.01010101 0.00000000
## 25522 0.00000000 0.00000000 0.01010101
## 25529 0.01010101 0.00000000 0.00000000
## 28737 0.01010101 0.00000000 0.00000000
## 28771 0.00000000 0.00000000 0.01010101
## 32618 0.00000000 0.01010101 0.00000000
## 34722 0.00000000 0.01010101 0.00000000
## 46725 0.01010101 0.00000000 0.00000000
## 61239 0.00000000 0.01010101 0.00000000
## 63895 0.00000000 0.01010101 0.00000000
## 74243 0.00000000 0.01010101 0.00000000
## 78564 0.00000000 0.01010101 0.00000000
## 79413 0.01010101 0.00000000 0.00000000
## 93865 0.00000000 0.01010101 0.00000000
## 138438 0.00000000 0.01010101 0.00000000
## 298713 0.00000000 0.01010101 0.00000000
## 613011 0.00000000 0.01010101 0.00000000
chisq.test(dados_videos$q4, dados_videos$q3)
## Warning in chisq.test(dados_videos$q4, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q4 and dados_videos$q3
## X-squared = 195.46, df = 194, p-value = 0.4571
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.000170068
qnorm(sigAdj/2)
## [1] -3.759772
#duração do vídeo
table<-with(dados_videos,table(q5,q3))
table
## q3
## q5 1 2 3
## 35 0 0 2
## 51 0 1 0
## 62 0 0 1
## 71 0 1 0
## 76 0 0 1
## 95 0 0 1
## 103 0 1 0
## 108 0 0 1
## 144 0 0 1
## 149 0 1 0
## 156 1 0 0
## 157 1 0 0
## 161 0 1 0
## 163 0 0 1
## 182 0 1 0
## 187 0 1 0
## 206 0 1 0
## 208 0 1 0
## 210 0 0 1
## 219 0 1 0
## 225 0 0 1
## 226 0 1 0
## 257 0 0 1
## 284 0 1 0
## 286 0 1 0
## 303 0 2 0
## 307 1 0 0
## 317 0 0 1
## 319 0 1 0
## 343 0 0 1
## 359 0 0 1
## 367 0 1 0
## 376 0 0 1
## 385 0 1 0
## 388 0 0 1
## 391 1 0 0
## 395 0 0 1
## 397 0 1 0
## 402 1 0 0
## 404 1 0 0
## 414 1 0 0
## 421 0 1 0
## 434 0 0 1
## 451 0 0 1
## 466 0 0 1
## 471 0 0 1
## 479 0 1 0
## 487 1 0 0
## 489 0 1 0
## 493 0 1 0
## 497 1 0 0
## 506 0 0 1
## 512 0 1 0
## 532 0 0 1
## 535 0 0 1
## 553 0 0 1
## 558 0 1 0
## 559 1 0 0
## 562 1 0 0
## 563 0 1 0
## 577 0 0 1
## 586 0 1 0
## 605 0 0 1
## 635 1 0 0
## 636 1 0 0
## 650 0 1 0
## 659 0 0 1
## 662 0 0 1
## 709 1 0 0
## 716 0 1 0
## 794 1 0 0
## 797 2 0 0
## 821 0 0 1
## 852 0 1 0
## 868 1 0 0
## 887 0 0 1
## 888 0 0 1
## 896 0 0 1
## 965 0 0 1
## 1105 1 0 0
## 1131 0 0 1
## 1253 0 0 1
## 1471 0 0 1
## 1472 1 0 0
## 1651 0 0 1
## 1700 0 0 1
## 1920 0 1 0
## 1947 0 1 0
## 2065 0 1 0
## 2856 0 0 1
## 2867 0 1 0
## 2912 0 0 1
## 3238 0 0 1
## 3279 0 0 1
## 3515 0 0 1
## 3717 0 1 0
prop.table(table)
