knitr::opts_chunk$set(message=FALSE, warning = FALSE)
library(tidyverse)
library(here)
library(langcog)
library(tidyboot)
source(here("visualization_helper/R_rainclouds.R"))
tidy_d <- read_csv(here("data/4_processed/with_human_coded_main.csv"))
demog_province <- read_csv(here("data/4_processed/demog_state.csv"))
tidy_d <- tidy_d %>%
left_join(demog_province, by = c("subject", "culture"))
tidy_d %>%
group_by(subject, culture) %>%
summarise(n = n()) %>%
group_by(culture) %>%
count()
## # A tibble: 2 × 2
## # Groups: culture [2]
## culture n
## <chr> <int>
## 1 CN 173
## 2 US 296
FD_raw <- tidy_d %>%
filter(task_name == "FD") %>%
group_by(subject, culture) %>%
summarise(first_mention = mean(as.numeric(resp)))
ggplot(data = FD_raw,
aes(y = first_mention, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = first_mention, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("proportion first mention focal") +
xlab("") +
theme_classic() +
labs(title = "Free description") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
FD_raw <- tidy_d %>%
filter(task_name == "FD") %>%
filter(culture == "CN") %>%
group_by(subject, rice_cat) %>%
summarise(first_mention = mean(as.numeric(resp))) %>%
mutate(rice_cat = ifelse(rice_cat == 1, "wheat", "rice"))
ggplot(data = FD_raw,
aes(y = first_mention, x = rice_cat, fill = rice_cat)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = first_mention, color = rice_cat),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Proportion fire mention focal") +
xlab("") +
theme_classic() +
labs(title = "Free description") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
FD_raw <- tidy_d %>%
filter(task_name == "FD") %>%
filter(culture == "US") %>%
group_by(subject, region) %>%
summarise(first_mention = mean(as.numeric(resp)))
ggplot(data = FD_raw,
aes(y = first_mention, x = region, fill = region)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = first_mention, color = region),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Proportion fire mention focal") +
xlab("") +
theme_classic() +
labs(title = "Free description") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
FD_raw <- tidy_d %>%
filter(task_name == "FD") %>%
filter(culture == "US") %>%
group_by(subject, coast) %>%
summarise(first_mention = mean(as.numeric(resp)))
ggplot(data = FD_raw,
aes(y = first_mention, x = coast, fill = coast)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = first_mention, color = coast),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Proportion fire mention focal") +
xlab("") +
theme_classic() +
labs(title = "Free description") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
SSI_raw <- tidy_d %>%
filter(task_name == "SSI") %>%
mutate(resp = as.numeric(resp))
ggplot(data = SSI_raw %>% filter(resp_type == "task_score_diff"),
aes(y = resp, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = resp, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("") +
xlab("") +
theme_classic() +
labs(title = "Symbolic Self Inflation") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
ggplot(data = SSI_raw %>% filter(resp_type == "task_score_ratio"),
aes(y = resp, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = resp, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("") +
xlab("") +
theme_classic() +
labs(title = "Symbolic Self Inflation") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
plot proportion relation match
RMTS_raw <- tidy_d %>%
filter(task_name == "RMTS") %>%
group_by(subject, culture) %>%
summarise(relational_choice = mean(as.numeric(resp)))
ggplot(data = RMTS_raw,
aes(y = relational_choice, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = relational_choice, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("Proportion relational choice") +
xlab("") +
theme_classic() +
labs(title = "Ambiguous RMTS") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
RV_raw <- tidy_d %>%
filter(task_name == "RV") %>%
group_by(subject, culture) %>%
summarise(RV_resp = mean(as.numeric(resp)))
ggplot(data = RV_raw,
aes(y = RV_resp, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = RV_resp, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("Ravens proportion correct") +
xlab("") +
theme_classic() +
labs(title = "Ravens") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
RV_raw <- tidy_d %>%
filter(task_name == "RV") %>%
filter(culture == "CN") %>%
group_by(subject, rice_cat) %>%
summarise(RV_resp = mean(as.numeric(resp))) %>%
mutate(rice_cat = ifelse(rice_cat == 1, "wheat", "rice"))
ggplot(data = RV_raw,
aes(y = RV_resp, x = rice_cat, fill = rice_cat)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = RV_resp, color = rice_cat),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Ravens proportion correct") +
xlab("") +
theme_classic() +
labs(title = "Ravens") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
tidy_d %>%
filter(task_name == "RV") %>%
filter(culture == "CN") %>%
group_by(subject, percent_paddy) %>%
summarise(RV_resp = mean(as.numeric(resp))) %>%
ggplot(aes(x = percent_paddy,
y = RV_resp)) +
geom_point() +
geom_smooth()
RV_raw <- tidy_d %>%
filter(task_name == "RV") %>%
