load("bout.Rdata")
###Â funcion para hacer univariantes de ###
univ= function(DF,y,x) {tab_model(glm(sprintf("%s ~ %s", y, x) , family =binomial("logit"), DF), show.intercept = FALSE)}
# - Edad
# - genhom
# - Convivencia
# - Pareja estable
# - Sx COVID19
# - Dx COVID19
# - Convivencia COVID19
# - Año residencia
# - jornada <45h
# - Nº guardias especialidad
# - Horas estudio
# - PsiquiatrÃa primera opción MIR
# - Tiempo investigación
# - Región
# - Supervisión
# - Recurso asistencial
univ(bbooi, "PrevalenciaBout", "Edad")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Edad
|
0.96
|
0.80 – 1.16
|
0.621
|
Observations
|
139
|
R2 Tjur
|
0.002
|
univ(bbooi, "PrevalenciaBout", "genhom")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
genhomTRUE
|
1.87
|
0.70 – 5.93
|
0.244
|
Observations
|
137
|
R2 Tjur
|
0.010
|
univ(bbooi, "PrevalenciaBout", "Convivencia")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Convivencia2
|
1.18
|
0.38 – 3.80
|
0.773
|
Convivencia3
|
1.29
|
0.47 – 3.48
|
0.616
|
Convivencia5
|
1.08
|
0.20 – 8.29
|
0.932
|
Convivencia6
|
1.44
|
0.29 – 10.74
|
0.679
|
Convivencia7
|
0.36
|
0.01 – 9.74
|
0.486
|
Observations
|
139
|
R2 Tjur
|
0.008
|
univ(bbooi, "PrevalenciaBout", "Parejaestable")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Parejaestable1
|
0.85
|
0.33 – 2.03
|
0.724
|
Observations
|
139
|
R2 Tjur
|
0.001
|
univ(bbooi, "PrevalenciaBout", "SxCOVID")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
SxCOVID1
|
2.11
|
0.80 – 6.67
|
0.161
|
Observations
|
139
|
R2 Tjur
|
0.015
|
univ(bbooi, "PrevalenciaBout", "DxCOVID19")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
DxCOVID191
|
0.81
|
0.32 – 2.27
|
0.673
|
Observations
|
139
|
R2 Tjur
|
0.001
|
univ(bbooi, "PrevalenciaBout", "ConvivenciaCOVID19")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
ConvivenciaCOVID191
|
2.01
|
0.70 – 7.28
|
0.232
|
Observations
|
139
|
R2 Tjur
|
0.011
|
univ(bbooi, "PrevalenciaBout", "ares")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
ares3º
|
1.32
|
0.55 – 3.32
|
0.543
|
ares4º
|
2.24
|
0.79 – 7.39
|
0.150
|
Observations
|
139
|
R2 Tjur
|
0.016
|
univ(bbooi, "PrevalenciaBout", "gt45horas")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
gt45horas1
|
0.23
|
0.09 – 0.60
|
0.003
|
Observations
|
139
|
R2 Tjur
|
0.072
|
univ(bbooi, "PrevalenciaBout", "Guardiasdeespecialidad")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Guardias de especialidad
|
1.18
|
0.76 – 1.82
|
0.457
|
Observations
|
139
|
R2 Tjur
|
0.004
|
univ(bbooi, "PrevalenciaBout", "Horasestudio")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Horas estudio
|
1.00
|
0.85 – 1.18
|
0.984
|
Observations
|
139
|
R2 Tjur
|
0.000
|
univ(bbooi, "PrevalenciaBout", "Primeraopción")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Primeraopción1
|
1.01
|
0.33 – 3.81
|
0.983
|
Observations
|
139
|
R2 Tjur
|
0.000
|
univ(bbooi, "PrevalenciaBout", "Tiempoinvest")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
TiempoinvestSÃ
|
0.72
|
0.32 – 1.68
|
0.441
|
Observations
|
139
|
R2 Tjur
|
0.004
|
univ(bbooi, "PrevalenciaBout", "ca5")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
ca5 [ara cat]
|
1.49
|
0.37 – 5.84
|
0.565
|
ca5 [norte]
|
1.12
|
0.28 – 4.23
|
0.865
|
ca5 [cast-mad]
|
1.49
|
0.37 – 5.84
|
0.565
|
ca5 [este]
|
0.79
|
0.21 – 2.83
|
0.725
|
Observations
|
139
|
R2 Tjur
|
0.011
|
univ(bbooi, "PrevalenciaBout", "supervsino")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
supervsinoTRUE
|
0.29
|
0.12 – 0.65
|
0.003
|
Observations
|
139
|
R2 Tjur
|
0.066
|
# "Planta de hospitalización","Servicio de urgencias"= re2TRUE
univ(bbooi, "PrevalenciaBout", "re2")
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
re2TRUE
|
1.39
|
0.63 – 3.06
|
0.414
|
Observations
|
139
|
R2 Tjur
|
0.005
|
dd = datadist(bbo)
## Warning in datadist(bbo): DASTR is constant
options(datadist="dd")
# lmod= lrm(PrevalenciaBout ~ Horasestudio+ SxCOVID +ConvivenciaCOVID19 +DxCOVID19 + supervsino + gt45horas, data =data.frame(bbo),x=T,y=T)
lmod= lrm(PrevalenciaBout ~ supervsino + gt45horas, data =data.frame(bbo),x=T,y=T)
lmod
## Logistic Regression Model
##
## lrm(formula = PrevalenciaBout ~ supervsino + gt45horas, data = data.frame(bbo),
## x = T, y = T)
##
## Model Likelihood Discrimination Rank Discrim.
## Ratio Test Indexes Indexes
## Obs 139 LR chi2 16.13 R2 0.165 C 0.689
## 0 33 d.f. 2 g 0.829 Dxy 0.378
## 1 106 Pr(> chi2) 0.0003 gr 2.290 gamma 0.539
## max |deriv| 4e-09 gp 0.148 tau-a 0.138
## Brier 0.157
##
## Coef S.E. Wald Z Pr(>|Z|)
## Intercept 2.0340 0.3505 5.80 <0.0001
## supervsino -1.1485 0.4328 -2.65 0.0080
## gt45horas=1 -1.3497 0.5055 -2.67 0.0076
##
plot_model(lmod)

tab_model(lmod)
Â
|
Prevanlencia Burnout
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Intercept
|
7.64
|
3.85 – 15.19
|
<0.001
|
supervsino
|
0.32
|
0.14 – 0.74
|
0.008
|
gt45horas=1
|
0.26
|
0.10 – 0.70
|
0.008
|
Observations
|
139
|
R2
|
0.165
|
plot(anova(lmod), what='proportion chisq') # relative importance ####

plot(Predict(lmod)) # predicted values