## q3
## q5 1 2 3
## 35 0.00000000 0.00000000 0.02020202
## 51 0.00000000 0.01010101 0.00000000
## 62 0.00000000 0.00000000 0.01010101
## 71 0.00000000 0.01010101 0.00000000
## 76 0.00000000 0.00000000 0.01010101
## 95 0.00000000 0.00000000 0.01010101
## 103 0.00000000 0.01010101 0.00000000
## 108 0.00000000 0.00000000 0.01010101
## 144 0.00000000 0.00000000 0.01010101
## 149 0.00000000 0.01010101 0.00000000
## 156 0.01010101 0.00000000 0.00000000
## 157 0.01010101 0.00000000 0.00000000
## 161 0.00000000 0.01010101 0.00000000
## 163 0.00000000 0.00000000 0.01010101
## 182 0.00000000 0.01010101 0.00000000
## 187 0.00000000 0.01010101 0.00000000
## 206 0.00000000 0.01010101 0.00000000
## 208 0.00000000 0.01010101 0.00000000
## 210 0.00000000 0.00000000 0.01010101
## 219 0.00000000 0.01010101 0.00000000
## 225 0.00000000 0.00000000 0.01010101
## 226 0.00000000 0.01010101 0.00000000
## 257 0.00000000 0.00000000 0.01010101
## 284 0.00000000 0.01010101 0.00000000
## 286 0.00000000 0.01010101 0.00000000
## 303 0.00000000 0.02020202 0.00000000
## 307 0.01010101 0.00000000 0.00000000
## 317 0.00000000 0.00000000 0.01010101
## 319 0.00000000 0.01010101 0.00000000
## 343 0.00000000 0.00000000 0.01010101
## 359 0.00000000 0.00000000 0.01010101
## 367 0.00000000 0.01010101 0.00000000
## 376 0.00000000 0.00000000 0.01010101
## 385 0.00000000 0.01010101 0.00000000
## 388 0.00000000 0.00000000 0.01010101
## 391 0.01010101 0.00000000 0.00000000
## 395 0.00000000 0.00000000 0.01010101
## 397 0.00000000 0.01010101 0.00000000
## 402 0.01010101 0.00000000 0.00000000
## 404 0.01010101 0.00000000 0.00000000
## 414 0.01010101 0.00000000 0.00000000
## 421 0.00000000 0.01010101 0.00000000
## 434 0.00000000 0.00000000 0.01010101
## 451 0.00000000 0.00000000 0.01010101
## 466 0.00000000 0.00000000 0.01010101
## 471 0.00000000 0.00000000 0.01010101
## 479 0.00000000 0.01010101 0.00000000
## 487 0.01010101 0.00000000 0.00000000
## 489 0.00000000 0.01010101 0.00000000
## 493 0.00000000 0.01010101 0.00000000
## 497 0.01010101 0.00000000 0.00000000
## 506 0.00000000 0.00000000 0.01010101
## 512 0.00000000 0.01010101 0.00000000
## 532 0.00000000 0.00000000 0.01010101
## 535 0.00000000 0.00000000 0.01010101
## 553 0.00000000 0.00000000 0.01010101
## 558 0.00000000 0.01010101 0.00000000
## 559 0.01010101 0.00000000 0.00000000
## 562 0.01010101 0.00000000 0.00000000
## 563 0.00000000 0.01010101 0.00000000
## 577 0.00000000 0.00000000 0.01010101
## 586 0.00000000 0.01010101 0.00000000
## 605 0.00000000 0.00000000 0.01010101
## 635 0.01010101 0.00000000 0.00000000
## 636 0.01010101 0.00000000 0.00000000
## 650 0.00000000 0.01010101 0.00000000
## 659 0.00000000 0.00000000 0.01010101
## 662 0.00000000 0.00000000 0.01010101
## 709 0.01010101 0.00000000 0.00000000
## 716 0.00000000 0.01010101 0.00000000
## 794 0.01010101 0.00000000 0.00000000
## 797 0.02020202 0.00000000 0.00000000
## 821 0.00000000 0.00000000 0.01010101
## 852 0.00000000 0.01010101 0.00000000
## 868 0.01010101 0.00000000 0.00000000
## 887 0.00000000 0.00000000 0.01010101
## 888 0.00000000 0.00000000 0.01010101
## 896 