filter(culture == "US") %>%
group_by(subject, region) %>%
summarise(RV_resp = mean(as.numeric(resp)))
ggplot(data = RV_raw,
aes(y = RV_resp, x = region, fill = region)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = RV_resp, color = region),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Ravens proportion correct") +
xlab("") +
theme_classic() +
labs(title = "Ravens") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
RV_raw <- tidy_d %>%
filter(task_name == "RV") %>%
filter(culture == "US") %>%
group_by(subject, coast) %>%
summarise(RV_resp = mean(as.numeric(resp)))
ggplot(data = RV_raw,
aes(y = RV_resp, x = coast, fill = coast)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = RV_resp, color = coast),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Ravens proportion correct") +
xlab("") +
theme_classic() +
labs(title = "Ravens") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
TD_catch_failed <- tidy_d %>%
filter(task_name == "TD") %>%
filter(task_info == "catch") %>%
filter(resp = FALSE) %>%
pull(subject)
TD_raw <- tidy_d %>%
filter(!subject %in% TD_catch_failed) %>%
filter(task_name == "TD") %>%
group_by(subject, culture) %>%
summarise(tax_match = mean(as.logical(resp)))
ggplot(data = TD_raw,
aes(y = tax_match, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = tax_match, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("Triads taxonomic match") +
xlab("") +
theme_classic() +
labs(title = "Triads") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
TD_catch_failed <- tidy_d %>%
filter(task_name == "TD") %>%
filter(task_info == "catch") %>%
filter(resp = FALSE) %>%
pull(subject)
TD_raw <- tidy_d %>%
filter(culture == "CN") %>%
filter(!subject %in% TD_catch_failed) %>%
filter(task_name == "TD") %>%
group_by(subject, rice_cat) %>%
summarise(tax_match = mean(as.logical(resp))) %>%
mutate(rice_cat = ifelse(rice_cat == 1, "wheat", "rice"))
ggplot(data = TD_raw,
aes(y = tax_match, x = rice_cat, fill = rice_cat)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = tax_match, color = rice_cat),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Triads proportion tax match") +
xlab("") +
theme_classic() +
labs(title = "Triads") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
TD_raw <- tidy_d %>%
filter(culture == "CN") %>%
filter(!subject %in% TD_catch_failed) %>%
filter(task_name == "TD") %>%
group_by(subject, percent_paddy) %>%
summarise(tax_match = mean(as.logical(resp)))
TD_raw %>%
ggplot(aes(x = percent_paddy,
y = tax_match)) +
geom_point() +
geom_smooth()
TD_catch_failed <- tidy_d %>%
filter(task_name == "TD") %>%
filter(task_info == "catch") %>%
filter(resp = FALSE) %>%
pull(subject)
TD_raw <- tidy_d %>%
filter(culture == "US") %>%
filter(!subject %in% TD_catch_failed) %>%
filter(task_name == "TD") %>%
group_by(subject, region) %>%
summarise(tax_match = mean(as.logical(resp)))
ggplot(data = TD_raw,
aes(y = tax_match, x = region, fill = region)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = tax_match),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Triads taxonomic match") +
xlab("") +
theme_classic() +
labs(title = "Triads") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
TD_raw <- tidy_d %>%
filter(culture == "US") %>%
filter(!subject %in% TD_catch_failed) %>%
filter(task_name == "TD") %>%
group_by(subject, coast) %>%
summarise(tax_match = mean(as.logical(resp)))
ggplot(data = TD_raw,
aes(y = tax_match, x = coast, fill = coast)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = tax_match),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Triads taxonomic match") +
xlab("") +
theme_classic() +
labs(title = "Triads") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
SeI_raw <- tidy_d %>%
filter(task_name == "SeI") %>%
filter(task_info == "critical") %>%
mutate(causal_historical_choice = case_when(
resp == "causal_historical" ~ TRUE,
resp == "descriptivist" ~ FALSE
)) %>%
group_by(subject, culture) %>%
summarise(causal_historical_resp = mean(causal_historical_choice))
ggplot(data = SeI_raw,
aes(y = causal_historical_resp, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = causal_historical_resp, color = culture),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("Causal Historical Choice") +
xlab("") +
theme_classic() +
labs(title = "Semantic Intuition") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
## within country {.tabset}
SeI_raw <- tidy_d %>%
filter(task_name == "SeI") %>%
filter(culture == "CN") %>%
filter(task_info == "critical") %>%
mutate(causal_historical_choice = case_when(
resp == "causal_historical" ~ TRUE,
resp == "descriptivist" ~ FALSE
)) %>%
group_by(subject, rice_cat) %>%
summarise(causal_historical_resp = mean(causal_historical_choice)) %>%
mutate(rice_cat = ifelse(rice_cat == 1, "wheat", "rice"))
ggplot(data = SeI_raw,
aes(y = causal_historical_resp, x = rice_cat, fill = rice_cat)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = causal_historical_resp, color = rice_cat),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Causal Historical Choice") +
xlab("") +
theme_classic() +
