library(ISLR)
attach(Auto)
attach(Carseats)

Question 2.

Carefully explain the differences between the KNN classifier and KNN regression methods.

Question 9.

This question involves the use of multiple linear regression on the Auto data set.

(a) Produce a scatterplot matrix which includes all of the variables in the data set.

pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.

cor(Auto[1:8])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:

i. Is there a relationship between the predictors and the response?

fitnoname=lm(mpg ~ . - name, data=Auto)
summary(fitnoname)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

The F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16 shows that there is a relationship between all the predictors and mpg.

ii. Which predictors appear to have a statistically significant relationship to the response?

Displacement, weight, year and origin

iii. What does the coefficient for the year variable suggest?

With a coefficient of 0.75 for year, it suggests that every year mpg will increase at a rate 0.75

(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

par(mfrow=c(2,2))
plot(fitnoname)

(e) Use the and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?

summary(lm(formula=mpg ~ . * .,data=Auto[, -9]))
## 
## Call:
## lm(formula = mpg ~ . * ., data = Auto[, -9])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.6303 -1.4481  0.0596  1.2739 11.1386 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                3.548e+01  5.314e+01   0.668  0.50475   
## cylinders                  6.989e+00  8.248e+00   0.847  0.39738   
## displacement              -4.785e-01  1.894e-01  -2.527  0.01192 * 
## horsepower                 5.034e-01  3.470e-01   1.451  0.14769   
## weight                     4.133e-03  1.759e-02   0.235  0.81442   
## acceleration              -5.859e+00  2.174e+00  -2.696  0.00735 **
## year                       6.974e-01  6.097e-01   1.144  0.25340   
## origin                    -2.090e+01  7.097e+00  -2.944  0.00345 **
## cylinders:displacement    -3.383e-03  6.455e-03  -0.524  0.60051   
## cylinders:horsepower       1.161e-02  2.420e-02   0.480  0.63157   
## cylinders:weight           3.575e-04  8.955e-04   0.399  0.69000   
## cylinders:acceleration     2.779e-01  1.664e-01   1.670  0.09584 . 
## cylinders:year            -1.741e-01  9.714e-02  -1.793  0.07389 . 
## cylinders:origin           4.022e-01  4.926e-01   0.816  0.41482   
## displacement:horsepower   -8.491e-05  2.885e-04  -0.294  0.76867   
## displacement:weight        2.472e-05  1.470e-05   1.682  0.09342 . 
## displacement:acceleration -3.479e-03  3.342e-03  -1.041  0.29853   
## displacement:year          5.934e-03  2.391e-03   2.482  0.01352 * 
## displacement:origin        2.398e-02  1.947e-02   1.232  0.21875   
## horsepower:weight         -1.968e-05  2.924e-05  -0.673  0.50124   
## horsepower:acceleration   -7.213e-03  3.719e-03  -1.939  0.05325 . 
## horsepower:year           -5.838e-03  3.938e-03  -1.482  0.13916   
## horsepower:origin          2.233e-03  2.930e-02   0.076  0.93931   
## weight:acceleration        2.346e-04  2.289e-04   1.025  0.30596   
## weight:year               -2.245e-04  2.127e-04  -1.056  0.29182   
## weight:origin             -5.789e-04  1.591e-03  -0.364  0.71623   
## acceleration:year          5.562e-02  2.558e-02   2.174  0.03033 * 
## acceleration:origin        4.583e-01  1.567e-01   2.926  0.00365 **
## year:origin                1.393e-01  7.399e-02   1.882  0.06062 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.695 on 363 degrees of freedom
## Multiple R-squared:  0.8893, Adjusted R-squared:  0.8808 
## F-statistic: 104.2 on 28 and 363 DF,  p-value: < 2.2e-16

Displacement:year, acceleration:year and acceleration:origin appear to be statistically significant

(f) Try a few different transformations of the variables, such as log(X), √X, X2. Comment on your findings.

par(mfrow=c(2,2))
plot(log(Auto$horsepower), Auto$mpg)
plot(sqrt(Auto$horsepower), Auto$mpg)
plot((Auto$horsepower)^2, Auto$mpg)

Using the different transformations of the variables in the data, it seems that horsepower plots look to be the most linear.

Question 10. This question should be answered using the Carseats data set.

a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

Fitsales=lm(Sales~Price+Urban+US)
summary(Fitsales)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!

Price – If there are any changes in Price then there is a change in Sales by -0.054459 for each unit. UrbanYes – If the store is in an Urban area then there is a change in Sales by -0.021916 but isn’t significant as per the regression model. USYes – If the store is in the US then there is a change in Sales by 1.200573.

(c) Write out the model in equation form, being careful to handle the qualitative variables properly.

\(Sales` = 13.043469 - 0.054459 * Price - 0.021916 * Urban_{Yes} + 1.200573 * US_{Yes}\)

Urban = 1 (If store is located in an Urban area, if not then = 0) US = 1 (If store is located in the US, if not then = 0)

(d) For which of the predictors can you reject the null hypothesis \(H0 : \beta_j = 0\)?

Price and US predictors can reject the null hypothesis

(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

Fitsmall=lm(Sales~Price+US)
summary(Fitsmall)
## 
## Call:
## lm(formula = Sales ~ Price + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

(f) How well do the models in (a) and (e) fit the data?

Not well, both models display about a 23% variance in Sales.

(g) Using the model from (e), obtain 95% confidence intervals for the coefficient(s).

confint(Fitsmall)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632

(h) Is there evidence of outliers or high leverage observations in the model from (e)?

par(mfrow=c(2,2))
plot(Fitsmall)

The Residuals vs Leverage plot shows that there are a few outliers and high leverage observations

Question 12. This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate ˆ β for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

set.seed(1)
x=1:100
sum(x^2)
## [1] 338350
y=2*x+rnorm(100,sd=0.1)
sum(y^2)
## [1] 1353606
Yfit=lm(y~x+0)
Xfit=lm(x~y+0)
summary(Yfit)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.223590 -0.062560  0.004426  0.058507  0.230926 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## x 2.0001514  0.0001548   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16
summary(Xfit)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.115418 -0.029231 -0.002186  0.031322  0.111795 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y 5.00e-01   3.87e-05   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16

(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.

x=1:100
sum(x^2)
## [1] 338350
y=100:1
sum(y^2)
## [1] 338350
Yfit=lm(y~x+0)
Xfit=lm(x~y+0)
summary(Yfit)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## x   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
summary(Xfit)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08