0.00000000 0.00000000 0.01010101
## 965 0.00000000 0.00000000 0.01010101
## 1105 0.01010101 0.00000000 0.00000000
## 1131 0.00000000 0.00000000 0.01010101
## 1253 0.00000000 0.00000000 0.01010101
## 1471 0.00000000 0.00000000 0.01010101
## 1472 0.01010101 0.00000000 0.00000000
## 1651 0.00000000 0.00000000 0.01010101
## 1700 0.00000000 0.00000000 0.01010101
## 1920 0.00000000 0.01010101 0.00000000
## 1947 0.00000000 0.01010101 0.00000000
## 2065 0.00000000 0.01010101 0.00000000
## 2856 0.00000000 0.00000000 0.01010101
## 2867 0.00000000 0.01010101 0.00000000
## 2912 0.00000000 0.00000000 0.01010101
## 3238 0.00000000 0.00000000 0.01010101
## 3279 0.00000000 0.00000000 0.01010101
## 3515 0.00000000 0.00000000 0.01010101
## 3717 0.00000000 0.01010101 0.00000000
chisq.test(dados_videos$q5, dados_videos$q3)
## Warning in chisq.test(dados_videos$q5, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q5 and dados_videos$q3
## X-squared = 198, df = 190, p-value = 0.3304
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.0001736111
qnorm(sigAdj/2)
## [1] -3.754611
#curtidas
table<-with(dados_videos,table(q6,q3))
table
## q3
## q6 1 2 3
## 0 1 1 2
## 16 0 1 1
## 17 0 0 1
## 22 0 0 1
## 23 0 0 1
## 24 0 0 1
## 31 0 1 0
## 32 0 0 1
## 36 1 0 1
## 39 0 0 1
## 41 0 0 1
## 42 0 0 2
## 43 0 0 1
## 44 1 0 0
## 45 0 0 1
## 50 0 1 0
## 51 0 1 0
## 52 0 0 1
## 54 0 1 0
## 55 0 0 1
## 57 0 1 0
## 62 0 1 0
## 67 0 0 1
## 69 0 0 1
## 70 0 0 1
## 71 1 0 0
## 72 0 0 1
## 77 0 1 1
## 90 0 0 1
## 92 0 0 1
## 98 0 1 0
## 108 0 0 1
## 116 0 1 0
## 118 0 1 0
## 123 2 0 0
## 131 0 1 1
## 134 0 0 1
## 142 0 1 0
## 146 0 0 2
## 156 0 1 0
## 164 0 0 1
## 167 1 0 0
## 173 0 1 0
## 175 0 0 1
## 178 0 1 0
## 228 0 0 1
## 240 1 0 0
## 256 2 2 0
## 266 1 0 1
## 284 0 0 1
## 294 1 0 0
## 302 0 1 0
## 339 0 1 0
## 342 0 0 1
## 387 0 1 0
## 416 0 0 1
## 435 0 0 1
## 490 1 0 0
## 535 1 0 0
## 547 0 1 0
## 610 0 0 1
## 651 0 0 1
## 709 0 0 1
## 716 0 1 0
## 768 0 0 1
## 856 0 0 1
## 862 0 1 0
## 883 0 0 1
## 918 1 0 0
## 984 1 0 0
## 1200 0 0 1
## 1300 1 0 0
## 1500 1 0 0
## 2100 0 1 0
## 2900 1 0 0
## 3200 0 1 0
## 4300 0 1 0
## 5400 1 0 0
## 5600 0 1 0
## 5700 0 1 0
## 6800 0 1 0
## 7200 0 1 0
## 9200 0 1 0
## 12000 0 1 0
## 22000 0 1 0
prop.table(table)
## q3
## q6 1 2 3
## 0 0.01010101 0.01010101 0.02020202
## 16 0.00000000 0.01010101 0.01010101
## 17 0.00000000 0.00000000 0.01010101
## 22 0.00000000 0.00000000 0.01010101
## 23 0.00000000 0.00000000 0.01010101
## 24 0.00000000 0.00000000 0.01010101
## 31 0.00000000 0.01010101 0.00000000
## 32 0.00000000 0.00000000 0.01010101
## 36 0.01010101 0.00000000 0.01010101
## 39 0.00000000 0.00000000 0.01010101
## 41 0.00000000 0.00000000 0.01010101
## 42 0.00000000 0.00000000 