labs(title = "Semantic Intuition") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
SeI_raw <- tidy_d %>%
filter(task_name == "SeI") %>%
filter(culture == "US") %>%
filter(task_info == "critical") %>%
mutate(causal_historical_choice = case_when(
resp == "causal_historical" ~ TRUE,
resp == "descriptivist" ~ FALSE
)) %>%
group_by(subject, region) %>%
summarise(causal_historical_resp = mean(causal_historical_choice))
ggplot(data = SeI_raw,
aes(y = causal_historical_resp, x = region, fill = region)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = causal_historical_resp, color = region),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Causal Historical Choice") +
xlab("") +
theme_classic() +
labs(title = "Semantic Intuition") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
SeI_raw <- tidy_d %>%
filter(task_name == "SeI") %>%
filter(culture == "US") %>%
filter(task_info == "critical") %>%
mutate(causal_historical_choice = case_when(
resp == "causal_historical" ~ TRUE,
resp == "descriptivist" ~ FALSE
)) %>%
group_by(subject, coast) %>%
summarise(causal_historical_resp = mean(causal_historical_choice))
ggplot(data = SeI_raw,
aes(y = causal_historical_resp, x = coast, fill = coast)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = causal_historical_resp, color = coast),
position = position_jitter(width = .15), size = .5, alpha = 0.8) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
guides(fill = "none") +
guides(color = "none") +
ylab("Causal Historical Choice") +
xlab("") +
theme_classic() +
labs(title = "Semantic Intuition") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8))
tidy_d %>%
filter(task_name == "CD") %>%
mutate(acc_raw = case_when(
resp == "null" ~ 0,
TRUE ~ 1)) %>%
ggplot(
aes(y = acc_raw, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = acc_raw, color = culture),
position = position_jitter(width = .15), size = .2, alpha = 0.6) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("acc_raw") +
xlab("") +
theme_classic() +
labs(title = "Change Detection") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8)) +
facet_wrap(~task_info)
raw_CD <- tidy_d %>%
filter(task_name == "CD") %>%
mutate(log_rt = log(as.numeric(resp)))
ggplot(data = raw_CD,
aes(y = log_rt, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = log_rt, color = culture),
position = position_jitter(width = .15), size = .2, alpha = 0.6) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_y_continuous(breaks = seq(0,1,0.5),
labels = {function(x) paste0(as.character(x*100),"%")})+
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("log RT(ms)") +
xlab("") +
theme_classic() +
labs(title = "Change Detection") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8)) +
facet_wrap(~task_info)
raw_CA <- tidy_d %>%
filter(task_name == "CA") %>%
mutate(resp = as.numeric(resp) + 1)
ggplot(data = raw_CA,
aes(y = resp, x = culture, fill = culture)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = resp, color = culture),
position = position_jitter(width = .15), size = .2, alpha = 0.6) +
geom_boxplot(width = .1, alpha = 0.3) +
scale_color_manual(values = c("red", "blue"))+
scale_fill_manual(values = c("red", "blue"))+
guides(fill = "none") +
guides(color = "none") +
ylab("LS rating (1-7)") +
xlab("") +
theme_classic() +
labs(title = "Causal Attribution") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8)) +
facet_wrap(~task_info)
raw_CA_CN <- tidy_d %>%
filter(task_name == "CA") %>%
filter(culture == "CN") %>%
mutate(resp = as.numeric(resp) + 1) %>%
mutate(rice_cat = ifelse(rice_cat == 1, "wheat", "rice"))
ggplot(data = raw_CA_CN,
aes(y = resp, x = rice_cat, fill = rice_cat)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = resp, color = rice_cat),
position = position_jitter(width = .15), size = .2, alpha = 0.6) +
geom_boxplot(width = .1, alpha = 0.3) +
guides(fill = "none") +
guides(color = "none") +
ylab("LS rating (1-7)") +
xlab("") +
theme_classic() +
labs(title = "Causal Attribution") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8)) +
facet_wrap(~task_info)
ggplot(data = raw_CA %>% filter(culture == "US"),
aes(y = resp, x = region, fill = region)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = resp, color = region),
position = position_jitter(width = .15), size = .2, alpha = 0.6) +
geom_boxplot(width = .1, alpha = 0.3) +
guides(fill = "none") +
guides(color = "none") +
ylab("LS rating (1-7)") +
xlab("") +
theme_classic() +
labs(title = "Causal Attribution") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8)) +
facet_wrap(~task_info)
ggplot(data = raw_CA %>% filter(culture == "US"),
aes(y = resp, x = coast, fill = coast)) +
geom_flat_violin(position = position_nudge(x = .1, y = 0), alpha = .8) +
geom_point(aes(y = resp, color = coast),
position = position_jitter(width = .15), size = .2, alpha = 0.6) +
geom_boxplot(width = .1, alpha = 0.3) +
guides(fill = "none") +
guides(color = "none") +
ylab("LS rating (1-7)") +
xlab("") +
theme_classic() +
labs(title = "Causal Attribution") +
theme(plot.title = element_text(hjust = 0.5, size = 8),
plot.subtitle = element_text(hjust = 0.5, size = 6),
text = element_text(size=8)) +
facet_wrap(~task_info)