0.02020202
## 43 0.00000000 0.00000000 0.01010101
## 44 0.01010101 0.00000000 0.00000000
## 45 0.00000000 0.00000000 0.01010101
## 50 0.00000000 0.01010101 0.00000000
## 51 0.00000000 0.01010101 0.00000000
## 52 0.00000000 0.00000000 0.01010101
## 54 0.00000000 0.01010101 0.00000000
## 55 0.00000000 0.00000000 0.01010101
## 57 0.00000000 0.01010101 0.00000000
## 62 0.00000000 0.01010101 0.00000000
## 67 0.00000000 0.00000000 0.01010101
## 69 0.00000000 0.00000000 0.01010101
## 70 0.00000000 0.00000000 0.01010101
## 71 0.01010101 0.00000000 0.00000000
## 72 0.00000000 0.00000000 0.01010101
## 77 0.00000000 0.01010101 0.01010101
## 90 0.00000000 0.00000000 0.01010101
## 92 0.00000000 0.00000000 0.01010101
## 98 0.00000000 0.01010101 0.00000000
## 108 0.00000000 0.00000000 0.01010101
## 116 0.00000000 0.01010101 0.00000000
## 118 0.00000000 0.01010101 0.00000000
## 123 0.02020202 0.00000000 0.00000000
## 131 0.00000000 0.01010101 0.01010101
## 134 0.00000000 0.00000000 0.01010101
## 142 0.00000000 0.01010101 0.00000000
## 146 0.00000000 0.00000000 0.02020202
## 156 0.00000000 0.01010101 0.00000000
## 164 0.00000000 0.00000000 0.01010101
## 167 0.01010101 0.00000000 0.00000000
## 173 0.00000000 0.01010101 0.00000000
## 175 0.00000000 0.00000000 0.01010101
## 178 0.00000000 0.01010101 0.00000000
## 228 0.00000000 0.00000000 0.01010101
## 240 0.01010101 0.00000000 0.00000000
## 256 0.02020202 0.02020202 0.00000000
## 266 0.01010101 0.00000000 0.01010101
## 284 0.00000000 0.00000000 0.01010101
## 294 0.01010101 0.00000000 0.00000000
## 302 0.00000000 0.01010101 0.00000000
## 339 0.00000000 0.01010101 0.00000000
## 342 0.00000000 0.00000000 0.01010101
## 387 0.00000000 0.01010101 0.00000000
## 416 0.00000000 0.00000000 0.01010101
## 435 0.00000000 0.00000000 0.01010101
## 490 0.01010101 0.00000000 0.00000000
## 535 0.01010101 0.00000000 0.00000000
## 547 0.00000000 0.01010101 0.00000000
## 610 0.00000000 0.00000000 0.01010101
## 651 0.00000000 0.00000000 0.01010101
## 709 0.00000000 0.00000000 0.01010101
## 716 0.00000000 0.01010101 0.00000000
## 768 0.00000000 0.00000000 0.01010101
## 856 0.00000000 0.00000000 0.01010101
## 862 0.00000000 0.01010101 0.00000000
## 883 0.00000000 0.00000000 0.01010101
## 918 0.01010101 0.00000000 0.00000000
## 984 0.01010101 0.00000000 0.00000000
## 1200 0.00000000 0.00000000 0.01010101
## 1300 0.01010101 0.00000000 0.00000000
## 1500 0.01010101 0.00000000 0.00000000
## 2100 0.00000000 0.01010101 0.00000000
## 2900 0.01010101 0.00000000 0.00000000
## 3200 0.00000000 0.01010101 0.00000000
## 4300 0.00000000 0.01010101 0.00000000
## 5400 0.01010101 0.00000000 0.00000000
## 5600 0.00000000 0.01010101 0.00000000
## 5700 0.00000000 0.01010101 0.00000000
## 6800 0.00000000 0.01010101 0.00000000
## 7200 0.00000000 0.01010101 0.00000000
## 9200 0.00000000 0.01010101 0.00000000
## 12000 0.00000000 0.01010101 0.00000000
## 22000 0.00000000 0.01010101 0.00000000
chisq.test(dados_videos$q6, dados_videos$q3)
## Warning in chisq.test(dados_videos$q6, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q6 and dados_videos$q3
## X-squared = 167.32, df = 168, p-value = 0.5003
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.0001960784
qnorm(sigAdj/2)
## [1] -3.724016
#nao gostgei
table<-with(dados_videos,table(q7,q3))
table
## q3
## q7 1 2 3
## 0 2 4 12
## 1 3 3 6
## 2 3 3 4
## 3 0 5 3
## 4 0 3 4
## 5 0 1 3
## 6 1 2 0
## 7 1 1 1
## 8 2 0 1
## 9 1 0 2
## 10 0 1 1
## 11 0 0 2
## 13 1 0 1
## 14 0 0 1
## 16 0 0 1
## 17 1 0 0
## 18 1 1 1
## 19 1 0 0
## 23 0 1 0
## 24 0 1 0
## 25 0 0 1
## 30 1 0 0
## 44 0 1 0
## 47 1 0 0
## 60 0 1 0
## 64 1 0 0
## 65 0 1 0
## 80 0 1 0
## 84 0 1 0
## 89 0 1 0
## 98 0 1 0
## 199 0 1 0
## 1400 0 1 0
prop.table(table)
## q3
## q7 1 2 3
## 0 0.02020202 0.04040404 0.12121212
## 1 0.03030303 0.03030303 0.06060606
## 2 0.03030303 0.03030303 0.04040404
## 3 0.00000000 0.05050505 0.03030303
## 4 0.00000000 0.03030303 0.04040404
## 5 0.00000000 0.01010101 0.03030303
## 6 0.01010101 0.02020202 0.00000000
## 7 0.01010101 0.01010101 0.01010101
## 8 0.02020202 0.00000000 0.01010101
## 9 0.01010101 0.00000000 0.02020202
## 10 0.00000000 0.01010101 0.01010101
## 11 0.00000000 0.00000000 0.02020202
## 13 0.01010101 0.00000000 0.01010101
## 14 0.00000000 0.00000000 0.01010101
## 16 0.00000000 0.00000000 0.01010101
## 17 0.01010101 0.00000000 0.00000000
## 18 0.01010101 0.01010101 0.01010101
## 19 0.01010101 0.00000000 0.00000000
## 23 0.00000000 0.01010101 0.00000000
## 24 0.00000000 0.01010101 0.00000000
## 25 0.00000000 0.00000000 0.01010101
## 30 0.01010101 0.00000000 0.00000000
## 44 0.00000000 0.01010101 0.00000000
## 47 0.01010101 0.00000000 0.00000000
## 60 0.00000000 0.01010101 0.00000000
## 64 0.01010101 0.00000000 0.00000000
## 65 0.00000000 0.01010101 0.00000000
## 80 0.00000000 0.01010101 0.00000000
## 84 0.00000000 0.01010101 0.00000000
## 89 0.00000000 0.01010101 0.00000000
## 98 0.00000000 0.01010101 0.00000000
## 199 0.00000000 0.01010101 0.00000000
## 1400 0.00000000 0.01010101 0.00000000
chisq.test(dados_videos$q7, dados_videos$q3)
## Warning in chisq.test(dados_videos$q7, dados_videos$q3): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados_videos$q7 and dados_videos$q3
## X-squared = 69.079, df = 64, p-value = 0.3099
chisq.posthoc.test(table)
## Warning in chisq.test(x, ...): Chi-squared approximation may be incorrect
sig<-.05
sigAdj<-sig/(nrow(table)*ncol(table))
sigAdj
## [1] 0.0005050505
qnorm(sigAdj/2)
## [1] -3.478063